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Well-designed graphics can guide the
initial exploration of data and can show
results of formal inference. However, too
often we rely on ‘‘cute’’ graphics designed
for the corporate boardroom that hide rela-
tionships and bias interpretation. Graphics
can help present all the data in revealing
ways for modest-size experiments. Many
of today’s experiments involve massive
amounts of data and many questions that
can productively be condensed into graphics
that summarize detailed patterns and guide
further investigation. This paper is based on
an invited talk at the ASHS 2004 annual
conference.

Bottom line: A picture is worth a thousand
words. This overused phrase applies quite
strongly to scientific data presentation.
Graphics help us to spot unusual patterns in
preliminary investigation and later to present
key relationships in a concise and convincing
manner.

Large tables of numbers may be important
for documenting certain studies, but they are
almost always better hidden from view. It is
too easy for the eye to gravitate to spurious
patterns and miss the main story. Such visual
confusion can bias our perception and side-
track useful research, providing misleading
clues that can waste time and money. Why
not organize material creatively into pictures
that show relationships objectively? Graphics
can even include cues to inference, such as SE

or LSD bars that show the extent of variation
relative to mean tendency.

Creative graphics are not always useful;
on the contrary, they can be quite harmful.
For numerous examples in a variety of set-
tings, see Wainer (1984) and the books of
Edward Tufte (1983, 1990, 1997). The clas-
sic How to Lie with Statistics by Huff (1993)
contains many examples of poor data analy-
sis, often illustrated or ‘‘enhanced’’ with
misleading graphics.

Excellent examples of graphics can be
found in Tufte (1983, 1990, 1997) and
Cleveland (1993, 1994). Both Tufte (1983)
and Wainer (1984) show a famous diagram

of Napoleon’s defeat march across Europe,
including details of geography, troop size,
and weather conditions. Many of the best
graphic examples are decades or centuries
old. Although many are from designed
experiments, others are used in everyday life,
such as maps of transit systems. Cleveland
(1993, 1994) focuses on more experimental
settings, presenting a wide array of excellent
graphical devices.

We illustrate some good and bad por-
trayals using plant breeding data from a
Brassica napus L. cross of Tom Osborn.
My contact with this work originated with
Ferreira et al. (1995), with the map fully
developed in Kole et al. (2002). These data
are freely available as part of my R package
bim (discussed later).

SPREADSHEETS TO ORGANIZE,
NOT GRAPH, DATA

Spreadsheets tend to have pull-down
menus with confusing palettes presenting
techniques to graph data. They are often
dominated by business-style graphics such
as pie charts and bar plots that can severely
bias perception of relationships. (Trained
data analysts basically avoid pie charts, and
only use bar plots in limited situations.)
Spreadsheets are great for data entry and data
organization, and are quite useful for data
management over the long term, but they do
not model graphical presentation well. The
worst examples of spreadsheet graphics
involve three-dimensional (3-D) renderings.
Although 3-D diagrams have their place,
mostly for geographical and high-dimen-
sional data, they should be used sparingly.

Beyond the ill-advised array of graphics
choices, the chief difficulty with spreadsheets
is documenting and reproducing methods of
data manipulation and calculation. These
tend to involve many operations by hand-
using mouse devices, with calculations hid-
den within ‘‘cells’’ of a spreadsheet, available
only by ‘‘mousing’’ over the cell. Quite often,
these rely on hard-coded values or location-
sensitive references to other cells. Graphics
are often tied to particular subsets of rows and
columns on a sheet, and may involve consid-
erable artistic modifications before comple-
tion. Thus, it can be difficult to reproduce
graphics on a given data set, or to repeat these
graphics and accompanying analysis on new
data.

Statistical methods provided with spread-
sheets tend to have limited capabilities and
are typically unable to handle unbalanced

data or data with multiple factors, nesting, or
blocking. Experiments of any complexity
tend to need tools found in a full-featured
statistical package. Although many statistical
packages can embed menus in spreadsheets
for easy data transfer, the full power of a
statistical package is best used by importing
spreadsheet-prepared data.

STATISTICAL COMPUTATION
AND GRAPHICS

Statistical packages are often used in
conjunction with a graphics or presentation
package, to prepare graphics for talks and
publication. The choice of packages can
enhance or limit our ability to present data
well. There are now many reliable statistics
packages available, including SAS (www.
sas.com), SigmaPlot (www.sigmaplot.com),
STATA (www.stata.com), and Minitab
(www.minitab.com). Each of these offer a
myriad of graphical choices—some good,
some bad.

I illustrate good graphics using the R
language/environment for statistical comput-
ing and graphics. The R system (Ihaka and
Gentleman 1996) (www.r-project.org) is
freely available worldwide for today’s stan-
dard computing platforms. Free, open-source
software is now quite respectable, and is
arguably better maintained than many com-
mercial packages. It is being used more and
more for data analysis by ecologists (Kangas
2004), sociologists, breeders and geneticists,
and bioinformatic scientists (www.biocon
ductor.org). There are many introductory
resources, notably that of Dalgaard (2002).
Several statistical methods courses aimed at
biologists now use R for teaching, including
our ‘‘Stat 571’’ at the University of Wisconsin–
Madison (www.stat.wisc.edu/;yandell/st571).
Because R code is open source, you can
examine the details of computations after a
bit of digging.

The primary drawback of R for biologists
has been the lack of a good graphical user
interface. R has traditionally relied on com-
mand line interface, which requires us to type
or cut-and-paste commands. The advantage
of this is that we can document analysis and
graphics in ways that are reusable and can be
readily shared with other scientists. However,
it does require a modest effort to get started,
which is best done by learning from examples
that create analysis and graphics similar to
your needs.

R is a structured language. Thus, it is pos-
sible to include ‘‘meta-data’’ to document the
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characteristics of an experiment as part of a
data ‘‘object’’ for direct use in analysis. Fur-
thermore, it is possible to create interactive
packages that allow others to reproduce the
analysis and graphics. A companion package
for this paper, including access to the data
and commands for nonspreadsheet plots,
is available at www.stat.wisc.edu/;yandell/
software.

DESCRIPTIVE STATISTICS AND
DATA EXPLORATION

Descriptive statistics are useful initial
summaries of data to get a feel for patterns.
In addition, they can be the basis for formal
tests. However, overly adorned graphs
merely take up space. Consider the following
table:

These are the counts of how many of 104
plants had a particular combination of Major
(M) or Stellar (S) genotype at two genetic
markers: ec2d1a and E33M59.59. (Missing
data have been filled in with the most
probable genotype for convenience.) Both
these markers are located on chromosome 2
of Brassica napus. Fig. 1 shows pie charts
and bar plots for these data. Pie charts and bar
plots are highly biased by choice of color,
shading, and the order of entries. For
instance, we perceive dark shades as bigger,
and red as closer than blue (see books by
Cleveland and Tufte for details). Pie charts
should be avoided at all costs because they
are so strongly subject to bias. Bar plots use
substantial space for little content, with bars
grounded at zero. Zero usually means a plant
is dead! Although zero is meaningful for
germination, it is probably not for days to
flower or many physiological measurements.
Bar plots should be used in limited situations
only. Adding error bars to bar plots throws
good money after bad.

What if we produced pie charts or bar
plots for every pair of markers?! The primary
interest in the table lies in the recombination
rate between the markers, which is crudely
estimated by the number of recombinant (off-
diagonal) plants over the total: r = 48/104 =
0.46. This can be improved by using infor-
mation along the linkage map where data are
missing to get r = 0.49. These markers show
no evidence of linkage, summarized by a
log of odds (LOD) score of 0.0027. The
recombination rates among pairs of markers,
along with the LOD score to assess the
strength of linkage, can be displayed com-
pactly in a single plot (Fig. 2). This allows
quick visual inspection of patterns, to locate
obvious anomalies. For instance, chr N7 has
high linkage among many markers, reflecting
a dense marker map. There appear to be no

major marker order problems in these data,
which is reassuring because this linkage map
has been developed over several years of
careful work (Kole et al., 2002).

Much horticultural data involves quanti-
tative measurements of some kind. Consider
the flowering time of plants with Stellar
(annual) alleles at marker E33M59.59 after

E33M59.59

ec2d1a

TotalM S

M 24 16 40
S 32 32 64
Total 56 48 104

Fig. 1. (A–D) Pie charts and bar plots bias interpretation by choice of colors, order and perspective. It is
difficult in view A, organized by markers, to assess that roughly 50% of individuals are recombinants,
indicating no linkage. This could be seen in view B, except for the distraction of shading and angles.
Bar plots in views C and D show two less-than-helpful ways to organize the same data. Three-
dimensional effects from spreadsheets can further obscure results.

Fig. 2. (A, B) Recombination frequency plot, showing recombination rates between two markers above the
white diagonal and LOD scores for those recombination rates below the white diagonal. Black
indicates low recombination, high log odds (LOD). Darker gray areas indicate low recombination/high
LOD. View A shows only chromosome N2, suggesting the 22 markers are in proper order. View B
shows chromosomes N2 and N7. Note in particular that N7 has many markers that are highly linked,
which is reflected in the dense linkage map for this chromosome. There is one suspicious marker on N7,
showing linkage with one end of N2.
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4- or 8-week vernalization in the following
stem-and-leaf diagrams.

For instance, there are two 4-week plants
and three 8-week plants that flowered at
16 d (bold underline in the diagram). The one
4-week plant recorded as 100 d actually never
flowered. Stem and leaf plots are quite
useful for modest data sets, but they are
cumbersome when there are more than 50
or so observations.

Histograms are nice alternatives, pro-
vided they are used properly. Histograms
are special types of bar plots in which the
bars are ordered to show the count or pro-

portion of observations in consecutive inter-
val of values. Fig. 3 shows four histograms,
with the Stellar allele plants shown below the
Major allele plants. Histograms give some
idea about distribution shape, but they are
sensitive to the number of bars chosen. The
Q-Q, or quantile, plots in Fig. 4 allow us to
examine how close our data are to normality,
with upswings on the right indicating a slight
skew toward larger values. Most statistical
methods, including analysis of variance
(ANOVA), implicitly assume normality and
equal variance. Miller (1997) points out
that normality is not very important for

ANOVA tests, although having a symmetri-
cal distribution without ‘‘heavy tails’’ leads
to estimates of mean and variance that are
more reliable. Although there are formal
goodness-of-fit tests for lack of normality,
they do not have much power and are often no
better than an experienced eye. For instance,
in Figs. 3 and 4, we notice a slight skew,
which is mostly corrected by a log trans-
form (used later). Plots such as Fig. 4 that
show distribution shape are typically for
internal assessment and do not make it to
publication.

I prefer showing all the data in jittered
plots, adding a small amount of noise to
offset values slightly, to show all the data
side by side, as in Fig. 5. Such plots can be
augmented with means and SEs, which allow
some graphical inference about the strength
of evidence for group differences. Miller
(1997) notes that equal variance, or homo-
scedasticity, is much more important than
normality in ANOVA tests, although esti-
mated variances can differ by a factor of
four without causing much harm. The rec-
ommended formal test for heteroscedastic-
ity (unequal variance) is Levene’s test,
which does not require normality, but it is
not very powerful; again, a practiced eye
can be just as effective. A visual inspection
of Fig. 5 suggests the variances are ‘‘close
enough.’’

Pages of histograms or jittered plots
would be as daunting as tables. However,
for the same reasons given earlier for bar
plots and pie charts, it is unwise to simply
jump to 3-D histograms or pie charts.
Three-dimensional ribbon plots, display-
ing lines as ribbons with fancy shading,
merely distract the viewer from the con-
tent. These types of graphics are subject
to strong bias of perspective, color choice,
and so on.

With hundreds or thousands of observa-
tions, box plots or density plots may be more
useful. However, these graphical summaries
tend to hide subtle patterns in data. They can
be quite useful with many groups, but less
revealing with modest sample sizes. A
dozen box plots can be displayed efficiently
side by side. Box plots basically show the
‘‘middle’’ of the data, including the median
and delineated by the upper and lower
quartiles, and highlight outliers. A density
plot is a smooth line that replaces the bars of
a histogram. Its chief drawback is smearing
over spikes in histograms (e.g., flowering
times of 100 d could be spread from 90 to
110). In the interest of space, these are not
included.

Measurements are not taken in isolation.
In fact, the flowering times for no vernaliza-
tion, and 4- and 8-week vernalization exper-
imental conditions were measured on all 104
individuals in this genetic cross. Thus it
makes sense to view the relationship among
measurements in the context of a designed
experiment. Scatter plots with annotation are
effective tools for this, as shown in Fig. 6.
Alternatively, dividing one plot into two or
more paired plots, as in Fig. 7, can allow

Fig. 3. (A–D) Histogram summaries for flowering time after 4-week (A, C) and 8-week (B, D)
vernalization. Plants are partitioned by marker E33M59.59 into Major (A, B) or Stellar (C, D) type.
Horizontal axes are identical; vertical axes show number of plants per 5-d interval. Plants recorded as
100 d never flowered.
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other types of annotation, such as regression
lines.

FORMAL INFERENCE
WITH GRAPHS

Plots can and should provide formal
inference cues. Fig. 2 includes LOD test
statistics as half the plot. Fig. 5 shows means
and SEs for thumbnail assessment of
genotypic differences, analogous to the for-
mal t test or ANOVA-based F test. Fig. 7
shows regression lines, with approximate
95% confidence regions (2 SEs of the dif-
ference between the regression lines),
providing a graphical test of one slope against
the other. Slopes are significantly different
from each other, as the confidence regions
do not completely cover both lines. Values
of SD are included to show near-equal
variance.

The interaction plot in Fig. 8 is spe-
cifically designed for inference, showing
means ± SEs for the four combinations
possible with two markers. A test for
interaction is enhanced by such a plot,
which shows a strong difference at marker
E33M59.59 only when the ec2d1a region
has the Major genotype.

Diagnostic plots are useful in regression
to identify observations objectively with
large residuals or a large influence on anal-
ysis. Usually these do not make it into a
published paper, although their use should be
documented in the Materials and Methods
section.

It is not wise, necessary, or possible to
include all measures of inference on a
graph. This can lead to a cluttered appear-
ance. Including details in the text and/or
figure legend can achieve the same purpose.
Remember that the aim is to convince your
skeptical audience that you have found a
‘‘real’’ relationship and that it has biolog-
ical relevance. Tell the story using your
graphs.

MASSIVE DATA: GENE MAPPING
AND MICROARRAYS

Many results from experiments with
massive data sets can be condensed into
one or a few images, as shown in Fig. 2.
The package R/qtl (www.rqtl.org, Broman
et al., 2003) has many tools of this nature for
gene mapping. Recently there has been
considerable interest in microarrays, leading
to an explosion of creative, and sometimes
bizarre, graphs. Color is used extensively,
although caution is in order. The most
popular clustering graphs contrast green
and red, which cannot be seen by readers
with the most common form of color blind-
ness.

Many of the best graphics examples are
incorporated into R packages that can be
found at Bioconductor (www.bioconductor.
org). One example is the use of false dis-
covery rate q values to assess thousands

Fig. 5. (A, B) Jittered phenotype by genotype plots of flowering time in days from 8-week (A) and 4-week
(B) vernalization treatments. Missing genotypes are imputed (gray circles) based on other map
information. The three 4-week values of 100 d did not flower. Stellar (AA) and Major (AB) are
identified by markers E33M59.59 (top row of horizontal axis) and ec2d1a (bottom row). Thus the
second column of each plot (AA/AB) is for plants that are Stellar at E33M59.59 and Major at marker
ec2d1a. Values are jittered horizontally to highlight the vertical spread in data better. Vertical scale is
logarithmic to addresses increasing variance with mean. Bars to right of jittered points indicate means
±1 SE. There appears to be a strong phenotype difference at E33M59.59 for the 4-week vernalization,
although other group differences appear significant based on SEs. This is confirmed by formal analysis
of variance.

Fig. 4. (A–D) Q-Q plots for flowering time after 4-week (A, B) and 8-week (C, D) vernalization. Plants are
partitioned by marker E33M59.59 into Major (A, C) or Stellar (B, D) type. Flowering times (vertical
axes) are ordered from smallest to largest and are plotted against corresponding expected values, or
quantiles, from a standard normal. Solid gray lines run through lower and upper quartiles; deviation
from this line indicates lack of normality.
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of t tests (or other statistical summaries)
for differential expression at once (Storey
and Tibshirani, 2003). In the interest of space,
I do not include any other massive data
figures.

CONCLUSION

Great pictures are worth a thousand
words. Constructing a great picture for pub-
lication requires some time and artistic skill,
in addition to scientific acumen. It is worth
previewing graphics with colleagues outside
your field to ascertain that key points are
made cogently. Take a few moments to
examine the excellent graphics found in
references cited herein. Your research has
involved great efforts to get to publication;
present it in a meaningful way with beautiful,
informative graphics.
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Fig. 6. (A, B) Scatter plots of 4-week versus 8-week vernalization. View A is a raw plot that has data
bunched in the lower left and no annotation. View B identifies data by marker E33M59.59 with both
color and symbol, and is plotted on a log-log basis.

Fig. 7. (A, B) Regression curves on separate plots by marker E33M59.59 genotype. Plot regions are kept
the same for comparison. Solid lines are for the featured genotype—Major (A) or Stellar (B)—with a
dashed line confidence envelope of 2 · SE of the difference between regression lines; dotted lines are
regression lines from the other genotype. Lines are significantly different using analysis of covariance.
Note the similar spread from the regression line for both genotypes when plotted on log-log scale (SD =
0.068 and 0.072, respectively, in log10 units).

Fig. 8. (A, B) Interaction plot for days to flower after 4-week (A) or 8-week (B) vernalization for the two
markers. The vertical axis is on the log scale again. Bars around means correspond to ±1 SE. Stellar
(AA) and Major (AB) are identified by markers E33M59.59 (horizontal axis) and ec2d1a (colors and
legend). Thus, there are no significant flowering time differences at ec2d1a if E33M59.59 is Stellar,
whereas the 7-d (A) or 5-d (B) differences when E33M59.59 are Major are significant.
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