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ABSTRACT

Development of statistical methods and software for mapping interacting QTL has been the focus of
much recent research. We previously developed a Bayesian model selection framework, based on the
composite model space approach, for mapping multiple epistatic QTL affecting continuous traits. In this
study we extend the composite model space approach to complex ordinal traits in experimental crosses.
We jointly model main and epistatic effects of QTL and environmental factors on the basis of the ordinal
probit model (also called threshold model) that assumes a latent continuous trait underlies the
generation of the ordinal phenotypes through a set of unknown thresholds. A data augmentation
approach is developed to jointly generate the latent data and the thresholds. The proposed ordinal probit
model, combined with the composite model space framework for continuous traits, offers a convenient
way for genomewide interacting QTL analysis of ordinal traits. We illustrate the proposed method by
detecting new QTL and epistatic effects for an ordinal trait, dead fetuses, in a F2 intercross of mice. Utility
and flexibility of the method are also demonstrated using a simulated data set. Our method has been
implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of the
Bayesian methodology for genomewide interacting QTL analysis for continuous, binary, and ordinal traits
in experimental crosses.

MOST complex traits are influenced by interacting
networks of multiple genetic (QTL) and envi-

ronmental factors. Recently several statistical methods
and software have been developed to map multiple
interacting QTL for continuous traits (Kao et al. 1999;
Carlborg et al. 2000; Reifsnyder et al. 2000; Bogdan

et al. 2004; Yi et al. 2005; Baierl et al. 2006). However,
many complex traits in humans and other organisms
are measured in an ordinal manner. For example, many
diseases are scored in several ordered categories on the
basis of the magnitude of the disease symptom. Although
the phenotypes of these characters are discrete, their
inheritance is determined by many factors, including
multiple genes and environmental components (Lynch

and Walsh 1998). Theoretically, the statistical methods
for continuous traits are not optimal for ordinal traits
because the normality assumption is violated (Johnson

and Albert 1999; Gelman et al. 2003). Therefore, map-
ping QTL for ordinal traits requires new methods.

The probit model is commonly used to analyze dis-
crete binary and ordinal data (Albert and Chib 1993;
Johnson and Albert 1999). An important way for the

statistical inference and interpretation of the probit
model is to postulate the existence of a latent (unob-
served) continuous variable associated with each re-
sponse through a series of unknown thresholds (Albert

and Chib 1993; Johnson and Albert 1999). In quan-
titative genetics, the latent presentation of the probit
model is called the threshold model, which has been
widely used to analyze the genetic architecture of binary
and ordinal traits (Wright 1934; Lynch and Walsh

1998). Under the threshold model, one can treat the
latent variable as an unobservable quantitative trait, and
genes controlling ordinal traits can be treated as quan-
titative trait loci and handled using a QTL mapping
approach.

A number of statistical methods have been developed
to identify QTL for binary or ordinal traits in experi-
mental crosses based on the threshold model of single
QTL (Hackett and Weller 1995; Xu and Atchley

1996; Rao and Xu 1998; Xu et al. 2003, 2005). Recently,
several methods have been proposed to simultaneously
identify multiple QTL for ordinal traits (Coffman et al.
2005; Li et al. 2006). The method of Li et al. (2006) is
based on multiple-interval mapping (MIM) of Kao et al.
(1999) that fits a multiple-QTL model including epista-
sis and simultaneously searches for the number, posi-
tions, and interaction of QTL using a non-Bayesian
model selection procedure and criterion.
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Several studies have extended Bayesian methods of
mapping multiple QTL for continuous traits to binary
traits on the basis of the threshold model of multiple
QTL. Yi and Xu (2000) first developed a Bayesian
method via a reversible-jump Markov chain Monte Carlo
(MCMC) algorithm to map multiple QTL for binary
traits. The method of Yi and Xu (2000) is based on the
idea of data augmentation, allowing an easy way to
extend the existing Bayesian mapping methods to bi-
nary traits. Recently, Yi et al. (2004) extended the
Bayesian mapping method via a reversible-jump MCMC
algorithm to map multiple nonepistatic QTL for ordinal
traits. However, Bayesian methods of mapping interact-
ing QTL for ordinal traits are lacking. Even for con-
tinuous traits, identification of genomewide interacting
QTL has been a formidable challenge, mainly due to
numerous possible variables associated with hundreds
or thousands of genomic loci that lead to a huge
number of possible models.

In this study we propose a Bayesian model selection
approach of genomewide interacting QTL for ordinal
traits in experimental crosses. We first develop a
Bayesian ordinal probit model (threshold model) for
multiple interacting QTL, on the basis of the composite
model space framework proposed by Yiet al. (2005). Our
ordinal probit model simultaneously considers main
and epistatic effects of QTL and environmental factors.
We then use the composite model space framework to
develop an efficient MCMC algorithm for identifying
interacting QTL for ordinal traits. The composite mo-
del space approach was proposed by Yi (2004) for map-
ping multiple nonepistatic QTL and extended by Yiet al.
(2005) to epistatic QTL mapping for continuous traits.
The key advantage of the composite model space
approach is that it provides a convenient way to reaso-
nably reduce the model space and to construct efficient
algorithms for exploring the complicated posterior dis-
tribution. Utility and flexibility of the method are de-
monstrated using real and simulated data sets.

BAYESIAN MODELING OF ORDINAL TRAITS

Ordinal data modeling via latent variables: Assume
that we observe an ordinal phenotype in a mapping
population. The property of ordinal data is that there
exists a clear ordering of the response categories, but no
underlying interval scale between them (Johnson and
Albert 1999). For example, it is usual to record disease
severity using an ordinal character system that assesses
the extent of the disease. Although one may record the
ordinal categories as (arbitrarily) numeric values, it
does not always make sense to do so. Even if numeric
scores are used, it is not appropriate to apply the sta-
tistical methods for continuous data to ordinal data be-
cause the normality assumption is violated.

The ordinal probit model is commonly used to
analyze ordinal data (Albert and Chib 1993; Johnson

and Albert 1999). Let wi be the ordinal phenotype
and xi the relevant explanatory variables for the ith in-
dividual in an experimental cross of sample size n. For
notational convenience, we code the ordinal data as the
integers 1, 2, � � � , J, with J the number of categories.
Under the ordinal probit model, the data distribution
takes the form

pðwi ¼ j j xi ; b; s2; tÞ ¼ F
tj � xib

s

� �
�F

tj�1 � xib

s

� �
;

ð1Þ

where Fð�Þ is the standardized normal distribution
function, b represents the overall mean and regression
coefficients, s2 is the residual variance, and �‘ ¼
t0 # t1 # � � � # tJ�1 # tJ ¼ 1‘ are unknown thresholds.

An important idea for interpreting and computing
the ordinal probit model involves reexpressing model
(1) in terms of unobserved (latent) continuous data
(Albert and Chib 1993). Let yi represent the latent
variable that underlies the generation of the ordinal
response for the ith individual. The ordinal probit
model is equivalent to the following model on latent
data yi,

yi ¼ xib 1 ei

wi ¼ j � tj�1 # yi , tj ð2Þ

with ei, i ¼ 1, � � � , n, independently normal with mean
zero and variance s2.

The advantage of the latent parameterization for the
probit model is that it offers a convenient framework for
MCMC simulation. Conditional on the parameters (b,
s2, t) and the observed data, the distribution of yi follows
a truncated normal distribution that can be easily sam-
pled. Conditional on the latent yi’s, the model is a
normal linear regression and thus the posterior distri-
bution of the model parameters (b, s2) can be com-
puted using standard results for normal linear models
(Albert and Chib 1993; Johnson and Albert 1999; Yi

et al. 2004).
Model (1), or (2), is overparameterized. There are

usually two ways to impose restrictions on the parame-
ters that can ensure identifiability. The first is to set t1¼ 0
and s2 ¼ 1, so that there are J � 2 unknown thresholds
(Albert and Chib 1993). An alternative approach,
which we use here, is to set t1 ¼ 0 and tJ�1 ¼ 1, leaving
s2 as a parameter (Chen and Dey 2000; Yi et al. 2004).
This latter approach has several attractive features,
notably that threshold values are between 0 and 1.

Ordinal probit model of multiple interacting QTL:
In this section, we describe ordinal probit models of
interacting QTL by extending the genomewide inter-
acting QTL model for continuous traits developed by Yi

et al. (2005). We approximate positions for all possible
QTL using a partition of the entire genome into roughly
equally spaced loci, including all observed markers and
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additional loci, or pseudomarkers (Sen and Churchill

2001), between flanking markers. We calculate the
probabilities of genotypes at these preset loci given
the observed marker data as priors of QTL genotypes in
our Bayesian framework.

We place an upper bound on the number of QTL
included in the model. This upper bound is larger than
the number of detectable QTL with high probability for
a given data set. Even with a moderate number of the
upper bound, there are many possible genetic effects
when considering interactions, but most are negligible
and can be excluded. We use an unobserved vector of
binary variables g to indicate which main and epistatic
effects across the possible loci are included in (gj¼ 1) or
excluded from (gj¼ 0) the model. The indicator vector
g determines the number of included QTL and the
activity of the associated genetic effects. We denote the
positions of the included QTL by l. The vector (g, l)
thus determines the genetic architecture, the number
and position of QTL, and their gene action. The goal of
our Bayesian approach is to infer the posterior distri-
bution of (g, l) and estimate the associated genetic
effects.

We simultaneously model main and epistatic effects
of QTL and environmental variables (covariates). We
include those (continuous or discrete) covariates that
may be important in understanding the effect of
genotype on phenotype in the model (e.g., sex, family
indicators, and some other traits correlated to the
phenotype under study). Including relevant covariates
can account for systematic or confounding effects that
cannot be controlled experimentally. We use Cockerham’s
genetic model to construct main effects and epistasis,
although other models are possible (Kao and Zeng

2002; Zeng et al. 2005), and apply conventional meth-
ods used in hierarchical linear models to construct
environmental effects (e.g., Lynch and Walsh 1998;
Gelman et al. 2003).

Suppose all genotypes are known across the genome.
We can imagine a large design matrix D including all
possible effects given the upper bound on the number
of QTL. However, given any particular g, we need focus
only on a reduced matrix DG ¼ X, identified by the
genetic architecture (technically, G is a matrix contain-
ing only those columns of the identity matrix for which
g ¼ 1). We partition the design matrix into environ-
mental, main, and epistatic effects, X ¼ ½XE: XG: XGG�,
and express the phenotype y as

y ¼ m 1 XEbE 1 XGbG 1 XGGbGG 1 e ¼ m 1 Xb 1 e

wi ¼ j � tj�1 # yi , tj ; ð3Þ

where wi 2 f1; � � � ; J g, i ¼ 1, � � � , n, is the observed
ordinal phenotype in a mapping population of n
individuals, y ¼ (y1, � � � , yn) is the unobserved contin-
uous data, �‘ ¼ t0 # t1 ¼ 0 # t2 # � � � # tJ�2 # tJ�1 ¼
1 # tJ ¼ 1‘ are the thresholds, m ¼ (m, � � � , m)T is the

vector of overall mean m, bE represents the vector of
environmental effects, bG and bGG represent the
vectors of selected main effects and epistatic effects,
respectively, and e is the vector of independent normal
errors with mean zero and variance s2. To simplify
notation, we organize all effects into b and all design
matrices into X.

Prior distributions: We organize the unknowns in the
above model into two sets, the parameters that also
appear in the corresponding model for continuous
traits and the additional parameters. The first set of
unknowns includes the indicators g, positions of QTL l,
QTL genotypes g, regression coefficients b, overall
mean m, and residual variance s2 (Yi et al. 2005). The
QTL genotypes, g, determine the design matrices XG

and XGG. The additional unknowns include the latent
continuous data y ¼ (y1, � � � , yn) and the thresholds t ¼
(t2, � � � , tJ�2).

For the parameters (g, l, g, m, s2), we use the priors
proposed in Yi et al. (2005). Priors on environmental
effects in bE are assigned uniform distributions or
normal distributions with mean 0 and unknown varian-
ces, labeled fixed or random effects from the non-
Bayesian tradition, respectively (Gelman et al. 2003).
For the unknown variances, we use conjugate priors,
scaled inverse-x2. We take uniform prior on the un-
known thresholds t ¼ ðt2; � � � ; tJ�1Þ; i.e., pðtÞ} 1, with the
constraint 0 , t2 , � � � , tJ�2 , 1.

Hierarchical priors on genetic effects: We here
suggest new priors on genetic effects (bG, bGG) that
can restrict their values in a reasonable region and thus
induce increased posterior probability on more prom-
ising models. We want effect priors that are invariant to
the scales of the phenotype and the contrasts in model
(3). This can be accomplished by hierarchical models in
which the priors have empirical hyperpriors depending
on the proportion of liability variance explained by the
effect. We partition the genetic effects into batches,
corresponding to different types of effects, e.g., additive,
dominance, additive–additive interactions, etc. Effects
in the same batch k, bkj, follow the same prior,
bkj �N ð0; s2

kÞ. The prior variance s2
k is random with an

inverse-x2 hyperprior, s2
k � Inv-x2ðnk ; s2

k Þ. The degrees
of freedom nk and scale hyperparameters sk

2 are chosen
to control the prior expected mean and the prior
confidence region of the proportion of the liability
variance explained by bkj. The proportion of the liability
variance explained by bkj is then hkj ¼ Vkj b

2
kj=Vy, with Vkj

the sample variance for the column of X associated
with effect bkj and Vy the total liability variance. The
prior expectations are EðhkjÞ ¼ Vkj s

2
k=Vy and Eðs2

kÞ ¼
nks2

k=ðnk � 2Þ. Setting s2
k ¼ (nk � 2)/nk � E(hkj)Vy/Vkj

yields E(hkj) as the prior expectation of variance
explained by bkj. E(hkj) can be set small (say 0.05–0.2)
to reflect any prior knowledge about genetic architec-
ture. The prior degrees of freedom nk control the skew
of the prior for s2

k, with larger values recommended
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(here nk ¼ 6) to tightly center the prior around s2
k (see

Chipman 2004).

MCMC SAMPLING

Given the prior distributions of all unknowns and the
observed data, the joint posterior density can be ex-
pressed as

pðy; t; u; c jwÞ}
Yn
i¼1

pðyi j u; wi ; tÞ � pðtÞ � pðu; cÞ ð4Þ

with w¼ (w1, � � � , wn) the observed ordinal data, u¼ (g,
l, g, b m, s2), and c represents all variance parameters
for b. For notational convenience, we suppress the
dependence on marker data and covariates here and
in subsequent notation.

From model (3), the conditional distribution of the
latent variable yi follows a truncated normal distribu-
tion; i.e.,

pðyi j u; wi ; tÞ ¼ f
yi � m� Xib

s

� �
I ðtwi�1 # yi , twi

Þ;

ð5Þ

where f denotes the standard normal density, Xi is
the ith row of X, and I ðAÞ is an indicator function for
event A.

The latent parameterization for the ordinal probit
model of multiple interacting QTL allows a convenient
sampling approach for simulating from the joint poste-
rior of the unknowns (u, c, y, t). Conditional on
the latent data yi’s, model (3) becomes the multiple-
interacting-QTL model for continuous traits ½the first
line in model (3)� and thus the first set of unknowns u
can be updated using the sampling methods for con-
tinuous traits described in Yi et al. (2005). All elements
of c can be sampled from independent inverse-x2

distributions (Gelman et al. 2003). Therefore, we need
only an additional step to update the additional
unknowns y and t. As described below, y and t can be
jointly sampled from the joint conditional posterior p(y,
t j u, w).

We factor the joint conditional posterior of (y, t) into
the product

pðy; t j u; wÞ ¼ pðt j u; wÞ
Yn

i¼1

pðyi j u; wi ; tÞ: ð6Þ

This factorization suggests that we can first draw the
threshold values t from p(t j u, w) and then draw yi from
p(yi j u, wi, t), i¼ 1, � � � , n. The distribution p(yi j u, wi, t) is
the normal distribution N ðm 1 Xib; s2Þ truncated to
the region ½twi�1; twi

Þ. This truncated normal distribu-
tion can be sampled using the inverse transformation
method (Yi et al. 2004). The first term in (6) can be
obtained as

pðt j u; wÞ}
Yn

i¼1

�
F

twi
� m� Xib

s

� �

�F
twi�1 � m� Xib

s

� ��
; ð7Þ

where Fð�Þ is the standardized normal distribution
function. A Metropolis–Hastings step is used to sample
from this conditional posterior distribution. To update
tj, j ¼ 2, � � � , J � 2, we first sample a new threshold t*

j

uniformly from the interval ½max(tj�1, tj � d), min(tj11,
tj 1 d)�, where d is a predetermined tuning parameter,
and tj�1, tj, and tj11 are the values. The proposal t*

j is
then accepted with probability min{1, r }, where

r ¼ pðt* j u; wÞ
pðt j u; wÞ ; ð8Þ

where t are the current values of the thresholds and t*
represents all elements of t except tj is replaced by t*

j .
The MCMC algorithm described above is used to

simulate a Markov chain from the joint posterior, called
the posterior sample, (y, t, u, c)(1), (y, t, u, c)(2), � � � ,
which converges to the joint posterior p(y, t, u, c j w)
(Chipman et al. 2001). The posterior sample can be used
to infer the genetic architecture of the ordinal trait,
including the number and locations of QTL and their
main and epistatic effects. The idea is that larger effects
should tend to appear more often and early in a sample
from the Markov chain, making them easier to identify.
Our basic principle for posterior inference is to use all
the saved iterations of the Markov chain, corresponding
to model averaging, which assesses characteristics of the
genetic architecture by averaging over possible models
weighted by their posterior probabilities. Model averag-
ing accounts for model uncertainty and hence provides
more robust inference compared to a single ‘‘best’’
model approach (Raftery et al. 1997; Ball 2001;
Sillanpää and Corander 2002).

We can use various methods to graphically and nu-
merically summarize and interpret the posterior sam-
ples. The posterior inclusion probability for each locus
is estimated as its frequency in the posterior samples.
Each locus may be included in the model through its
main effects and/or interactions with other loci (epis-
tasis). The larger the effect size is for a locus, the more
frequently the locus is sampled. Taking the prior pro-
bability into consideration, we use Bayes factors (BF) to
show evidence for inclusion against exclusion of a locus.
The Bayes factor for a locus is defined as the ratio of the
posterior odds to the prior odds for inclusion against
exclusion of the locus (Kass and Raftery 1995).
Traditionally, a BF threshold of 3, or 2 loge(BF) ¼ 2.1,
supports a claim of significance (Kass and Raftery

1995). We can separately estimate the posterior inclu-
sion probability and corresponding Bayes factors of
main effects and epistasis.
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IMPLEMENTATION IN R/QTLBIM

We have implemented the methods proposed herein
in the freely available package R/qtlbim (Yandell et al.
2007). R/qtlbim is an extensible, interactive environ-
ment for Bayesian analysis of multiple interacting QTL
for continuous, binary, and ordinal traits in experimen-
tal crosses. It is built on the widely used R/qtl package
(Broman et al. 2003) and includes all its advantages for
extensibility. In R/qtlbim, the computationally inten-
sive MCMC algorithms are written in C, with data
manipulation and graphics in R. The algorithms for
ordinal traits use the same C functions for continuous
traits to update the first set of unknowns u, with
additional functions for jointly updating the latent data
y and the thresholds t.

R/qtlbim provides tools to monitor mixing behavior
and convergence of the simulated Markov chain, either
by examining trace plots of the sample values of scalar
quantities of interest, such as the numbers of QTL and
epistatic effects, or by using formal diagnostic methods
provided in the package R/coda (Plummer et al. 2004).
The posterior summaries for ordinal traits are the same
as those for continuous traits, because all the parame-
ters of interest are included in the set of unknowns u. R/
qtlbim provides extensive informative graphical and
numerical summaries of the MCMC output to infer
and interpret key aspects of the genetic architecture
(Yandell et al. 2007).

MAPPING INTERACTING QTL FOR FETUSES IN MICE

We illustrate our method by reanalyzing a reproduc-
tive trait from a QTL study done by Rocha et. al (2004).
Ten-week-old F2 females, of a cross between a high-
growth M16i line and the low-body-weight L6 line, were
exposed to unrelated F1 males (B6C3F1/J) until a
copulatory plug was detected. Both M16i and L6 mice
were inbred lines. Pregnant females (n ¼ 439) were
subsequently euthanized at day 16 of gestation to obtain
dead fetuses (DF) and several other reproductive
phenotypes. Body weights at 10 weeks of age (WK10)
were also measured. WK10 was significantly correlated
with DF. These F2 female mice encompass two consec-
utive replicates consisting of 217 and 222 mice, re-
spectively, and 65 full-sib families/litters ranging from 1
to 11 mice. A total of 63 fully informative microsatellite
markers spanning 19 autosomes were genotyped. The
marker linkage map covered 1257.8 cM (Kosambi) with
an average spacing of 30 cM. The observed DF took
integral values ranging from 0 to 11 (Figure 1). We
discarded 5 mice having .6 (7, 8, 10, and 11) dead
fetuses that may be outliers.

In spite of their conformity to an ordinal character,
this F2 data set was previously analyzed in Rocha et al.
(2004), using standard composite-interval mapping
(Zeng 1994) treating DF as continuous traits. The pre-

vious analysis first performed an ad hoc square-root
transformation for the ordinal trait DF and then used
residuals as a new phenotype obtained by linearly
adjusting the effects of replicates and family. Rocha

et al. (2004) reported a single significant (LOD ¼ 4.4)
QTL on chromosome 2 (position 41.6 cM) for DF.

DF is the natural phenotype of interest to exhibit the
effectiveness of our proposed method in handling
ordinal traits. In our Bayesian analysis, our model in-
cluded WK10 and replicates as fixed continuous and
discrete covariates, respectively, and family indicators as
a random categorical covariate. We permitted the inclu-
sion of epistatic effects in the model. We used Cocker-
ham’s genetic model to construct genetic effects, in
which the additive and dominance contrasts are defined
as (�1, 0, 1) and (�0.5, 0.5, �0.5) for the three geno-
types, LL, ML, and MM, where L and M represent the L6
and M16i alleles, respectively. Each chromosome was
partitioned into a 1-cM grid of putative QTL locations,
resulting in 1257 possible loci across the entire genome.

The prior expected number of main-effect QTL was
set at lm¼ 1, the number of significant QTL detected in
the previous analysis (Rocha et al. 2004), and the prior
expected number of all QTL was taken to be l0 ¼ 4,
allowing for some additional epistatic QTL with weak
main effects. An upper bound on the number of QTL
was set to 10 (¼ l0 1 3

ffiffiffiffi
l0
p

, see Yi et al. 2005). To check
posterior sensitivity to these prespecified values, we
reran the algorithm with several other values of lm and
l0 and obtained essentially identical results.

We performed the MCMC algorithm using our
software R/qtlbim (Yandell et al. 2007). For all our

Figure 1.—Boxplots for week 10 weight by number of dead
fetuses per replicate in the F2 mice.
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analyses, the MCMC algorithm ran for 2 3 105 iterations
after discarding the first 1000 iterations as burn-in to
ensure proper mixing of the Markov chain. To eliminate
serial correlation, the chain was thinned by considering
one in every 40 samples, rendering 5000 samples from
the joint posterior distribution. Any result mentioned
henceforth was based on these posterior samples. To
assess convergence and mixing behavior, we ran three
parallel MCMC sequences with starting points randomly
generated from the priors and used the potential scale
reduction factor R̂ to monitor the posterior sam-
ples (Gelman and Rubin 1992; Gelman et al. 2003;
Plummer et al. 2004). For several scalar estimands (e.g.,
the numbers of QTL and epistatic effects and the total
genetic variance), R̂ fell below 1.1 quickly, indicating
that the chains mixed well and converged rapidly.

The profiles of Bayes factors, 2 logeBF, across the
genome broken down by genotypic effects showed evi-
dence of QTL activity on chromosomes 2, 3, 4, and
11 (i.e., 2 logeBF . 2.1) (see Figure 2, top). Chromo-
somes 2 (50.2 cM) and 11 (10.1 cM) showed evidence of
QTL detected mainly through their dominance and
additive effects (see Figure 2, middle), respectively,
while chromosomes 3 (0.0 cM) and 4 (0.0 cM) showed
evidence of mostly additive–additive epistatic effects
(see Figure 2, bottom), where the values in parentheses
were the posterior modes of positions. Rocha et al.

(2004) detected a significant QTL only on chromosome
2, which agrees with our results. The estimated herit-
abilities of QTL on chromosomes 2, 3, 4, and 11 were
2.2, 4.1, 3.8, and 2.4%, respectively, and consisted of
mainly dominance, additive–additive (between chromo-
somes 3 and 4), and additive components, respectively.
Having evidence of epistatic QTL on chromosomes 3
and 4, we showed two-dimensional profiles for Bayes
factor and heritability only on them as depicted in
Figure 3. The graphs suggested that QTL on chromo-
some 3 interacted with QTL on chromosome 4, with 2
logeBF being �2.3. The heritability of this epistatic
interaction was estimated to 4%.

To investigate whether or not ordinal phenotypes can
be analyzed by methods for continuous traits, we per-
formed Bayesian multiple-QTL mapping by treating
the ordinal phenotype DF or some transformation (e.g.,
a square-root transformation) as a continuous trait.
Figure 4 displays the genomewide profile of Bayes fac-
tors, comparing the model with and without the locus
for the analysis. This analysis detected evidence of QTL
in the same chromosomal regions as those in the above
analysis based on the ordinal probit model. Compared
with the above result, however, the Bayes factors in
Figure 4 were much lower, indicating that the proposed
ordinal probit model is more powerful and appropriate
for multiple-QTL mapping on ordinal traits.

Figure 2.—Real F2 data analysis with the ordi-
nal probit model: one-dimensional profiles of
Bayes factors (rescaled as 2 logeBF and negative
values are truncated as zero). (Top) For all com-
bined effects (additive, dominance, and epistatic
effects); (middle) for main effects on the selected
chromosomes (solid and dashed lines represent
additive and dominance effects, respectively);
(bottom) for epistatic interactions on the selected
chromosomes (solid lines represent additive–
additive interactions and other epistatic effects
were not detected). On the x-axis, outer tick
marks represent chromosomes and inner tick
marks represent markers.
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SIMULATION STUDIES

The proposed method has been evaluated by analyz-
ing simulated data sets with different combinations of
various factors (e.g., sample size, heritabilites, the
number and proportions of categories, and complexity
of genetic architecture). For the purpose of simplicity,
we here demonstrated only a simulated F2 cross con-
taining 500 individuals and 20 chromosomes. This
simulation study was to evaluate the ability of the

proposed method for mapping complex multiple epi-
static QTL. Each chromosome was 100 (Haldane) cM in
length and had 11 markers randomly spaced. A small
amount (3%) of marker genotypes were missing at
random. We simulated one binary fixed covariate, one
categorical random covariate, and eight QTL, including
three pairs of epistatic loci, to control a continuous trait
(Table 1). Among the eight simulated QTL, five had
main effects while the other three had no main effects
but did have epistatic effects. The fixed and random
covariates explained 3 and 4% of the phenotypic
variance, respectively. The overall mean and residual
variance were 10 and 1, respectively. The continuous
phenotype was categorized into a four-category ordinal
trait with the observed proportions of 30, 30, 20, and
20% for four categories, respectively. Our goal was to
recover the simulated genetic architecture by analyzing
the ordinal phenotype on the basis of the proposed
method. For the purpose of comparison, we performed
two additional analyses: We analyzed the simulated
continuous phenotype to see how much information
is lost by the categorization, and we used the methods
for continuous traits to directly analyze the ordinal
phenotype (coded as 0, 1, 2, 3).

For all analyses, the prior expected number of main-
effect QTL was set at lm ¼ 3, and the prior expected
number of all QTL (l0) was taken to be 6. The upper
bound on the number of QTL was then 13 (see Yi et al.
2005). To check posterior sensitivity to these prespeci-
fied values, we analyzed the data with several other

Figure 3.—Real F2 data analysis with the ordinal probit
model: two-dimensional profiles of Bayes factors (rescaled
as 2 logeBF and negative values are truncated as zero). Top
triangle shows Bayes factor of epistasis only; bottom triangle
shows Bayes factor comparing full model with epistasis to
no QTL.

Figure 4.—Real F2 data analysis by treating
the ordinal trait DF as a continuous trait: one-
dimensional profiles of Bayes factors (rescaled
as 2 logeBF and negative values are truncated as
zero). (Top) For all combined effects (additive,
dominance, and epistatic effects); (middle) for
main effects on the selected chromosomes (solid
and dashed lines represent additive and domi-
nance effects, respectively); (bottom) for epi-
static interactions on the selected chromosomes
(solid lines represent additive–additive interac-
tions and other epistatic effects were not detected).
On the x-axis, outer tick marks represent chromo-
somes and inner tick marks represent markers.
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values of lm and l0 and obtained essentially identical
results. We ran the MCMC algorithm for 12 3 104 after
discarding the first 1000 iterations as burn-in. The chain
was thinned by considering one in every 40 samples,
rendering 3000 samples from the joint posterior distri-
bution. The saved posterior samples were used to make
inference about the genetic architecture.

The top section of Figure 5 displays the one-dimen-
sional profiles of Bayes factors comparing the model
with and without the locus. For the first two analyses, all

the simulated QTL were detected (i.e., 2 logeBF . 2.1)
and most of the simulated QTL positions were esti-
mated close to the true values. The third analysis, which
ignored the property of ordinal traits, missed the
weakest QTL on chromosome 12. For chromosome 3,
all three analyses detected two peaks, probably resulting
from the random error of the simulated data. Among
the three analyses, the analysis with the underlying
continuous phenotype had the highest Bayes factors for
all the detected QTL, followed by the ordinal probit

TABLE 1

F2 simulation with eight QTL and two covariates

QTL Chromosome Position Main effect QTL 2 Epistasis

1 1 15 a ¼ 0.5 (0.05)
2 1 45 a ¼ 0.4 (0.03)

d ¼ 0.7 (0.05)
3 3 12 a ¼ �0.5 (0.05)
4 5 15 a ¼ 0.5 (0.05)

d ¼ �0.5 (0.02)
5 7 15 a ¼ 0.4 (0.03)
5 7 15 4 aa ¼ �0.7 (0.04)
6 10 15 8 ad ¼ 1.0 (0.05)
7 12 35 3 da ¼ 0.8 (0.03)
8 19 15

Effects were supplied while heritabilities in parentheses were estimated from a simulated sample of 500 in-
dividuals. The effects a, d, aa, ad, and da represent additive, dominance, additive–additive, additive–dominance
and dominance–additive effects, respectively. QTL 2 refers to a QTL number.

Figure 5.—Simulated F2 data analyses: one-dimensional profiles of Bayes factors (rescaled as 2 logeBF and negative values are
truncated as zero). (Top) For all combined effects (additive, dominance, and epistatic effects) for all three analyses: solid, dashed,
and dotted lines represent analyses with the ordinal probit model, the continuous trait, and the model treating the ordinal phe-
notype as a continuous trait, respectively. Vertical shaded dashed lines show true location of QTL. (Middle) For main effects on the
selected chromosomes (solid and dashed lines represent additive and dominance effects, respectively). (Bottom) For epistatic
interactions on the selected chromosomes (solid, dotted, and dashed lines represent additive–additive, additive–dominance,
and dominance–additive interactions, respectively). On the x-axis, outer tick marks represent chromosomes and inner tick marks
represent markers.
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model analysis. As expected, the analysis treating the
ordinal phenotype as a continuous trait produced the
lowest Bayes factors.

For the ordinal probit model analysis, the middle and
bottom sections of Figure 5 depict the profiles of Bayes
factors for each of the effects comparing models with
and without the effect, for the chromosomes with
evidence of QTL. These profiles show that our analysis
recovered the true genetic effects that influenced the
variation of the simulated trait. The estimates of main
and epistatic effects for the detected QTL were also
close to the true values (not shown here). To investigate
which pairs of loci interacted, Figure 6 displays a two-
dimensional profile of Bayes factors on the selected
chromosomes showing evidence of epistatic QTL. Once
again, our analysis recovered the true pattern of
epistatic interactions.

DISCUSSION

Yi (2004) proposed a unified Bayesian model selec-
tion framework to identify multiple QTL for complex
traits in experimental designs, based upon a composite
space representation of the problem. The composite
model space approach places a global constraint on the
number of detectable QTL and employs latent binary
variables to indicate which effects of putative QTL are
included in or excluded from the model. The key
feature of the composite model space framework is that
it provides a convenient framework to reasonably re-
duce the model space and to construct efficient MCMC

algorithms. Yi et al. (2005) extended the composite
model space approach to genomewide epistatic QTL
analysis for continuous traits and developed efficient
MCMC algorithms to explore the posterior distribution.

In this study, we extend the composite model space
approach to detect multiple interacting QTL for ordinal
traits on the basis of a threshold model. Although the
threshold model has been widely used in QTL mapping
for binary and ordinal traits, few studies address the
problem of interacting QTL. Even for continuous traits,
it is not a trivial task to extend the existing methods of
noninteracting QTL to genomewide interacting-QTL
analysis, mainly due to the dramatic increase in the size
of model space. Recently, Li et al. (2006) developed a
non-Bayesian method for mapping multiple epistatic
QTL for ordinal traits on the basis of the MIM method
of Kao et al. (1999) and the threshold model. Our
method is Bayesian implemented via MCMC algorithms
whereas MIM uses a maximum-likelihood method to
estimate the parameters and a stepwise search pro-
cedure to build the model. One of the advantages of the
Bayesian approach is that it can simultaneously address
both model and parameter uncertainty (Raftery et al.
1997; Chipman et al. 2001).

Our ordinal probit model simultaneously fits all
unknown elements that can potentially influence phe-
notypic variation, including arbitrary covariates, main
effects of multiple QTL, and gene–gene interactions.
We have developed an efficient and easily implemented
MCMC algorithm for exploring the posterior of un-
knowns in the ordinal probit model. The key idea of our
method is that conditional on the latent continuous
data, the model becomes the multiple-interacting QTL
model for continuous traits and thus the MCMC steps
for searching for QTL in Yi et al. (2005) can be used.
Using the real data sets illustrated in this article and
extensive simulations (not shown here), the proposed
MCMC algorithm was shown to mix rapidly, thus ensur-
ing that high-probability models are visited frequently
and quickly. The method described herein has been
implemented in the package qtlbim for the open-source
R environment. Our Bayesian methods developed in this
study and other studies, along with the freely available
package qtlbim, will greatly facilitate the general usage
of the Bayesian methodology for genomewide interact-
ing QTL analysis for continuous, binary, and ordinal
traits in experimental crosses (Yandell et al. 2007).

Several issues deserve further investigation. Corre-
lated ordinal and continuous traits are encountered in
many QTL studies. Joint analysis of multivariate traits
can usually improve statistical power in the detection of
QTL and can provide formal procedures to investigate
the genetic mechanisms such as pleiotropy and close
linkage ( Jiang and Zeng 1995). The data augmenta-
tion approach described herein may be especially
attractive for joint analysis of multiple continuous and
ordinal traits, where calculating the likelihood can be

Figure 6.—Simulated F2 data analysis with the ordinal
probit model: two-dimensional profiles of Bayes factors (re-
scaled as 2 logeBF and negative values are truncated as zero)
on selected chromosomes. Bayes factor of epistasis only is
shown above the diagonal; Bayes factor comparing full model
with epistasis to no QTL is shown below the diagonal.
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difficult. Our future plans also include extensions to
experimental crosses derived from multiple inbred lines
and outbred populations. More flexible and powerful
models for genomewide interacting-QTL analysis are
planned. We are also investigating ways to interpret
epistasis detected on the basis of the ordinal probit
model and to check the fit of inferred QTL models to
data and prior assumptions.
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