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We review gene mapping, or inference for quantitative trait loci, in the
context of recent research in semi-parametric and non-parametric infer-
ence for mixture models. Gene mapping studies the relationship between
a phenotypic trait and inherited genotype. Semi-parametric gene map-
ping using the exponential tilt covers most standard exponential fam-
ilies and improves estimation of genetic effects. Non-parametric gene
mapping, including a generalized Hodges-Lehmann shift estimator and
Kaplan-Meier survival curve, provide a general framework for model se-
lection for the influence of genotype on phenotype. Examples and sum-
maries of reported simulations show the power of these methods when
data are far from normal.
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1. Introduction

Gene mapping concerns the statistical relationship between a phenotype,
or measured response known as a trait, and the genotype, or heritable
information measured at genetic markers scattered across the genome. Ge-
netic information is incomplete, requiring consideration of mixture models
across unknown genotypes. While gene mapping was initially developed
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for normally distribution of traits, the framework extends readily to both
semi-parametric and non-parametric models.

Commonly, individuals in a gene mapping study are sampled from an
experimental cross such as a backcross or intercross. First, two inbred lines
(A and B, say) are crossed to create the F1, which is heterogeneous every-
where. That is, at any selected genetic marker, the inbred parents are AA
and BB, respectively, while the F1 is always AB. An F1 back-crossed to an
inbred line, say A, produces backcross offspring that are either homozygous
(AA) or heterozygous (AB) at every marker, with equal likelihood. The
intercross, or F2, results from brother-sister mating of F1 children, yielding
marker genotypes AA:AB:BB in an idealized 1:2:1 ratio. The backcross
or intercross individuals are genetic mosaics of their inbred grandparents,
due to meioses in the F1 parent(s). Other inbred experimental crosses are
possible but are not considered further here (see Kao and Zeng 1997).

Each individual in a sample from an experimental cross is genetically
unique. The different genetic patterns scored at markers spread across the
genome allow us to associate the phenotype with genomic regions, or quan-
titative trait loci (QTL), where differences in genotype are inferred to affect
the phenotype. QTL have great importance in revealing the genetic basis of
phenotypic differences (Belknap et al., 1997; Haston et al., 2002; Wang et
al., 2003). In plant and laboratory animals, backcross or F2 individuals are
widely used for mapping quantitative traits (see Lynch and Walsh 1998).

The basic model selection problems for QTL mapping are: (i) detecting
the presence of one or more QTLs, (ii) estimating QTL map position(s),
and (iii) estimating the genetic effects of the QTLs. This model selection
process is often referred to as inferring the genetic architecture (Mackay
2001). Complications arise due to lack of genotype data between genetic
markers, leading to a likelihood based on a mixture of distributions across
the possible QTL genotypes. Initially, Weller (1986), and later Lander and
Botstein (1989), assumed the phenotype distribution given the genotype is
normal. A general framework was sketched by Jansen (1992) and others.

The basic problem involves relating observed genetic marker informa-
tion, m, to observed phenotypic trait measurements, y through two coupled
models,

pr(y|m,λ) =
∑

q

pr(y|q)pr(q|m,λ),

with the sum over all possible genotypes, q, at the putative QTL(s), λ. In
this paper, we allow the phenotype model, pr(y|q) , to be semi-parametric
(exponential tilt, including many generalized linear models) or fully non-
parametric. The recombination model, pr(q|m,λ) , can be directly calcu-
lated using the binomial based on markers, m , that flank the QTL, λ , and
plays the role here of mixture weight (Kao and Zeng 1997).
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The first gene mapping study involved single marker t-tests (Sax 1923),
which was essentially the standard until the introduction of interval map-
ping (Lander and Botstein 1989; Haley and Knott 1992; Kruglyak and
Lander 1995; see Doerge et al. 1997). The normal mixture, with a normal
phenotype distribution, is the default in the widely used software Map-
maker/QTL (Lander et al. 1987), QTL/Cartographer (Basten et al. 1995)
and R/qtl (Broman et al. 2003).

Nettleton (Nettleton and Praestgaard 1998; Nettleton 1999; Nettleton
2002) considered hypothesis testing for QTL against ordered alternatives,
assuming an underlying normal model. Several investigators studied other,
non-normal, parametric phenotype models, including binomial and thresh-
old models (Visscher et al. 1996; Xu and Atchley 1996; McIntyre et al.
2000; Rao and Li 2000; Yi and Xu 2000; Broman 2003), Poisson (Mackay
and Fry 1996; Shepel et al. 1998), negative binomial (Lan et al. 2001).
Hackett and Weller (1995) considered ordinal threshold models. Broman
(2003) proposed a two-part parametric model for phenotype with a spike at
one value, including structural zeroes and type I censoring. Parametric Cox
proportional hazard model with a specified baseline function was examined
by Diao et al. (2004).

Inference on the QTL map position(s) is fairly robust to normality.
However, model misspecification may lead to reduced power to detect genes
affecting a trait or to biased estimates of the genetic architecture (Hack-
ett 1997; Wright and Kong 1997). Further, genetic differences may involve
more than a mean shift, as modeled for normal data. Perhaps the phenotype
has a different shaped distribution for individuals with different genotypes,
as opposed to a difference in the means or center of location? While these
issues have been widely studied with single QTL models, there has been lit-
tle work on more complex multigene models. One might expect that naively
using normal models with highly non-normal data might cause greater dif-
ficulty in this set-up, where inferences about subtle gene-gene interactions
may be misleading. Therefore it is useful to consider semi-parametric and
non-parametric generalizations for QTL, providing more robust inference
about the genetic architecture, including insight about possible parametric
models for the phenotype given the genotype.

Semi-parametric QTL were first considered by Zou and coauthors (Zou
et al. 2000; Zou and Fine 2002; Jin et al. 2003) using the exponential
tilt. Lange and Whittaker (2001) investigated QTL using generalized es-
timating equations; however, GEE may be biased for the mixture model
necessary for QTL. Symons et al. (2002) and Epstein et al. (2003) consid-
ered a semi-parametric Cox proportional hazards model and a Tobit model,
respectively, for gene mapping with censored survival data.

Kruglyak and Lander (1995) proposed model-free tests using Wilcoxon
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rank statistics for a backcross, where there are two genotypes. Broman
(2003) considered an omnibus generalization of the Wilcoxon test for the
intercross. Poole and Drinkwater (1996) used the Jonckheere-Terpstra gen-
eralization of the Wilcoxon test to ordered alternatives for the intercross.
Hoff et al. (2002) considered stochastic ordering with respect to genotype
as an alternative to no QTL. Zou et al. (2003) and Fine et al. (2004) pro-
vided non-parametric estimators that generalize the Hodges-Lehman shift
and the Kaplan-Meier survival curve to mixture models.

In this chapter, we present semi-parametric models for QTL in Section
2, and non-parametric inference applied to QTL model selection problems
in Section 3. An example on tumour counts of rats is used to illustrate
both semi-parametric and non-parametric inference for QTL.

2. Semi-parametric Models

It is well known that statistical methods work best when they use all avail-
able information, and in particular here, knowledge about the exact form
of the phenotype model. In the best cases, this arises from extensive knowl-
edge from previous studies and an understanding of the underlying mech-
anism. This ideally focuses attention on a few key parameters, such as the
center (mean) and spread (variance) in a population of individuals with
identical genotype. However, in many cases, a suitable parametric form is
not known. We consider here semi-parametric models that encompass most
common parametric models, allowing us to separate the question of model
form from detection of QTL.

In the best situation, a researcher believes from previous research that
a particular parametric model, such as binomial, is suitable. For instance,
Poisson is often appropriate for counts of instances of some event, such as
the number of offspring, while binomial is pertinent for proportions, such
as germination success or disease resistance. Concentrations often follow
a log-normal distribution. Generalizations that allow dispersion may be
appropriate in other situations. Caution is in order if a model choice is
made on the basis of raw phenotype data, as part of the histogram shape
may be due to genetic variation in the sample.

When considering a model, there are three primary options: (1) just
use the normal and hope it is satisfactory; (2) build a method streamlined
to the ‘correct’ phenotype model; (3) find a transformation that makes the
normal model more tenable. Instead, we propose using semi-parametric
models, leaving validation of parametric form to a later investigation by
the researcher once the genetics is better understood.
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2.1. Exponential tilt models

A natural choice for the phenotype model is a common shape that is slightly
modified by genotype through an ‘exponential tilt’:

pr(Y = y|q, θ) = f(y)γ(y|q, β)

with θ = (β, f), log(γ) a low-order polynomial tilt function that is usually
linear or quadratic in y, β a vector with unknown polynomial coefficients
and f an unknown density. Note that pr(y|q, θ) must be a density for every
genotype q, which places some technical constraints on β. If we estimate f
with ‘point mass’ at the observed phenotypes for a sample of n individuals,
these constraints become

n∑
i=1

f(yi)γ(yi|q, β) = 1

regardless of the genotype q.
A test for QTL with this semi-parametric phenotype model is simply a

test that β = 0 while leaving the shape of f unspecified. Many parametric
models are special cases of this semi-parametric model, including normal,
Poisson and binomial (Anderson 1979). Thus this approach can be used
to aide in selection of a parametric model. Interestingly, we can even ap-
proximate parametric models that do not fit this form, such as negative
binomial.

We draw on empirical likelihoods, which use distributions that have
point mass at the observed phenotypes. Recent work (see Owen 2001)
shows how we can use much of the standard likelihood machinery for point
mass empirical distributions with only slight modification. Thus we can
use already developed QTL interval mapping for normal data once we can
evaluate the likelihood, which is

pr(y|m, θ, λ)=
∏n

i=1

∑
q pr(q|mi, λ)f(yi)γ(yi|q, β)

=
∏n

i=1 w(yi|mi, β, λ)f(yi)

with weights w(yi|mi, β, λ) =
∑

q pr(q|mi, λ)γ(yi|q, β) that rely only on the
phenotype and on flanking markers around the QTL. Ideally, we profile the
likelihood across loci λ in the genome. Unfortunately, the profile empirical
likelihood may not exist for all β in a small compact neighborhood of the
null value. That is, there may be no β that make f(y)γ(y|q, β) a density
for all possible q.

Zou et al. (2002) proposed a partial empirical likelihood, treating mark-
ers m as fixed, by noting that the profile empirical log-likelihood can be
factored as

log(pr(y|m, θ, λ)) = �1(β, α(β)) + �2(β) − n log n.
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The first term involves a nuisance parameter to enforce the density con-
straints. It uses a clever trick concerning the Lagrange multiplier α for the
constraints on β, leading to point mass estimates

f̂(yi|m, β, λ) =

[∑
q

γ(yi|q, β)
n∑

i=1

pr(q|mi, λ)

]−1

.

The second term is the partial empirical likelihood,

�2 =
n∑

i=1

log(w(yi|mi, β, λ)) −
n∑

i=1

log

(∑
q

w(yi|mi, β, λ)ρ(mi)

)
,

with ρ(mi) estimated as the empirical proportion of flanking markers with
the genotype agreeing with mi (for a backcross, there are four possible
flanking marker genotype combinations). Notice that the partial empirical
likelihood �2 does not depend on the shape of the density f .

Zou and Fine (2002) justified this partial empirical likelihood using a
conditioning argument. They assumed that the marker genotypes are ran-
dom, as in breeding experiments, and that the flanking marker probabilities
ρ(mi) may be determined directly by the breeding design, the map function
and the marker map, which are typically known. They then demonstrated
that one may construct a conditional likelihood based on distribution of
flanking marker genotype given phenotype not involving the baseline den-
sity f. The partial empirical likelihood is this conditional likelihood with
ρ(mi) replaced by estimates. Zou and Fine (2002) and Jin et al. (2003)
showed that �2 gives valid inferences regardless whether or not mi are
treated as fixed or random.

Thus we profile �2 with respect to λ, maximizing β for each possible
locus. This semi-parametric profiling yields the same formal behavior as
the normal-based profile likelilhood the maximum profile likelihood (see
Discussion). This semi-parametric approach can be used to examine the
robustness of normal or other parametric phenotype models. First, does the
estimated QTL, at the maximum LOD, agree between normal and semi-
parametric approaches? Second, are the data consistent with a particular
parametric model, using the cumulative distributions conditional on QTL
genotype in a graphical goodness-of-fit test?

Mammary Tumors in Rats
Study has shown that female rats from the Wistar-Kyoto (WKy) strain re-
sistant to carcinogenesis were crossed with male rats from the Wistar-Furth
(WF) strain (Lan et al. 2000). To identify carcinogenesis resistant genes,
383 female BC rats were generated by mating F1 progeny to WF animals.
These backcross rats were scored for number of mammary carcinomas and
were genotyped at 58 markers on chromosome 5. Using Mapmaker/QTL,
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Lan et al. (2000) found that marker D5Rat22 was strongly associated with
lower tumor counts. The mean numbers of counts estimated from the nor-
mal mixture are 2.68 and 5.43 for the WKy/WF and WF/WF genotypes,
respectively at the putative QTL identified.

Zou et al. (2002) applied the semiparametric method to this rat data
and the results are summarized in Figures 1 and 2. In Figure 1, the partial
likelihood ratio statistic is shown as a function of location on chromosome
5. The LOD score calculated from the partial likelihood ratio statistic is
also given. For comparison, the profile from a normal mixture using Map-
Maker/QTL is displayed. Both curves are very similar with peaks near
D5Rat22. The estimated distribution functions for Wky/WF and WF/WF
genotypes were computed at the locus giving the maximum LOD score un-
der the semiparametric and normal mixtures. These are displayed in Fig-
ure 2 along with 0.95 pointwise confidence intervals. The plots exhibit that
WF/WF rats have higher tumor counts. The estimated means for carcino-
mas in WKy/WF and WF/WF rats are 2.69 and 5.45, respectively. The
estimated distributions from the normal mixture are rather different from
the semiparametric estimates and may lie outside the confidence intervals.
Other estimates (not shown) from a negative binomial model (Drinkwater
and Klotz 1981) fall entirely within the 0.95 limits.

2.2. Measuring the shift of center

Another way to generalize the normal model is to suppose that QT geno-
types can shift the center but not otherwise change the shape of the model.
That is,

pr(y|q, θ) = F (y + qβ)

with θ = (β, F ), β consisting of a few parameters and F a completely
unspecified distribution. This semi-parametric shift model has a natural
estimator of shift suggested by Hodges and Lehmann. All one has to do is
divide the phenotypes into groups based on QT genotype q and find β that
shifts the medians of all groups to coincide.

Suppose we knew the shift, say β, and we knew the genotypes q . Then
the shifted values yi(β) = yi+(qi−q̄·)β would all have the same distribution
F . Consider the linear rank statistic

T (b|y, q) =
n∑

i=1

(qi − q̄·)
rank(yi(β))

n + 1
,

which depends on the phenotypes only through the ranks of their shifted
values. In the next section, we develop this into a formal test for β = 0,
but here we are interested in estimating the shift. If we knew q, then we
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Figure 1 Likelihood ratio statistics and LOD score on chromosome 5. Solid line is the
semiparametric mixture and the dashed is the normal mixture. (From Zou et al. 2002.)

could use the Hodges-Lehmann estimator β̂ = median{b|T (b) ≈ 0}. Note
that the linear rank statistic may not reach zero, so in practice we take the
closest values on either side and average them.

This seems rather difficult to do in practice since q are unknown. How-
ever, Haley-Knott regression provides a decent approximation. In other
words, we can substitute unknown q with its expectation when estimating
β:

pr(y|q, θ) = F (y + E(q)β),

with E(q) the expectation of q given flanking markers to the loci λ (Haley
and Knott 1992). Haley-Knott least squares estimators are consisten, but
may be inefficient, while modified Hodges-Lehmann (HL) estimators may
have bias, since they are nonlinear in q, depending on the median. Never-
theless, our HL estimators perform well in simulations. Our investigation
for a single QTL shows that (Zou et al. 2003) the approximation works
well for linkage maps that are relatively dense (when the average marker
distance is no larger than 20 cM) which is true for most of the modern
QTL mapping studies. The proposed estimator of β is more efficient than
its traditional estimator based on the normality assumption when the data
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Figure 2 Point estimates (+) and 0.95 pointwise confidence limits (0) for cumulative
distributions at location of maximum partial likelihood ratio statis tic. Dashed lines are
point estimates from the normal mixture model. (a) WF/WF; (b) WKy/WF. (From
Zou et al. 2002.)

is not normally distributed. Further, Haley-Knott (1992) regression gives
valid estimates and testing when data are not normal.

Listeria Monocytogene Time-to-Death in Mice
Our second example relates to the date on the time-to-death following infec-
tion with Listeria monocytogenes of 116 F2 mice from an intercross between
the BALB/cByJ and C57BL/6ByJ strains (Boyartchuk et al 2001). The
histograms of the log time-to-death of the non-survivors are given in Fig-
ure 3. 31 mice which is roughly 30% of mice survive beyond 264 days.
From the histogram it is hard to justify that the log time-to-death of the
non-survivors is normally distributed. Broman (2003) applied four different
methods, including both the standard interval mapping and non-parametric
interval mapping, to this data set and showed that the locus on chromosome
1 appears to have effect only on the average time-to-death among the non-
survivors. For this reason, our analysis will be restricted on chromosome 1
for those non-survivors.

The additive and dominance estimators from standard interval map-
ping are 0.262, 0.059, respectively while they are 0.257, 0.038, respectively
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Figure 3 Histogram of log2(survival time), following infection with Lis teria Monocy-
togenes. 31 mice recovered from the infection and survived to the end of experiment
264hr (log2(264) = 8).

based on the rank based method. Therefore, the non-parametric rank based
analysis confirms the results by Broman (2003).

3. Non-parametric Models

The semi-parametric models are quite useful, but they still rely on some
common shape in some sense. What if we want to allow completely arbi-
trary shaped distributions with different QTL genotypes?

Here we examine non-parametric methods that make no assumptions
about the shape of the distribution, that is we focus on cumulative distri-
butions conditional only on the QT genotype

pr(Y ≤ y|q) = Fq(y) .

This approach is more robust to heavy-tailed phenotype distributions and
to occasional outliers.

Estimates of shift discussed in the previous section could be useful here,
but they are actually semi-parametric. We wish to estimate the conditional
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Figure 4 LOD score curves from standard interval mapping (dashed line) and nonpara-
metric interval mapping (solid line).

distributions Fq without any assumptions of shape. Here is the basic idea.
We estimate the cumulative distributions given flanking markers, pr(Y ≤
y|m,λ), by dividing phenotypes into groups based on flanking markers and
summing up the corresponding histograms (details below). Now notice
that the phenotype distributions conditional on QTL are mixtures of these
flanking-marker distributions:

pr(Y ≤ y|m,λ) =
∑

q

pr(q|m,λ)Fq(y) .

Given QTL λ, we can calculate pr(q|m,λ). If there are m QTL, then in a
backcross there are 22m possible flanking marker values but only L = 2m

possible QT genotypes. Thus we have fewer unknowns (Fq) than knowns
in a set of linear equations, and we can estimate. This argument can be ex-
tended to handle missing marker genotypes and other types of experimental
crosses.

To be specific, consider the cumulative distributions
Hi(y) = pr(yi ≤ y|mi, λ) .

Here is a way to get the estimator of Hi. Let Ni(y) = I(yi ≤ y), being 1 if
yi ≤ y or 0 if yi > y. Divide experimental units up into sets based on the
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value of their flanking markers around the loci λ. Let s be one such set.
For each unit i in this set s, average the indicators across this set:

Ĥi(y) =
∑
k∈s

Nk(y)/ns

with ns being the size of the set s. This gives an empirical estimator of
Hi(y) which increases from 0 to 1 as y increases, taking steps of size 1/ns.
All individuals in set s have this same estimator. Thus,∑

i∈s

Ĥi(y) =
∑
i∈s

Ni(y) .

Let H = (H1, · · · ,Hn)T be the cumulative phenotype distributions con-
ditioned on flanking markers, and F be a column vector across the QT
genotypes of Fq. Combine the segregation model into an n × 2m matrix R
with Riq = pr(q|mi, λ). Thus

H(y) = RF (y) .

In the case of fully informative flanking markers, the ‘best’ (least squares)
estimator of Fq(y) given QTL λ is

F̂ (y|λ) = (RTR)−1RTĤ(y) = WĤ(y) = WN(y)

with N = (N1, · · · , Nn)T. The last equality holds since we are effectively
summing first over individuals with the same flanking markers. This makes
sense, since we can think of the problem as having the cumulative distrib-
ution as the phenotype of interest, with data being Ni(y) = I(yi ≤ y). The
least squares estimator of Fq(y) minimizes the following sum of squares:

n∑
i=1

[
I(yi ≤ y) −

∑
q

pr(q|mi, λ)Fq(y)

]2

.

That is, we find the best fit to the cumulative distribution of phenotypes y
based on the segretation model and on phenotype model given QTL at λ.

The covariances of the phenotype cumulative distribution arise directly
from the binomial model, since we are estimating a probability. For y ≤ y′,

cov
(
F̂ (y|λ), F̂ (y′|λ)

)
= WH(y)(I − H(y′))WT ,

which can be estimated by WN(y)(I − N(y′))WT .
The linear rank test provides a formal non-parametric testing frame-

work to infer QTL, assuming common shape. Following this localization,
the above estimators can provide graphical assessment of the shape of the
distribution for each genotype.



September 3, 2006 22:58 World Scientific Review Volume - 9in x 6in main-vnn

Gene Mapping 399

The rank tests of Kruglyak and Lander (1995) may have low power to
detect differences between the phenotypic distributions. A test for homo-
geneity of the components may also be conducted using the proposed non-
parametric estimators. For given y, the null hypothesis is H0 : AF̂ (t) = 0,
where A is an (L − 1) × L matrix containing (L − 1) linearly independent
contrasts of FQ(y)s corresponding all possible QTL genotypes q. Under
H0, the statistic

L(y) = {AF̂ (y)}{AΣ̂(y, y)AT }−1{AF̂ (y)}T

has a chi-squared distribution with L − 1 degrees of freedom. Evaluating
the distribution of L as a process in y ∈ [0, τ ] (τ is the maximum y value
observed would) enable omnibus testing procedures which are sensitive to
differences amongst the component distributions at all time points. For
example, using supy L(y) would provide a statistic which is sensitive to all
alternatives, unlike the test of Kruglyak and Lander (1995). The theoretical
developments of supy L(y) appear to be rather challenging and deserves
further investigation. In practice, one might consider using the bootstrap
to approximate the distribution of the sup test under H0 across the genome.

Again, the proposed method has been applied to the mammary tumor
rat data (Fine et al. 2004). We compute nonparametric estimates of the
carcinoma distributions for the WKy/WF and WF/WF genotypes at the
estimated QTL and the estimated distributions are displayed in Figure
5 along with 0.95 pointwise confidence intervals. The plots exhibit that
WF/WF rats have higher tumor counts. Further, the estimated distribu-
tion F̂ (y) provides another goodness of fit method of the traditional para-
metric QTL mapping. The estimated means in the WKy/WF and WF/WF
groups are 2.64 and 5.46, respectively, which agrees with Mapmaker/QTL.
However, the estimated distributions from the normal mixture are rather
different from the nonparametric estimates; these are not shown. Instead,
the estimated components from a model with FWKy/WF and FWF/WF as-
sumed to be negative binomial, which was fitted by Lan et al. (2001), are
displayed in Figure 5. These fall entirely within the 0.95 limits, indicating
that this model matches the data well.

4. Discussion

The Wilcoxon rank-sum test was extended to interval mapping by Kruglyak
and Lander (1995). For related sum of scores tests that might be used as
alternatives, see Puri and Sen (1985) or other texts on non-parametric
statistics.

Technical details for the QTL exponential tilt can be found in Zou,
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Figure 5 Point estimates (+) and 0.95 pointwise confidence limits (0) for cumulative
distributions at location of maximum partial likelihood ratio statis tic. Dashed lines are
point estimates from the negative binomial mixture model. (a) WF/WF; (b) WKy/WF.
(From Fine et al. 2004.)

Fine and Yandell (2002), based on empirical likelihood work of Qin (Qin &
Lawless 1994; Qin 1999). See Owen (2001) for a comprehensive treatment of
empirical likelihoods. Zou and Fine (2002) showed how the partial empirical
likelihood is closely related to the conditional likelihood. This connection
raises interesting robustness issues with respect to selective genotyping and
selective phenotyping that are discussed in Jin et al. (2003).

Fine, Zou and Yandell (2001) developed non-parametric cumulative dis-
tributions for QTL phenotypes for uncensored and censored data. Speed
(pers. comm.) developed a QTL version of the Cox proportional hazards.
Recent research has touched on time series and repeated measures analysis
in the QTL context.

Calculating thresholds and power are important practical issues in the
design and analysis of any QTL study. However, the usual point-wise sig-
nificance level based on chi-square approximation is inadequate because
the entire genome is tested for the presence of a QTL. Theoretical ap-
proximations based on the Ornstein-Uhlenbeck diffusion process have been
developed to determine threshold and power (Lander and Botstein 1989;
Dupuis and Siegmund 1999; Rebai et al. 1994, 1995; Zou et al. 2001, 2002)
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in some simple experimental crosses. However, permutation procedure is
time consuming and may not be applicable under some conditions. The
theoretical approximation is not readily available for any study designs and
hard to obtain for complicated models. Empirical permutation procedures
to estimate genome-wide threshold values for traditional interval mapping
proposed by Churchill and Doerge (1994) and widely used for normal data
can be readily applied to the semiparametric and nonparametric methods
reviewed here. Recently, Zou et al. (2004) proposed a new resampling
procedure to assess the significance of genome-wide QTL mapping that
is computationally much less intensive than Churchill and Doerge (1994).
Further, it is applicable to complicated QTL mapping models that the per-
mutation and theoretical methods cannot handle.
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