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1 INTRODUCTION

This chapter focuses on computing strategies and software for gene
mapping. We separately address software strategies for experimental
crosses, known as quantitative trait loci (QTL) mapping, from those used
in natural populations for association analysis. Both of these approaches
look for correlations between genotypes and phenotypes. For most of the
development in this chapter, we focus on a single phenotype, but we
briefly note strategies that can examine multiple correlated phenotypes.

The goal of gene mapping is model selection for the genetic
architecture of a phenotypic trait. That is, we wish to infer what genomic
regions, or genetic loci, are associated with a phenotype, and what mode
of gene action is involved. Genetic loci typically cover several megabases
of DNA containing many closely linked genes. Gene action is often
interpreted in terms of the additive and/or dominance effect of single
loci, and epistatic interaction among two or more loci. A well estimated
genetic architecture for a trait of interest can be used in disease
prognosis, marker-assisted selection or studies of the evolution of the
trait.

Depending on the method of analysis, the genomic region for a locus
may cover a single genetic marker or a set of markers. Genetic markers
are short segments of DNA, or in some cases qualitative traits, that can
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be scored to partially or fully identify the inheritance of parental alleles.
The markers are ideally arranged in a genetic linkage map corresponding
to the physical map or sequence of the genome under study. While these
previously determined maps are now routinely available for model
organisms, such as Arabidopsis and rice, there are many taxa with no
marker map, or only with maps based on the marker data in hand.

This chapter does not address the problem of building marker maps,
except to point out that there are standard tools to build maps for
experimental crosses, including MapMaker (Lander and Green 1987;
Lander et al. 1987), R/qtl (Broman et al. 2003), MultiPoint (Mester et al.
2004) and JoinMap (Jansen 1993). Genetic maps are typically in units of
centi-Morgan (cM), with two loci separated by 1 cM having an expected
recombination frequency of 1%. Roughly speaking, 1 cM is about 1
megabase of DNA, depending on taxa. However, recombination
frequency is not linear with genetic distance. The choice of
recombination model, defining the relationship between genetic distance
and recombination fraction, plays a minor role in gene mapping for
experimental crosses once a linkage map is built. Most gene mapping
methods for experimental crosses assume no crossover interference.
Typically there are further assumptions of independent crossovers with
equal likelihood across the genome (Haldane map function), although
most packages allow other options. More complicated experimental cross
designs, particularly in outbred populations, may require multipoint
mapping. There are many subtle issues about the relationship of
recombination to distance that are beyond the scope of this chapter.

Gene mapping involves multiple tests for correlation between a set
of genetic markers and a trait of interest. Typically for an individual
experiment, a large number of markers are tested against a phenotype,
which leads to multiple testing issues when each marker-trait
combination is tested individually. We will address these issues in
context of specific software strategies.

QTL mapping in experimental crosses usually begins with two
inbred lines. The individuals in such an experimental cross, are created,
nurtured and measured under uniform conditions so that the primary
differences among individuals are due to their genetic ‘treatment’. In
contrast, association analysis considers the relationship between
genotype and phenotype in a natural population. It uses the extent of
linkage disequilibrium (LD) between a trait and markers to infer the
location of QTLs.

The existence of an association between a marker and a trait in an
experimental cross implies that either the marker itself is the cause of the
observed phenotypic variation or that it is linked to a causal
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polymorphism. There are two problems with interpreting correlation as
causation in an association study of a natural population: (1) a linked
marker might not be in LD with the trait; and (2) a marker that is in LD
with a trait might not be linked to it.

Several distinctions between QTL mapping with experimental
crosses and association mapping with natural populations are worth
mentioning beyond the issue of causal inference. The resolution of QTL
mapping in experimental crosses is typically fairly coarse, on the order of
5-20 cM, whereas association mapping can lead to much finer resolution
maps. Experimental crosses from two inbred lines have at most two
alleles at any genomic locus, while natural populations may have
multiple alleles. As a result, heterozygosity is fairly uniform in
experimental crosses, and markers are usually informative, or not, of
parentage for the whole population. However, in natural populations,
markers may have quite different heterozygosity and may only be
informative for a certain subset of individuals. All individuals in an
experimental cross have equal genetic correlation on average, but this
does not hold in natural populations. Finally, missing data presents
much more difficult problems in natural populations, where one may
need to infer the phase of inheritance to estimate haplotypes.

2 QTL ANALYSIS WITH INBRED LINES

Modern methods for QTL analysis in experimental crosses derived from
inbred lines largely employ the interval mapping framework developed
by Lander and Botstein (1989). This fundamental paper viewed the
relationship between phenotype and genotype as a genomic question,
providing a visual LOD score map to profile evidence for association
across the genome. The linkage map inference inherent in this work
(Lander and Green 1987) provided an algorithmic approach to model
missing genotype information between markers.

Good expositions of QTL methods for experimental crosses can be
found in Broman (2001) or Hackett (2003). Doerge et al. (1997) reviewed
the statistical issues, while Mackay (2001) placed QTL mapping in the
context of identifying underlying mechanisms. Several recent papers
have addressed the difficult issue of moving from QTL intervals to
confirmed genes (Guo and Lange 2000; Nadeau and Frankel 2000;
Glazier et al. 2002; Korstanje and Paigen 2002; Page et al. 2003; Darvasi
2005).

This section gives an overview of QTL analysis for inbred lines,
contrasting the algorithms commonly used. Rather than show screen
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shots of individual packages, we primarily use graphs developed in R (R
Core Development Team 2006) to illustrate concepts. We point out which
packages use what methods as we go along. We begin with a detailed
investigation for mapping a single QTL. This leads to questions of
assessing significance (thresholds, support intervals), which leads to
model selection for multiple QTL. We finish with a brief overview of
packages.

2.1 Single QTL Mapping

QTL mapping models the relationship between phenotype and genotype
at each location across the genome. We briefly review methods employed
to assess this relationship profiled across the genome. We begin with a
complete data situation with 100 individuals and 201 markers spaced
every 1 cM, with a single QTL at 100 cM. Here all methods agree exactly
with each other.

Marker regression (MR) examines the association between each
marker and a phenotype. This was the available method until 1989,
performed marker by marker using t-tests for backcross or ANOVA for
intercross. When markers are arranged in a linkage map, p-value
summaries provide a crude genome-wide profile. However, it was
widely recognized that regression with a single marker confounds the
allele substitution effect and linkage between each marker and the
pertinent genetic locus. Further, any missing data reduces power, as
those individuals must be dropped for that marker. This method is still
sometimes used as a quick initial examination, particularly in genomes
with no linkage map yet available.

Simple interval mapping (SIM) models the relationship between
phenotype and genotype by testing for a QTL at each location across the
genome (Lander and Botstein 1989). This involves a likelihood ratio test,
rescaled as a familiar LOD score. That is, interval mapping (IM) states
that the phenotype has a normal, or bell-shaped, histogram for any given
genotype, with a different mean depending on the genotype. When the
genotype is not known, IM assigns probabilities to missing genotype data
based on informative flanking markers. The full likelihood mixes over all
possible missing genotype values. That is, the distribution for an
individual is a weighted average of normal distributions, with the
weights being the probabilities for QTL genotypes given flanking
markers. Individuals with the same flanking marker genotypes would
have the same mixture distribution. The profile likelihood is the product
of these distributions at the phenotype values maximized for unknown
effects using the expectation-maximization (EM) algorithm (see Lander
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and Botstein 1989). The log odds (LOD) is the log base 10 of this
likelihood profile divided by the null likelihood for the no QTL model.

Regression mapping, also known as Haley-Knott (HK) regression
(Haley and Knott 1992; Martinez and Curnow 1992), considers regression
of the phenotype on the expected genotype, which approximates the
more correct mixture detailed above. That is, they agree in mean value,
but differ in variance and in distribution shape. This is not a serious
problem if markers are closely spaced and there are only a few missing
marker genotypes. However, with selective genotyping, this Haley-Knott
regression can be seriously biased (Kao 2000). Xu (1995) showed that this
method can overestimate residual variance when QTL effects are large or
markers are widely spaced.

When there are no missing data, interval mapping and Haley-Knott
regression are exactly identical. Marker regression agrees as well at every
fully informative marker with these curves once it is rescaled in terms of
LOD scores. That is, there is no approximation involved when we have
complete data at markers, and all methods agree. Consider the following
simple example with 100 individuals in a backcross fully genotyped at
201 markers spaced every 1 cM. The QTL is located at 100 cM, with a
substitution effect of 2 relative to a standard deviation of 1. The LOD
curve peaks near 100 cM, but slowly trails off (Figure 1a). The attenuated
substitution effect at a locus that has a recombination rate of r with the
QTL is (1-2r)a, where a is the substitution effect at the QTL (Figure 1b).
The long attenuation of the LOD curve is due to this confounding of QTL
substitution effect and linkage of nearby markers (Wright and Kong
1997). The expected LOD at the QTL is (11/2) * log10(1 + a*/2), which is
attenuated to (1/2) * logl0((1 + a*/2)/(1 + 2a*r(1 - r)) at the linked
marker. The attenuation can only be relieved by increasing sample size
or considering multiple QTL models.

2.1.1 Missing Genotypes

Linkage maps for some time have had markers every 5 to 20 cM,
requiring some way to fill in for missing genotypes between markers.
Thus genotype information between markers is completely missing.
Further, some markers may have missing values due to technical reasons
unrelated to phenotype. In other situations, genotype data may be
missing in a pattern associated with the phenotype, either by design or
chance. This subsection examines the impact of various types of missing
data on QTL mapping.

Marker data missing at random does not introduce any appreciable
bias to QTL mapping. However, missing data must be replaced by
assumptions about what that data might have been. This introduces
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Fig. | Simulation with | QTL at 100 cM and complete marker information. Markers
every | cM. (a) LOD profile scan for simple interval mapping. Black line is interval
mapping; gray dashed line is expected LOD profile. Note long-term attenuation of peak
away from 100 cM. (b) Substitution effect attenuated by linkage (l-2r) to nearby
markers. Estimated effect from interval mapping in black; idealized effect in gray dotted.

uncertainty into LOD maps, and the impact of that uncertainty depends
on the algorithm employed. Several ways to address missing genotype
data have been implemented in QTL software. It is important to
understand these because some methods have known bias when data are
not missing at random.

It is useful here to introduce a third method of QTL mapping known
as multiple imputation (IMP). The basic idea is to fill in the missing
genotype at each 1 cM step using the assumed map function. This is done
multiple times, recognizing that any particular realization is flawed.
These multiple imputations are then averaged in a careful way to
produce a log posterior density (LPD) that is very close to the LOD score
(Sen and Churchill 2001).

What is the impact of marker spacing on LOD profiles? Simple IM
fills in missing data between markers using the EM algorithm and the
map function. This leads to a smooth parabola shape for the LOD
between partially informative markers. HK regression tends to dampen
those parabolas slightly. Multiple imputation averages as well, but may
occasionally wiggle due to sampling variation. Figure 2a shows the effect
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Fig.2 Impact of marker spacing and genotype data missing at random. Markers every
10 cM, with profile evaluated every | cM. (a) Complete marker data. (b) Half of marker
data missing at random. Dashed line = interval mapping, dotted = Haley-Knott
regression, solid = multiple imputation; gray dotted is expected substitution effect.

of 10 cM spacing on the single QTL example introduced earlier. When we
in addition remove half the marker data at random, the LOD curves keep
the same basic shape (Figure 2b).

Markers may have missing data due to a design decision, such as
selective genotyping. Selective genotyping implies a biased pattern of
missing marker information. Typically, some fraction (10-25%) of
extreme high and extreme low phenotype individuals are fully
genotyped, while those in the middle range are not genotyped. All
phenotype data are used for analysis, even those with no genotype
information. Figure 3a shows how HK regression greatly overestimates
the strength of the QTL signal when only extreme quartiles are
genotyped. The other two methods tend to have reduced peaks relative
to the figures seen earlier, which is not surprising since much data has
been lost, leading to a reduction in power. However, they capture the
same essential strength of relationship between phenotype and genotype
and are not inflated by the pattern of missing genotype data.

The impact of selective genotyping on Haley-Knott regression can be
more or less ameliorated by having a framework map of fully
informative markers. Figure 3b shows a situation with fully informative
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markers every 20 cM starting at 10 cM. The peak for Haley-Knott
regression is still biased upwards. Note that the addition of these fully
informative framework markers drops the proportion of missing data
per marker from 50% to at most 20% in this situation. For more
information on designing experiments with selective genotyping (see Sen
et al. 2005).

It should be pointed out that the EM method can introduce artifacts
in the presence of some patterns of missing data. Sometimes we see an
unusual spike in the LOD map between partially informative markers.
This indicates a region where the EM method is achieving “too good” a fit
to the data. Multiple imputation and HK regression tend to dampen such
effects. The bottom line is that missing data is “filled in” by assumptions
in one way or another. No way is perfect, and artifacts can emerge.
Always use caution interpreting QTL analyses in the presence of much
missing data.

2.1.2 Detection of QTL

LOD maps as shown above provide a sense of where strong correlation
between phenotype and genotype lie. But how large is large enough to
say a QTL is detected with confidence? Theoretical guidelines based on
high-powered math suggest a LOD threshold of about 3 (Lander and
Botstein 1989; Lander and Kruglyak 1995), with some adjustment for
design. In practice, it is wise to use resampling methods to assess the
strength of the LOD signal.

A permutation threshold can be computed with most packages. The
idea is to permute, or shuffle, the phenotypes independent of the
genotypes. For each permutation, construct the LOD profile and record
the maximum. The distribution of maximum LOD under the ‘null’ model
of no QTL is approximated by a histogram of such values. Typically,
1,000 permutations are recommended for genome-wide purposes
(Churchill and Doerge 1994). For the 10 <M data spacing shown in
Figure 3, the EM thresholds at 1%, 5% and 10% are, respectively, 2.61,
1.81, and 1.53. Similar thresholds are found for the Haley-Knott and
multiple imputation methods (not shown). Figure 4 shows these
thresholds superimposed on the LOD maps. There is strong evidence to
support a QTL, but there is also a wide region of the LOD curve that
exceeds the 1% threshold. Note that permutation thresholds for the sex
chromosome may need to constructed separately (Broman et al. 2006).

Common practice involves constructing a LOD support interval that
spans a genomic region where LOD values are within 1 to 2 LOD of the
peak. Strictly speaking a LOD support interval is not analogous to a
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Fig. 3 Impact of selective genotyping. (a) Only extreme quartiles are genotyped
while the genotypes for the middle 50% of individuals are missing. (b) Complete
genotyping at framework map (markers every 20 cM indicated by larger tics); selective
genotyping at all other markers. Note different vertical scales on the two figures.

confidence interval, although it is commonly misinterpreted as such. Its
properties, in terms of percent of times it covers the true QTL location,
depend on the marker spacings, pattern of missing data, and presence of
other linked and epistatic QTLs. Still, it is a useful guide to the
uncertainty in the QTL location. The 1.5 LOD support interval shown in
Figure 4 is 76 to 109 cM for 10 cM marker spacing, 80 to 101 cM for 1 cM
spacing. Permutation thresholds for single QTL scans are available in
most QTL packages, although some only offer them for single QTL scans.
Permutation thresholds for more complicated models, with multiple QTL
and/or covariates, require more care (Doerge and Churchill 1996).
Recently, some faster methods for permutation thresholds have emerged
(Zou et al. 2004; Jin et al. 2007) and are gradually being incorporated into
QTL packages.

Another resampling approach, bootstrapping, has been applied to
QTL mapping. Several packages (Seaton et al. 2002; Mester et al. 2004;
Wang et al. 2003) offer bootstrap of the distribution of the probability of
the presence of a QTL across intervals. This tool is not well studied in this
context, can be misleading, and should be approached with caution
(Manichaikul et al. 2006).
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Fig. 4 Permutation-based thresholds for maximum LOD. Dotted horizontal lines at
1%, 5% and 10% threshold using EM method. Gray horizontal line is 1.5 LOD support
interval from 76 to 109 cM. (a) Markers every 10 cM; (b) markers every | cM. Note
slightly higher thresholds for | cM spacing.

2.1.3 Model Selection for Multiple QTL

Detection of a single QTL is an important first step. However, most
complex traits are likely influenced by several, if not hundreds of genetic
loci. We cannot hope to uncover the ‘true model’ in any given
experimental cross, but we can infer major aspects of the genetic
architecture that are supported by the data. Extension from a single QTL
to multiple QTLs has been implemented in several distinct ways. We
illustrate this with the one QTL example above and with another
simulation having several QTLs. We focus on R/qtl (Broman et al. 2003),
R/qtlbim (Yandell et al. 2007) and QTLCart (Basten et al. 1999) in this
demonstration, as they have the key features of the methods found in
most packages. Further, their graphics can be readily annotated and
prepared for publication. We show graphs of one- and two-dimensional
scans, as well as model selection tools. We briefly discuss model selection
criteria, though that is beyond the scope of this chapter.

We need to briefly state that epistasis herein refers to the effect on a
phenotype of statistical interaction among distinct genetic loci. Model-
based epistasis is related to biological epistasis, which W. Bateson
defined in 1907: “The allelic state at one locus can mask or uncover the
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effects of allelic variation at another” (cf. Hollander 1955). We model
epistatic interaction for complex traits with QTL as we do in ANOVA.
Thus marker regression (MR) can be extended to multiple QTL using
standard statistical packages. This quick and dirty method should only
be considered a first pass, and epistasis uncoverd with MR is in general
not to be trusted.

The process of model selection typically involves finding a balance
between models that are too simple, missing key features and
introducing bias, models that are overly complicated, inflating the
variance of parameter estimates. A more complicated model with more
QTLs will fit better and have a higher likelihood. But we pay a price for
this: interpretation of a larger model is more complicated, and its
components —including loci and genotypic effects—are each less
precisely estimated. Further, the utility of a model is in its ability to
predict effects of genoytpe on phenotype in a new experiment. An overly
simple model will give biased predictions, missing linked QTLs and
important epistasis. However, a model that is too complicated can be
biased in other ways, being constrained to particulars of the current
experiment. Thus, apparent evidence of subtle QTLs and epistasis may
be artifacts of the data at hand, and may not generalize to other settings.
These problems are not new to QTLs, and they have been well studied in
stepwise regression. The basic idea in comparing models of different
sizes, varying by the number of QTLs and the degree of epistasis, is to
use an information criterion that equals the likelihood less some penalty
that measures model ‘complexity’. No one criterion is ‘best’, as each
involves reducing a complicated, multidimensional comparison to a
single number. We often compare models based on their maximum LOD
scores. This criterion has no penalty for complexity, and is most
appropriate when doing a few comparisons, say one vs. two QTL, with
or without epistasis.

Broman and Speed (2002) compare various methods of model
selection for multiple QTL that are located only at markers spaced every
10 cM. This is one of the only simulation studies to date comparing
multiple QTL strategies. We refer the reader to this paper for a
discussion of information criteria that measure the bias/variance
tradeoff.

2.1.4 Multiple QTL Estimation Approaches

This subsection reviews the approaches to multiple QTL model fitting
commonly used in software. These include regression mapping
approximations, maximum likelihood, and Bayesian posteriors. A hybrid
between regression and maximum likelihood is also highlighted, as it is
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found in several packages. Model fitting is typically coupled with a
model selection procedure, as we indicate in particular for the
recommended maximum likelihood and Bayesian approaches.

As pointed out above, HK regression mapping is challenged by
missing genotype data. This problem is exacerbated with multiple QTL
(Xu 1995; Kao 2000). Still, the method is fast and works well when there
are few missing data subject to selective genotyping. QTL Express
(Seaton et al. 2002) is a popular package for this method. Tools for HK
regression with multiple interacting QTL are available as well in R/qtl
(Broman et al. 2003).

Hybrid methods, known as composite interval mapping (CIM)
(Zeng 1994) or multiple QTL mapping (Jansen 1993) were proposed as
ways to scan the genome with interval mapping while approximately
adjusting for other QTL using nearby markers, or co-factors. This method
is fast and fairly easy to implement, hence it has been incorporated into
several packages, including PLABQTL (Utz and Melchinger 1996),
MapQTL (van Ooijen and Maliepaard 1996) and MapManager/QTX
(Meer et al. 2004). However, the approximation can be problematic, and
its properties depend on the minimal spacing window to linked co-
factors as well as the number of co-factors. An early analysis of
morphological shape (Liu et al. 1996) using CIM was later revised using
MIM described below (Zeng et al. 2000). Broman and Speed (2002)
showed that CIM is effective when there are ‘enough’ co-factors, but
misses linked QTL if there are too few co-factors. Returning to the fully
informative simulation of a single QTL, Figure 5 shows how CIM can
narrow the support interval for a QTL, but at the same time the peak is
slightly elevated as the variance is artificially deflated by the co-factors.
The 5% permutation threshold for CIM is estimated at 2.04 (300
permutations, default settings), compared to 2.09 for IM (1000
permutations). CIM should be used with caution as an exploratory tool,
in conjunction with other methods described below.

Methods that estimate all QTLs together began emerging in the late
1990s and into this century. These methods include an extension of EM
for maximum likelihood (Kao et al. 1999; Kao and Zeng 2002), known as
multiple interval mapping (MIM). MIM is available in QTLCart/
WinQTLCart (Basten et al. 1999) and in MultiQTL (Mester et al. 2004). It
turns out there are a number of technical issues that arise, making this a
difficult problem. Basically, it is hard to know when you have actually
reached maximum for a model with many QTLs! On top of that, there is
the issue of deciding among models. Again, Broman and Speed (2002)
provide simulation studies of the stepwise regression model selection
strategy adapted to multiple QTL mapping. MIM applied to the earlier
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Fig. 5 Composite interval mapping (CIM) LOD profile. IM profile is dashed, CIM
solid. Right panel zooms in on peak area, with CIM curves for 5 co-factors and window
widths 10 (default), 5,2 and | cM.

example definitively concludes there is exactly one QTL, thus reducing to
simple interval mapping in this instance.

Two primary Bayesian interval mapping (BIM) methods have
emerged, and they have been incorporated into available packages:
multiple imputation and Markov chain Monte Carlo (MCMC). The
Bayesian approach focuses on studying random samples from the
posterior distribution, which is basically the likelihood weighted by a
prior distribution on unknowns, rescaled to have area 1 to make it a
distribution. The posterior is a useful device to examine the entire
likelihood, rather than focusing only on the maximum peak. Priors play
the role of formally incorporating uncertainty about unknowns into our
models. These include positions of QTLs, their genotypic effects and
epistatic effects, and even the complexity of the genetic architecture.

Multiple imputation (IMP), introduced above, is available in R/qtl
(Broman et al. 2003) and the Matlab application, Pseudomarker (Sen and
Churchill 2001). This method profiles the log posterior density (LPD),
yielding curves markedly similar to the LOD curves, as shown in Figures
2-4 above. The LOD maximizes the genotypic effects at each locus, while
the LPD averages over the effects; these are essentially the same when
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the assumed phenotype model is normal. The advantage of the multiple
imputation method lies in its simplicity. We fill in (impute) missing
genotype data based on flanking markers, then compute the LPD; repeat
this several times and (carefully) average the results. Thus, it can readily
be extended to multiple QTL using standard linear model tools for model
building and model selection. Many useful tools along this line are
incorporated into R/qtl (Broman et al. 2003).

A second BIM method was developed using Markov chain Monte
Carlo (MCMC). The MCMC method in itself is not Bayesian—it has been
used for maximum likelihood in human QTL studies (Heath 1997) —but
it can be used to obtain random samples from the posterior. MCMC
methods have proven quite useful for complex models in a variety of
settings where a Bayesian perspective, modeling the uncertainty about
many relationships, is important (cf. Gelman et al. 2003). Initially
handling a fixed number of QTLs, (Satagopan et al. 1996) MCMC
methods for QTL now incorporate uncertainty about the genetic
architecture (Satagopan and Yandell 1996; Sillanp&dad and Arjas E 1998;
Stephens and Fisch 1998; Gaffney 2001; Yi 2004; Wang et al. 2005; Yi et al.
2005; Yandell et al. 2007). This allows us to use the Bayesian approach for
model selection, in which we allow the number, position and genotypic
effects of QTL to be unknown.

Figure 6 shows MCMC applied to the fully informative one QTL
example used to this point. The peaks for LOD and LPD are nearly the
same, but the MCMC curve drops off more quickly. This is also apparent
with the substitution effect. The dropoff is more dramatic with larger
sample sizes (here we have 100) and/or larger substitution effects. The
reason for this drop-off is that the question has changed somewhat. Up
until now, the LOD or LPD profiles compared a model with one QTL at
the locus under consideration against the null model of no QTL. The
MCMC samples allow us to compare models with and without a
particular locus while allowing other QTL to be present. Thus, away
from the peak, the question is about a second QTL allowing for a major
QTL found near 100 cM. This type of comparison is analogous to type III
ANOVA, in which we test for a second predictor adjusting for the effect
of the first being predictor. Simple IM profiles shown earlier are
analogous to type I ANOVA, asking about one predictor at a time. CIM
approximates this type Il ANOVA idea by using co-factors (Figure 5).

MIM provides formal inference on genetic architecture, following a
stepwise approach to model building that compares simpler models to
more complicated models by adding or dropping main QTLs and/or
epistatic QTLs. Thus, at each point, we consider one model at a time.
Multiple imputation fits a model with a set number of QTL, again to be
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Fig. 6 Bayesian LPD allowing for 2 QTL. Solid curve is from Bayesian posterior,
simple interval mapping is dashed. (a) LOD and LPD; (b) Substitution effect.

compared with other genetic architectures through profiles or other
summaries. The MCMC approach allows us to sample all possible
models, or more exactly the more probably models of the genetic
architecture. Thus we have information immediately about a variety of
plausible models and can construct summaries to explore these in detail.

2.1.5 Detailed Analysis of Multiple QTL Simulated Cross

We now consider a simulation with four QTL on three chromosomes,
including two pairs of epistatic loci (Table 1). We draw a sample of 100
individuals from a backcross, with markers spaced roughly every 10 cM
on chromosomes that are 60 cM in length. There is a small amount of
data missing at random. The goal is to recover the genetic architecture as
much as possible. Our strategy is to consider models with one, two or an
arbitrary number of QTL and examine how strong the data are to
support them. We give detailed analysis using IM in conjunction with
multiple imputation, MIM and BIM via MCMC.

Simple IM picks up strong evidence for a QTL on chromosome 1 and
weak evidence on chromosome 2 (Figure 7a and Table 2). The effects are
underestimated (Figure 7b). None of this is surprising, since IM only
considers one effect at a time. The QTL on chromosome 2 is suggestive
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Table | Backcross simulation with 4 QTL on 3 chromosomes, and two pairs of
epistatic loci, both with QTL 2. Standard deviation was |; effects were supplied
while heritabilities were estimated from simulated sample of 100 individuals.

qtl chr pos effect herit qtl2 effect2 herit2
| | 15 1.5 25.6%

2 | 45 0.0 0.0%

3 2 12 -1.0 11.4% 2 -2.0 11.4%
4 3 15 0.0 0.0% 2 3.0 26.5%

Table2 IM one-dimensional summary. LOD scores for single main QTL at best
position on each chromosome. The notation “c2.locl5” means chromosome 2,
location 15 cM.

chr pos lod
CiM2 I 15.9 4.156
c2.locl5 2 29.7 2.298
C3M5 3 45.9 0816
Author: (a) missing? | 157 O (b)

1.0 /
0.5 R

0.0 o o

~0.51 \I\/

_10_ | LI | O 11 | 1 1 | L1 Ll
1 2 3

Fig. 7 Simple interval mapping on multiple QTL example. (a) LOD scan with 1000
permutation-based thresholds constructed with method HK; (b) effect scans (line =
estimate, circle = true). Vertical gray dashed lines at true location of QTL.
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(1% and 5% critical values based on 1000 HK permutations are 2.49 and
1.89, respectively).

A two-dimensional EM scan of the genome shows some of the
epistatic effects (Figure 8). Similar scans are obtained with HK and IMP
for this multiple QTL simulation. Note the strong evidence for epistasis
between chromosomes 1 and 3, and little apparent evidence for any other
QTL. All methods pick up the epistasis between chromosomes 1 and 3,
but they show little indication of the other epistatic pair (1 and 2).
Normally, a ‘zscale” would appear to the right, but that was suppressed
so that the red lines at true values could be added. Summaries shown in

Chromosome
N

Chromosome

Fig. 8 Two-dimensional profile of simulated data with multiple QTL. Scan is based on
EM, but HK and IMP are similar. Contours are |.5 down from peak. Lower triangle
shows LOD comparing full model with epistasis to no QTL. Upper triangle showing
LOD of full model to additive model assesses epistasis. Diagonal has LOD for single
QTL model. Notice that chromosome | and 2 epistasis is barely visible in upper
triangle, but appears to contribute in lower triangle. Crosses at true loci pairs; X at
mistaken locus pair.
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Table 3 support one of the two epistatic pairs (LODs of 8.06 and 1.95,
respectively). The 1% critical value based on 1000 permutations (HK
method) is 3.27; the p-value for the lesser epistatic pair is 0.17. Thus there
is strong evidence for the 1 by 3 epistasis, but very weak evidence for the
1 by 2 epistasis. The latter would be kept for exploratory purposes, but
probably not believed to be real.

Given the one-dimensional and two-dimensional scans, we now have
a hypothetical model. An ad-hoc approach available in R/qtl involves
ANOVA averaged over imputed samples (Table 4). This strongly
supports a three QTL model with one epistatic pair, with the suggestion
for a fourth QTL, on chromosome 2, possibly epistatic to the distal QTL
on chromosome 1.

Now let’s consider a strategy for building the genetic architecture
using MIM, to be performed after these initial one QTL and two QTL
investigations. We use WinQTLCart (Basten et al. 1999), as it has a good
graphical interface and is free. We fit a new model using the MIM

Table3 IM two-dimensional summaries. LOD scores for “full” model with two
QTL (lod.full), “additive” model with two QTL (lod.add) or epistatic pair adjusted
(type 1) for main QTL effects (lod.int). Comparisons of full vs. best single QTL
(lod.fvl) and additive vs. best single QTL (lod.avl) are also provided. Only entries
with LOD > | shown.

2-QTL “best” summary evaluated at best full model per pair:

poslf | pos2f | lodfull | lod.fvl | lod.int | posla | pos2a | lod.add | lod.avl

cl:cl 1593 | 40.6 | 4.65 | 0.497 | 0.247 683 | 1.4 441 | 0.249
cl:c2 | 20.05 128 | 8.71 | 4550 | 1497 | 1799 | 15.0 721 | 3.053
cl:c3 | 48.12 13.0 | 9.78 | 5.620 | 4249 | 1593 | 52.1 553 | 1.371
c2:c2 | 29.70 | 36.1 345 | 1.148 | 0.541 | 31.80 | 339 291 | 0.607
c2:c3 | 2970 | 60.0 | 3.04 | 0.742 | 0.000 | 29.70 | 60.0 3.04 | 0.741
c3:c3 2,12 | 243 1.53 | 0.709 | 0.536 | 42.88 | 45.9 099 | 0.173

2-QTL “int” summary evaluated at best epistasis per pair:

pos| pos2 | lod.full | lod.fvl | lod.int | lod.add | lod.av/

cl:cl | 40.60 | 51.75| 2.73 |-1.4263 | 0.863 | 1.867 |-2.289
cl:c2 | 48.12 | 12.82| 5.45 1.2936 | 1.954 | 3.495 | -0.661
cl:c3 | 48.12 | 13.00| 9.78 5.6200 | 8.060 | 1.716 |-2.440
c2:c2 | 1282 | 21.36| 3.24 0.9394 | 1.325 | 1.913 | -0.385
c2:c3 6.41 423 | 2.25 |-0.0508 | 0.511 | 1.737 |-0.562
c3:c3 2.12 | 2435| 1.53 0.7092 | 0.956 | 0.569 |-0.247
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Table 4 ANOVA on best main QTL and epistatic pairs inferred from |-QTL
and 2-QTL scans. ANOVA table and Type Il tests of effects based on 128
imputations. Performed using sim.geno, makeqtl and fitqtl in R/qtl (Broman et al.
2003).

df ) MS LOD J%var Pvalue (F)

Model 6 115.64912 19.2748536 | 17.54648 | 56.90287 | 1.909584e-14
Error 89 87.59038 0.9841616
Total 95 | 203.23951

df | Type lll SS | LOD %var | Fvalue | Pvalue(F)

6.266 1.440| 3.083| 6.367 |0.013403| *
50.220 | 9.448| 24.710 | 51.028 | 2.39e-10 | ***

Chr|@48.1:Chr2@12.8
Chr|@48.1:Chr3@13

Chri@15.9 | 26.155 | 5.447| 12.869 | 26.576 | 1.52e-06 | ***
Chri@48.1 3 61.268 |11.055| 30.146 | 20.751 | 2.79e-10 | ***
Chr2@12.8 2 16.559 | 3.610| 8.147 | 8.413 | 0.000450 | ***
Chr3@13 2 51.000 | 9.565| 25.094 | 25.911 | 1.36e-09 | ***
I
I

forward search method, which is similar to the forward selection from
regression applied to markers followed by CIM. We then refine the
model by alternatively optimizing QTL positions, searching to add or
testing to delete main QTLs and/or QTL interactions between pairs of
QTLs. This is somewhat an art form, and can take many steps. There is
no guarantee that different paths will lead to the same final model. The
model achieved actually included two closely linked QTLs on
chromosome 1 near 45 cM with opposite main effects. The BIC criterion
(see WinQTLCart or Broman and Speed 2002) accepted all five QTLs, but
the two closely linked QTLs were not really believable. For instance, they
had high negative correlation of effects, and the one without epistatic
effects had a very modest LOD. Therefore, we dropped this fifth QTL
and obtained a model with four QTLs and two epistatic pairs, which is
quite close to the truth (Table 5). Preserving hierarchy, the least
significant effect is the epistasis between chromosomes 1 and 2, which
agrees with the design of this simulation. In short, MIM using the BIC
criterion almost recovered the correct model, with some subjective
intervention during model search and model selection.

Figure 9 shows some one-dimensional summaries of the MIM fit.
Each LOD profile is the added contribution of a QTL conditional on the
maximum likelihood estimates of the three other QTLs in the model. The
red curves are for the three QTLs picked up by MIM on its own. The blue
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Table 5 MIM inferred QTL model. Compare estimates and heritabilities with
values in Table |. LOD scores test main QTL or epistatic pair adjusted (type Ill)
for other effects.

qtl chr pos effect herit LOD qtl2 | effect2 | herit2 | LOD
| | 16 1.16 15.9% 3.26
2 | 48 -0.05 0.0% 0.0l
3 2 18 -0.96 10.9% 2.42 2 -1.43 6.0% | 1.46
4 3 10 -0.09 0.0% 0.03 2 3.00 | 26.5%| 5.39
(a) 1.5 (b)

1.0

0.5

lod

0.0

—0.5

—— 107 —— =~

Chromosome

Fig. 9 MIM one-dimensional profiles. Detected QTL as solid lines. IM profile as
dashed for comparison. True QTL indicated by gray vertical lines. Horizontal lines at
base of figures specify 1.5 LOD support intervals. (a) LOD profiles for contribution of
QTL in presence of other QTL (adjusted type Il test from MIM, solid) or on its own
(single QTL type I, IM, dashed); (b) main effects profile, with true values added as
circles.

curve corresponds to the second QTL on chromosome 1. The IM profile is
included for comparison (black). Estimates of main effects of QTL are
shown in Figure 9b, with true values in purple. Currently, there is no
two-dimensional graphic for MIM fit.

The strategy for model selection with BIM using MCMC samples is
somewhat different. We first draw many samples (default is 120,000,
saving every 40") from the more probably genetic architectures. We then
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use Bayes factors and Bayesian model averaging to uncover evidence for
the better models. The one-dimensional and two-dimensional summaries
are different as well. They measure the contribution of a particular locus
(or pair of loci for 2-D scans) after adjusting for all other possible QTL. That
is, these are adjusted LPD, allowing for multiple QTL and averaging over
all possible genetic architectures. This is distinct from IM scans, which
have no adjustment for other QTLs; it is also distinct from MIM scans,
which fix the genetic architecture for a set number of QTLs when
scanning a particular QTL. The LPD peaks on Figure 10a are higher than
for MIM, because other QTL effects are adjusted by model averaging
rather than conditioning on the maximum likelihood estimates. The
properties of these BIM scans are an area of active research.

The R/qtlbim software can separate linked effects, although effects
for linked QTLs are averaged together in the 1-D projections of Figure 10.
The estimates of genotypic effects for the main QTL (Figure 9b) are again
close to the true values. Estimates of epistatic effects projected onto each
QTL in Figure 10b should be interpreted with caution—better to view
them with a 2-dimensional scan (not shown). For instance, the epistatic

estimate

—2
Il L T LAl | 1 \I‘II\ 1 11 ‘l 111
1 2 3
main = solid, epistasis = dashed, sum = dotted main = solid, epistasis = dashed
Chromosome Chromosome

Fig. 10 BIM one dimensional profiles. (a) log posterior density (LPD) for combined
effects (dotted), main QTL (solid) and epistatic effects (dashed); (b) main QTL (solid
line = estimate, circle = true) and projected epistatic effects (dashed = estimate, cross
= true). Contributions of epistatic pairs are shown at both loci, although it is not
possible with this representation to determine which loci are paired.
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effect on chromosome one distal end is an average of the two pairs of
epistatic effects.

Table 6 shows one dimensional BIM summaries. The expected
number of QTLs (n.qtl) is estimated from the posterior distribution of the
number of QTLs (Yandell et al. 2007). That is, MCMC samples had on
average 2.66 QTLs on chromosome 1 and almost two on chromosomes 2
and 3. It appears from Figure 10 that these extra QTLs are not major
contributors, as the peaks for contributions from main QTL and epistatic
QTLs are unimodal.

Figure 11 and Table 7 show a two-dimensional summary of LPD.
Note how adjustment for other QTLs leads to a tightening of peaks
relative to Figure 8. Once again, the contribution of the epistatic
interaction between chromosomes 1 and 2 is not very strong, although it
is more evident in Figure 11 than in Figure 8.

Other summaries can be useful. Figure 12 profiles Bayes factors,
rescaled as 2log(BF), and means by genotype. Values of 2log(BF) above
2.1 are considered significant; values below zero are truncated. Other
possibilities include the posterior intensities, variance estimates, or
heritabilities.

Figure 13 shows posteriors and Bayes factor ratios for several
important summaries. The posterior mode for number of QTLs is 7, but
there is only weak to moderate evidence for more than 4 QTLs (BF ratios
of ~3 comparing 4 to 5-9). Several chromosome patterns are equally

Table 6 BIM one dimensional summaries. Separate tables for log posterior
density (LPD) and estimate of genotype effects. n.qtl is expected number of QTL
on chromosome; pos are positions of the peak total effects per chromosome;
m.pos are positions of main peaks in posterior; e.pos is position of epistatic peak.

LPD of pheno.normal for main, epistasis, sum

n.qtl pos m.pos e.pos main epistasis sum
cl 2.66 48.1 15.9 48.1 8.86 11.78 11.81
c2 1.93 15.0 15.0 15.0 7.14 3.15 9.27
c3 1.99 10.7 60.0 10.7 0.79 10.70 10.72

estimate of pheno.normal for main, epistasis

n.qtl pos m.pos e.pos main epistasis
cl 2.66 48.1 15.9 48.1 1.173 2.36
c2 1.93 15.0 15.0 15.0 -0.977 -1.04

c3 1.99 10.7 60.0 10.7 0.165 2.65
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LPD of epistasis/LPD of full

Chromosome

Chromosome

Fig. Il BIM two-dimensional summary. Lower triangle has LPD contribution of both
QTL plus epistasis; upper triangle has contribution of epistasis only. Crosses indicate
locations of true loci pairs; X at mistaken loci pair. Gray contours are |.5 LPD support
interval.

Table 7 BIM two-dimensional summaries. n.qtl is expected number of QTL on
chromosome; l.pos are positions of main peaks (lower triangle) in posterior;
u.pos are positions of epistatic peaks (upper triangle).

uupper: LPD of pheno.normal for epistasis

lower: LPD of pheno.normal for full

n.qtl Lpos| l.pos2 lower u.pos! u.pos2 upper
cl:cl 2.34 24.2 32.38 10.91 6.83 57.19 1.398
cl:c2 5.18 20.0 17.09 14.51 38.55 25.50 4.598
cl:c3 5.37 48.1 13.00 11.32 48.12 13.00 11.292
c2:c2 1.23 0.0 10.68 11.89 4.27 36.13 2.846
c2:c3 3.97 15.0 60.00 8.19 6.41 4.23 0.856
c3:c3 1.32 0.0 6.35 2.17 0.00 6.35 1.840
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Fig. 12 Further BIM one dimensional profiles. (a) Bayes factors as 2log(BF), with main
QTL (solid), epistatic effect (dashed) and combined effects (dotted, often hidden
behind main or epistatic). Contributions of epistatic pairs are shown at both loci,
although it is not possible with this representation to determine which loci are paired.
(b) Means by genotype (solid = AA genotype; dashed = AB genotype).

favored, but the simplest has two on chromosome 1, one on chromosome
2, and one on chromosome 3 (coded as 2¥1,2,3). Finally, the epistatic pairs
1.3 and 1.2 have the highest posteriors and the highest Bayes factors
relative to any other epistatic pairs. In short, these summaries support
the true model.

2.1.6 Covariates and Gene-Environment Interactions

Rarely is an experimental cross conducted in a single environment with
all individuals handled identically, leading to measurements of just one
phenotype. Complications arise, planting times vary, or there are broader
scientific questions about differences across environments. We often do
not have an ideal measurement of the characteristic we are most
interested in studying. Instead, we measure multiple traits that are
correlated, hoping that one of them will show strong heritability. It can
be useful to think of such multiple correlated traits as covariates,
measurements that covary with each other. Covariates are very
important in understanding the effect of genotype on phenotype. First,
including covariates can reduce residual variation and potentially
enhance the power to detect QTL. Second, there may be important
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Fig. 13 Bayes factors for (a-b) number of QTL, (c-d) chromosome pattern of QTL
and (e-f) epistatic pairs. Prior is rescaled and overlaid on posterior in left panels; vertical
arrows in right panels indicate 3/10/30-fold ratios for Bayes factor comparisons.

differences in genotypic effects that depend on covariates or the
environment. It is beyond the scope of this chapter to examine GxE
interactions and multiple trait analysis in detail. Instead, we highlight a
few important issues concerning adjustment for covariates and
genotype by environment (GxE) interaction, indicating how they may
be assessed with current software.

The most important covariates for plant breeding typically involve
aspects of the environment. That is, different genotypes might perform
best (in terms of the phenotype) in different environments. There are
basically two types of experiments with crosses over different
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environment (Paterson et al. 1991; Stuber et al. 1992). Design I has
individuals from one cross evaluated in two or more environments,
while Design II has different genetic material in each environment. Many
experiments have multiple traits measured on each individual. We might
view these multiple traits in some sense as evaluating the same genetic
material in different environments. That is, measurements of multiple
traits per individual and measurements of a single trait in multiple
environments for an individual (or clones or progeny) can be analyzed in
much the same way as a Design I experiment.

Design 1 experiments with measurements on two or more
environments, or correlated traits, for each individual in a cross can be
examined in a variety of ways. For instance, we can first scan each trait
on its own, noticing where peaks appear in common. However, we
should not be surprised to find the same genomic regions cropping up,
as we probably started with correlated traits. We can subsequently
consider one trait as a covariate for the other, particularly when traits are
over time or there is some other suggestion of causation. A dramatic
reduction of peaks after adjusting for a covariate provides evidence that
the QTL has an indirect effect through that covariate (although recall that
statistical evidence in itself does not imply causation!). Alternatively,
additional QTL can be detected after adjusting for covariates that reduce
residual variation (cf. Li et al. 2006; Stylianou et al. 2006;). The primary
advantage of joint analysis of multiple phenotypes is the ability to
distinguish between pleiotropy, where one gene affects many traits, and
close linkage of QTL that independently affects separate traits (Jiang and
Zeng 1995; Vieira et al. 2000; Li et al. 2006). Another approach is to
combine correlated traits using some multivariate approach such as
principal components (Liu et al. 1996).

Any category that divides a cross up into groups can lead to a Design
II situation. Sex in animals and dioecious plants can be viewed as an
example of Design II. Stratifying by age (young, old) or on experiments
done over time are other ways. The key for Design 1II is that different,
independent individuals are evaluated. While it is helpful to examine
each ‘environment’ separately, this leads to a reduction in power to
detect QTL: no evidence of QTL is inconclusive regarding GxE
interaction. We must conduct a combined analysis adjusting for
environment using all the data to properly assess GXE interaction. Be
sure to adjust for the interaction of genotype and environment (known
as GxE, or interacting covariates) rather than just for the main effect of
environment. An excellent example of this is found in the work of
Solberg et al. (2004, 2006).
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Thus, the effect of QTL may depend on the value of the covariate for
both Design I and Design II. The formal LOD (or LPD) score for a QTL
allowing for GxE assesses both the effect of QTL on phenotype and the
interaction of QTL with the covariate. Separately we can test if the GxE
effect adds anything to assess the influence of the covariate. The papers
cited below give examples using available software, primarily
Pseudomarker or R/qtl (Solberg et al. 2004, 2006; Li et al. 2006; Stylianou
et al. 2006), WinQTLCart (Jiang and Zeng 1995; Vieira et al. 2000) and R/
qtlbim (Yi et al. 2005). Many packages back to MapMaker/QTL (Lander
et al. 1987; Lander and Botstein 1989) have allowed some form of
adjustment for covariates. However, only a few packages appear to have
full interacting covariate GxE adjustments. Pseudomarker (Sen and
Churchill 2001), R/ qtl (intcov option to scans; Broman et al. 2003) and R/
gtlbim (intcov for MCMC sampling; Yandell et al. 2007) allow
adjustment for covariates to individual phenotypes. WinQTLCart (Basten
et al. 1999) and MultiQTL (Mester et al. 2004) conduct multiple trait
mapping of a modest number of correlated traits, providing joint LODs
that formally test a QTL for any considered trait.

Expression QTL (eQTL) studies are now appearing with thousands
of traits per individual in an experimental cross. WebQTL (Wang et al.
2003) is a handy, intuitive tool designed for expression traits, although it
is largely focused on HK regression and correlation among traits. See Lan
et al. (2006) for one way to extend this approach.

2.1.7 Ovwerview of Available Packages

A number of packages were created for QTL analysis of inbred lines in
the late 1980s and early 1990s. A handful of those survive today, some of
them static and some of them under continual development. We focus
attention here on the more current packages, with occasional reference to
historical packages. Terms used here to describe methods and properties
are explained in more detail above.

Marker regression can be used in any statistical package, and in the
QTL packages QTLCart (Basten et al. 1999) and R/qtl (Broman et al.
2003).

The package MapMaker/QTL (Lander et al. 1987; Lander and
Botstein 1989) greatly modified the conceptual framework for gene
mapping, and its ideas are central to all other packages found today.
MapMaker/QTL is still available as the original source (the Windows
exe file does not appear to work under Windows/XP). Most users
seeking to conduct simple interval mapping via the EM algorithm now
rely on currently maintained packages that have incorporated the
interval mapping algorithm, with slight variations, including
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WinQTLCart or QTL Cartographer (Basten et al. 1999), R/qtl (Broman et
al. 2003), MapQTL (van Ooijen and Maliepaard 1996) and MultiQTL
(Mester et al. 2004).

Haley-Knott regression is used in QTL Express (Seaton et al. 2002),
PLABQTL (Utz and Melchinger 1996), MapManager/QTX (Meer et al.
2004), and WebQTL (Wang et al. 2003). It is also available as an option in
R/qtl (Broman et al. 2003) and R/qtlbim (Yandell et al. 2007).

Table 8 shows a summary of key features in packages for inbred
lines. All except MultQTL and MapQTL are free. Most of the free
packages have an open source, which means you can examine and

Table 8 Comparison of packages for inbred lines. Platform: W=Windows,
L=Linux, M=MacOSX. Analysis method: B =Bayesian interval mapping, EM =
expectation-maximation of likelihood, HK = Haley-Knott regression (marker
regression only for R/bqtl). Platform is standalone (solo), R statistical system,
Matlab, the Web (Java), or another package on the list. Most packages have a
graphics user interface (GUI), typically coming from Windows, the Web (Java), or
a platform application (R or Matlab). Out indicates capability to handle some
outbred populations; * use blocking factors or a limited outbred option (e.g. 4-
way cross in R/qtl). Most software is Free; some providing source, others
providing applications only. GxE for interacting covariates or multiple trait
mapping. X for presence, O for absence, * for limited ability, ? for unknown.

Package WI|L|M| B |EM| HK| Platform GUI Out | Free | GxE
MapMaker/ X | X|X|O]| X | O] solo ©) ©) X | *
QTL

Pseudomarker | X | X | X | X | O | O | Matlab X * X | X
R/qtl X|X|X|O0O| X | X]|R J/qtl * X | X
R/qtlbim X | X|X|X]| O | X | Riqtl @) * X | X
R/bim X | X|X|X]| O] O] Riqtl @) * X | O
R/bqtl X | X|X|X]|] O] *|R @) @) X | O
QTLCart X |X|X|O]| X | O] solo WinQTL| O X | X
WinQTL X|O|O|X| X | O] QTLCart X @) X | X
Webqtl X | X|X|O]| O] X| Java X @) X | O
PLABQTL X|O|O|O| O] X | solo @) @) X | *
MapManager/ | X [O| O |O | O | X | solo X @) X | O
QTX

MultiQTL X|O| X |O0| X ? | solo X * o | X
MapQTL X|O0|O |0 | X ? | solo X X o | *
QTLExpress X | X[ X[O] O] X| Java X X X | O
QTLCafe X | X| X |O| O | X | QTLExpress X X X | O
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modify the code used for the QTL analysis. To our knowledge, only R/
qtl properly handles the X chromosome (Broman et al. 2006). Some
packages have extensive manuals, with screen shots available at their
web sites. See the references for current URLs to individual packages.

Some software only available in source form is not included in Table
8 Multimapper (Sillanpdd and Arjas 1998) conducts Bayesian interval
mapping and model selection, with summaries in terms of the posterior
intensity per locus. DIRECT (Ljungberg et al. 2004) is a very fast
algorithm for solving linear models, and it has been incorporated into R/
qtl and WebQTL. QTLNetwork (Yang et al. 2005) is a recent package
with appealing graphics, but it is poorly documented to date, and the
underlying methods of analysis are unclear.

Of the packages listed in Table 8 only QTLCart, MultiQTL, and R/
qtlbim fully consider model selection with an arbitrary number of QTLs
and epistasis. The former two use MIM while the latter uses Bayesian
model averaging over possible genetic architectures. The R/qtl and
Pseudomarker packages have some tools for arbitrarily large genetic
architectures, but primarily focuses on two QTL with epistasis. R/bim
allows for multiple QTL in a Bayesian model averaging framework, but
cannot handle epistasis. QTLExpress does a limited investigation of
epistasis for pairs of linked QTL. PLABQTL and MapQTL employ CIM
to adjust for other QTL when conducting a 1-QTL profile. MapManager/
QTX and WebQTL rely on user-supplied markers to manually adjust for
other QTL, somewhat analogous to CIM.

Several packages now employ Bayesian methods for interval
mapping, most built on the R system (R Core Development Team 2006).
R/qtl (Broman et al. 2003) includes multiple imputation, in addition to
classical methods mentioned above. R/bqtl (Borevitz et al. 2002) was an
early entrant, using marker regression in a Bayesian framework. The
packages R/bim (Satagopan et al. 1996; Satagopan and Yandell 1996;
Gaffney 2001) and R/qtlbim (Yi et al. 2005: Yandell et al. 2007) estimate
the full posterior for models involving an arbitrary number of loci that
may be in intervals between markers. R/qtlbim allows for epistasis and
gene by environment interaction (see section 1.4). Pseudomarker and R/
qtl both incorporate multiple imputation (Sen and Churchill 2001), with
graphics for two QTLs and some tools for examining more that two
QTLs.

The packages MultiQTL, R/qtl, Pseudomarker, and R/qtlbim all
handle gene by environment (GxE) interactions, also known as
interacting covariates. Other packages such as PLABQTL and
QTLExpress handle covariates in a limited way.
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Each package for QTL analysis of inbred lines has its own data input
format. Several packages allow multiple importing formats, or can export
data in a few different forms. This step is the biggest headache about
using packages —figuring how to get your data in. Fortunately, most
packages include well-documented examples. Further, most authors are
open to email questions about package use. The MapMaker/QTL format
is widely used, but it is not easy to set up the first time. The CSV format
used in R/qtl allows one to build data in a spreadsheet, in a format that
can be opened by Excel or by R. The R/qtl package has several other
input and output formats, and it is not that difficult (with the help of a
programmer) to customize output from R to most other packages.

Nothing has been said yet about non-normal phenotypes. There are
some papers in this area, but only modest availability in packages to
date. Nonparametric analysis (Kruglyak and Lander 1995) basically
involves replacing trait values by their ranks; it is available in several
packages. R/qtl includes binary traits, and R/qtlbim can handle ordinal
traits (qualitative rankings such as poor/fair/good/excellent). Semi-
parametric methods have been developed but are not broadly available
yet (see Jin et al. 2007). Other approaches, such as Poisson regression,
have been used in specialized software that, to our knowledge, has not
been released.

2.1.8 QTL Analysis with Outbred Lines

This section is quite brief. Some packages such as QTLExpress, MapQTL
and PLABQTL handle certain types of outbred crosses, including full
sibs, half sibs and other relatedness designs. Some of these can combine
different inbred crosses (cf. QTLExpress). SOLAR (Almasy and Blangero
1998) is a general purpose linkage and QTL mapping package using
identity by descent (IBD) that works well for modest sized pedigrees.
HAPPY (Mott et al. 2000) is specifically designed for heterogeneous
stocks created from known founders.

In a way, QTL mapping for inbred lines can be adapted to
experimental crosses (e.g. backcross or intercross) based on outbred
founders. The easiest way is to use markers that distinguish among the
founders. There is some loss of precision, as the QTL genotype can have
more than two alleles. If your experiment is an F1 resulting from crossing
two outbred founders, and the phases (haplotypes) of the founders are
known, one can use the “4way’ cross type in R/ qtl for analysis and follow
methods detailed above.

The QTL analysis methods with inbred lines detailed in this section
are in theory extendable to outbred population, taking care of IBD and
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multiple alleles. All the problems and subtleties encountered above carry
over and become harder. Further investigation of outbred crosses is
beyond the scope of this chapter.

3 ASSOCIATION ANALYSIS

While an in-depth description of association analysis is beyond the scope
of this chapter, several recent reviews describe association analysis in
some detail (Flint-Garcia et al. 2003; Gupta et al. 2005; Hirschhorn and
Daly 2005; Breseghello and Sorrells 2006; Yu and Buckler 2006). The
review by Gupta et al. also provides a list of software as supplemental
electronic material.

Association analysis is also called linkage disequilibrium (LD)
mapping because it uses the extent of LD between a trait and markers to
identify and find the location of QTLs. Such an association might imply
that either the marker or some polymorphism linked to it is the cause of
the observed phenotypic variation. However, two problems exist with
this reasoning. First, a linked marker might not be in LD with the trait.
Second, a marker that is in LD with a trait might not be linked to it. The
story of the development and refinement of association analysis, and of
the software for performing it, is largely a story of how these two
problems have been addressed.

In the first case, LD between a linked marker and a quantitative trait
locus (QTL) will be difficult to detect when the frequency of the marker
is very different from that of the QTL. Presumably, sequence
polymorphisms of some type underlie both markers and QTLs. A marker
is simply a polymorphism that can be detected by an assay. A QTL is a
polymorphism that causes a measurable change in phenotype. In the
ideal situation, the marker and QTL are the same polymorphism and
consequently have the same frequency. Otherwise, a closely linked
marker may have a very different frequency in a population and as a
result not be very useful for detecting a QTL.

This problem can be addressed by increasing marker density to make
it more likely that at least one linked marker will be in LD with the QTL
or be the QTL itself. For example, using the candidate gene approach to
association mapping, an entire gene may be resequenced and all the
sequence polymorphisms identified. For genome-wide scans, of course,
that approach is not feasible. Another approach has been to use
haplotypes instead of single markers to look for associations. Since the
number of haplotypes will generally be greater than the number of
individual markers, there may be more opportunities to match the
frequency of the QTL.
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The second problem with association analysis is that unlinked
markers may be in LD with a trait of interest. LD structure can be
affected by a number of factors including mutation, recombination,
selection, mating patterns, and population admixture. Strategies for
dealing with these problems include genomic control (GC), structured
association (SA), family-based studies, and the use of marker data to
correct for polygenic background effects.

In spite of these drawbacks, association analysis has been gaining
interest rapidly in the plant genetics community. The key advantages of
association analysis that are driving interest in this approach include the
ability to use existing germplasm without the need to develop special
populations, the ability to survey the diversity of alleles present in a
broad-based population instead of being restricted to those present in the
two parents of a mapping population, and the ability to map with high
resolution. Resolution is determined by how rapidly LD decays in the
population being sampled and can vary greatly depending on the species
being sampled. For example, LD has been found to span just 1 kb in a
diverse maize population, over 100 kb in a population of US elite maize
inbred lines, and about 10cM in sugarcane, a vegetatively propagated
species (Flint-Garcia et al. 2003).

As the use of association analysis, especially in plants, is a relatively
recent development, the methodology and software is still undergoing
development. No standard, accepted methodology exists and,
consequently, standard software does not exist either. Nonetheless,
software has been released that is useful for association analysis and
related tasks, though knowledge is required on the part of the user to be
sure that the analysis is appropriate. Related tasks include inference of
population structure, derivation of measures of relatedness between
individuals, haplotype inference, and analysis and visualization of LD
structure.

Most of the software developed to date for association analysis has
been developed for human genetics. Often that software is not directly
useful for plant genetics. First, two tools widely used by plant geneticists,
planned crosses and inbreeding, are not available in human genetics. As
a result, family structures in human studies tend to be quite different
from those in plant studies. The result is that the methods of analysis best
suited for human genetics studies are often not optimal for plant
genetics. Second, a lot of human genetics studies involve case-control
studies for diseases. Phenotype data from case control studies is binary,
affected versus unaffected. Relatively little plant phenotype data is
binary.
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While some very useful software has been developed for association
analysis of case-control studies, it has been left out of this review since it
is not likely to find much use by plant geneticists. On the other hand,
some of the family-based methods could be used for plant species that
are both naturally cross-pollinated and difficult to inbreed. As a result
some software that uses family-based methods has been included.

Association analysis without some form of correction for population
structure is straightforward and can be run using a variety of general
statistical software packages. For example, Czika and Yu (2004) describe
how to use SAS to perform marker-trait association tests for unrelated
individuals or for populations with known family structure. In addition,
freely available software has been written for association analysis that
uses various strategies to cope with population structure. This software
includes TASSEL, Powermarker, QTDT, MTDFREML, GC, BAMA, and
TreeLD.

TASSEL (Yu et al. 2006) is written using Java and, as a result, runs on
most computing platforms. It has an elaborate graphic user interface
with a large number of functions for data management, analysis, and
visualization. It accepts input either as text files or by way of the GDPC
(Genomic Diversity and Phenotype Connection) browser (Casstevens
and Buckler 2004), middleware providing a web connection to databases
that have been made available through a GDPC server. Data imported
independently from different sources can be combined for analysis. In
addition, TASSEL will extract SNPs and indels from aligned sequence
using flexible filtering criteria.

TASSEL has a number of analysis routines. Most notably, it
implements a mixed model approach to association analysis (Yu et al.
2006) that uses both large-scale population structure and pair-wise
kinship coefficients derived from marker data to correct for population
stratification. The mixed model function, called MLM, requires a matrix
of kinship coefficients to correct for population substructure and can
optionally incorporate a population structure matrix or Q-matrix.
TASSEL can calculate kinship coefficients for homozygous inbred lines.
For heterozygotes, the kinship matrix can be calculated from marker data
using the program SpaGeDi (Hardy and Vekemans 2002). The Q-matrix
can be calculated using the program STRUCTURE (Pritchard et al. 2000).
Structured association analysis, which uses the Q-matrix but not the
kinship matrix, can be carried out using a fixed-effect linear model using
the GLM function or logistic regression. In addition, TASSEL can be used
to calculate and display LD measures for pairs of markers, calculate an
evolutionary tree, or cladogram, and calculate population diversity
statistics.
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Powermarker (Liu and Muse 2005) is another example of multi-
function software with a well-designed graphic user interface. Written in
MS Visual C++ under the Microsoft .INET framework, Powermarker
requires the MS Windows operating system. Data can be input from
either text or Excel files. Powermarker provides data management
functions and a number of descriptive genetic statistics, including
measures of LD, population heterozygosity, inbreeding coefficients, tests
of Hardy-Weinberg equilibrium, and Wright's F-statistics. It calculates
genotype and allele frequencies and estimates haplotype frequencies. For
association analysis, Powermarker will calculate an F-test for association
between individual markers and traits and will perform Zaykin’s
haplotype trend regression (HTR) (Zaykin et al. 2002). Both of the
association analyses assume a homogenous population without
underlying structure or stratification.

QTDT (Abecasis et al. 2000) is software that implements the
quantitative transmission disequilibrium test, which uses family
structure to correct for population stratification. The analysis method
uses a maximum likelihood approach to partition the genetic effects into
within and between family components. The within family component
provides an estimate of the genetic effect of a marker that is free of any
population structure effect. As it makes use of family structure, QTDT, in
effect, combines association and linkage analysis. QTDT analyzes data
from nuclear families. At a minimum, it requires trios of parents plus one
offspring or full sib pairs. Larger sibships can be analyzed as well. Other
software, such as Merlin (Abecasis et al. 2002), must be used to calculate
the IBD matrix required by the analysis. It also requires map positions of
the genetic markers. QTDT has a command line interface, uses text files
for input and output and has been compiled for Windows, Linux, and
SunOS.

MTDFREML (Boldman et al. 1995) is software designed to set up and
solve mixed model equations with individuals treated as random effects
and an additive genetic relationship matrix used to define the covariance
between individuals, similar to the model used in TASSEL's MLM
function. The original program calculates the inverse of the additive
genetic relationship matrix directly from pedigrees. It was recently
modified (Zhang et al. 2006) to use a relationship matrix calculated
directly from markers. MTDFREML can be used to estimate variance
components, predict breeding values, and estimate associations between
markers and phenotypes. The software is quite flexible, can incorporate
covariates, and analyze multivariate models. Written in FORTRAN, it
must be compiled by the user. In addition, it requires either FSPAK or
SPARSPAK, which are sparse matrix libraries available from other
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sources. The interface is command-line. Text files are used for both input
and output. The paper by Zhang et al. (2006) gives an example using
data for canine hip dysplasia that uses MTDFREML to compute marker
effects and other genetic parameters.

Genomic control (Bacanu et al. 2002; Devlin and Roeder 1999) is a
method of correcting for unknown population structure by using bi-
allelic markers distributed across the genome, that are not expected to be
linked to QTLs. This method calculates a correction factor, A, based on
the values of a test statistic at the null loci. The test statistics for the loci
being tested for association with a trait are then divided by A. The
programs, GC and GCF, are implemented in the R statistical
programming language. Both programs estimate A, then use that to
construct a test of either a single locus or a pair of loci plus interaction.
Devlin et al. 2004 recommend using GCF when testing a large number of
candidate loci or when the required a-level is small.

BAMA provides a Bayesian solution which tests multiple loci
simultaneously (Kilpikari and Sillanpaa 2003). As such, it avoids
problems with multiple testing and over-estimation of the effect size
when using the same data for detection and estimation. It assumes that
the population being investigated has no substructure. The program is
distributed as C source code, which must be compiled by the user, is
designed for Linux or Unix operating systems, uses a command-line
interface and text files for input and output.

TreeLD (Zollner and Pritchard 2005) provides an approach to
association analysis that is different from the other programs mentioned.
First, the method uses marker data to model the ancestry as a set of
coalescent trees. Next, association between markers and phenotypes is
evaluated by looking at the distribution of phenotypes among the tips of
the trees. The authors demonstrate the effectiveness of the method using
both simulated and real datasets. The method should not be used when
population structure issues exist. The software requires phased
genotypes and marker positions as input, though PHASE, described
below, has been used to infer haplotypes from diplotype data with
unknown phase. TreeLD 1is very computationally intensive.
Documentation at the TreeLD website (Pritchard) notes that a thorough
analysis of a data set with 250 individuals and 130 markers required 48
hours on a 10 processor Linux cluster.

As suggested above, haplotypes may have advantages over
individual SNPs for conducting association analyses. In fact, haplotypes
could be regarded as multi-allelic markers. Consequently, they have
greater information content than individual SNPs. Buntjer et al. 2005
discuss the use of haplotypes in plant association analysis. For inbred
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lines, haplotypes can be identified directly. For homozygous individuals,
TASSEL has a function that derives haplotypes from SNPs using a
sliding window. Those haplotypes can then be used as markers in
association analysis. For heterzygotes, however, haplotypes must be
inferred. Separate software can be used to infer haplotypes, and the
resulting haplotypes can be used as input for another analysis platform.
Powermarker, mentioned earlier, uses an EM algorithm for inferring
haplotypes. PHASE and Haplotyper use two different Bayesian methods
to identify haplotypes.

The LD viewers, a related category of software, can be helpful for
visualizing haplotypes or for interpreting the results of association
analysis. Examples of LD viewers include Haploview (Barrett et al.
2005;Wu et al. 2006), MIDAS (Gaunt et al. 2006), JLIN (Carter et al. 2006),
LDA (Ding et al. 2003), and GOLD (Abecasis and Cookson 2000; Ding et
al. 2003). Haploview is easily the most versatile of these programs. It
accepts phased chromosomes or unphased diplotypes as input. Family
structure information can be incorporated but is optional. It will calculate
and graph several pairwise LD measures, including D’ and r”. The user
can select groups of markers for haplotype analysis or have Haploview
automatically generate haplotypes. Haplotypes and haplotype
frequencies can be output, but the user will have to recode genotypes
using that information for further analysis. As Haploview’s association
testing is restricted to case-control and TDT trios, it will be of limited
value for analyzing plant genetics data. GOLD provides nice graphics
but is designed for use with human genetics data and may be
challenging to adapt to other types of data. Both LDA and JLIN take SNP
data with unknown phase as input and calculate and graph pairwise LD
measures but provide no other functionality. MIDAS (Multiallelic
Interallelic Disequilibrium Analysis Software) is unique in a couple of
respects. First, it is designed to evaluate multiallelic markers rather than
SNPS only. Second, it is a Python program and uses Tkinter for its
graphic user interface. Haploview, JLIN, and LDA are all java
applications. As mentioned earlier, both TASSEL and Powermarker
calculate pairwise LD statistics and display the results graphically.

A final category of software which is required for SA assigns
members of a population to subpopulations or mixtures of them. By far
the most widely used of these is STRUCTURE (Pritchard et al. 2000). It
uses a Bayesian model to construct subpopulations that minimize LD
within a set of unlinked markers. While it requires the user to choose the
number of subpopulations, the software can be used to estimate the
number of subpopulations by running the analysis multiple times with
different numbers of subpopulations then choosing the number that
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produces the best fit. PSMIX (Wu et al. 2006) is an R package that uses a
maximum likelihood approach that is solved using an EM algorithm. It is
computationally less intensive than STRUCTURE and, the authors find
that it gives comparable results. The PSMIX article provides a good
review of some additional programs for finding population substructure.

3.1 Association Analysis Examples

We illustrate the use of some of the association analysis software and
highlight some of the issues that arise when doing this type of analysis
with examples taken from studies of maize. In the following examples,
the trait being analyzed is days to silk for maize inbred lines. The lines
used were chosen to represent as much of the diversity present in the
species as possible while restricting them to a manageable range of
flowering dates. The trait “days to silk” was chosen because flowering
time often associates strongly with population structure. As plants must
flower at roughly the same time in order to be cross-pollinated,
populations tend to become stratified into flowering time or maturity
groups.

Measurements were taken in 1999, 2000, and 2001 in Clayton, NC.
The days to silk data and sequence for the dwarf8 gene was downloaded
from the Panzea database (www.panzea.org) using the middleware
application GDPC (Casstevens and Buckler 2004). The matrix of kinship
coefficients and the population parameters used are part of the TASSEL
tutorial. The population parameters were derived from SSR data using
the program STRUCTURE (Pritchard et al. 2000). The kinship coefficient
matrix was calculated using the program SPAGeDi (Hardy and
Vekemans 2002) using data for 553 random SNPs. The random SNP data
is also available as part of the TASSEL tutorial. Statistical analyses were
run using TASSEL.

Using good quality phenotypic data with reasonably high heritability
is critical to association analysis. While beyond the scope of this chapter,
using principles of experiment design, checking for outliers and
unreliable data, making certain that important assumptions are not
violated, and following accepted statistical procedures are important
steps in producing good phenotype data. For example, in each year that
the days to silk data were taken, two or three replicates of data were
taken but in some cases much data were missing from some of the
replicates. Consequently, using least square means as estimates of days
to silk within each year or across years was better than using simple
averages.
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The effectiveness of the analysis depends in part on how the kinship
coefficients are derived. For this data, using SPAGeDi to calculate
kinship coefficients is relatively straightforward. Information describing
the data must be included in the input dataset. The data file specified
that there were zero categories, zero spatial coordinates, and that the
ploidy level was 1 since the data was for inbreds. Ritland’s method was
used to create a matrix of kinship coefficients. Negative values in the
output matrix obtained from SPAGeDi were set to zero before running
the subsequent association analysis.

As the results described below show, this method of calculating a
kinship (K) matrix works well for this data. In part, this may be a result
of the fact that maize is a natural outcrosser and lacks strongly
differentiated subpopulations. Applying the K matrix method to self-
pollinated species with major population substructure, such as rice, may
require a modified approach.

The first set of examples uses the candidate gene approach to
association analysis. This method entails using different lines of evidence
to develop a list of genes which could be important in controlling the
expression of a trait of interest. The genes identified are then
resequenced for each of the individual taxa in the study. The resulting
sequences are aligned, and sequence polymorphisms identified. The
results below use data previously analyzed and reported by Thornsberry
et al. (2001). In this study, the dwarf8 gene was chosen because QTL
studies and mutagenesis had suggested that it affects maize flowering
time and plant height. For simplicity, the results below only look at
SNPs. As the published analysis shows, including indels is critical for
proper interpretation.

The software TASSEL was used to extract SNPs from the aligned
sequence and to perform the analyses. Three related analytical methods
were examined. In each case, each SNP was analyzed individually. First,
a fixed effect linear model (GLM) was solved using the SNP as a
classification variable. Second, the population parameters (Q-matrix)
derived from STRUCTURE were added to the model as covariates (GLM
+ Q). As STRUCTURE was used to assign each line to three populations,
each line had three parameters which added to 1. As a result, the three
sets of parameters were linearly dependent and only two of the three
needed to be included in the model as covariates. The F-test of SNP is the
same regardless of which two are actually used. Third, a mixed linear
model (MLM) solution (Yu et al. 2006) was used which treated the SNP
and the population parameters as fixed effects and taxa as a random
effect with the kinship matrix (K-matrix) defining the additive genetic
covariance structure.
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An important difference between the models is the way in which
taxa (the inbred lines) are treated. In the case of the two GLM analyses,
taxa do not enter the model explicitly. Each line can be thought of as a
random sample from two underlying populations, that differ only by the
value of the SNP. When the model contains only the SNP main effect, it is
equivalent to a t-test of the difference between the means of the two
populations. If additional terms are added to the model, such as
replications or environments, the SNP effect must be tested using the
taxa nested within SNP mean square, not the model residual. In the case
of MLM, taxa enter the model as random effects with a known
covariance structure. This structure is specified by the K-matrix. The K-
matrix supplies more information about relationships between lines than
the Q-matrix and does a better job of removing spurious effects due to
population substructure (Yu et al. 2006).

The probability values derived from the F-tests of selected SNPs for
association with the days to silk data for each of the analysis methods is
shown in Table 9. As expected, the different analysis methods give
similar results. The p-values are generally lowest for GLM, especially in
the case of site 2625. As several hypotheses are being tested, some form
of multiple test correction should be used to evaluate the results. While

Table 9 Probability values for F-tests of selected SNP sites in the dwarf8 gene
using different analysis methods.

Site GIM GIM +Q MM
184 0.3921 0.5684 0.4528
677 0.0012 0.0019 0.0007
680 0.0157 0.057 0.0298
695 0.8967 0.3757 0.5568
699 0.0006 0.0013 0.0004
713 0.7852 0.3555 0.4713
736 0.8501 0.4321 0.5638
741 0.0031 0.0422 0.0185
756 0.0101 0.0841 0.0746
1663 0.0000 0.0004 0.0003
2511 0.6236 0.5742 0.5632
2625 0.0007 0.0515 0.051
2880 0.5412 0.4678 0511
3000 0.6979 0.254 0.213
3459 0.0014 0.0017 0.007
3490 0.0001 0.0003 0.0002
3570 0.0001 0.0003 0.0002
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conservative, a Bonferroni correction is easy to use. If an a-level of 0.01 is
desired for rejection of the null hypothesis of no association, the
Bonferroni corrected a-level is 0.01/17 = .0006. Using that cut-off would
lead us to reject the null hypothesis for sites 1663, 3490, and 3570 for all
three methods and 699 for GLM and MLM. However, the choice of a-
level is clearly arbitrary and should only serve as a guide to our
interpretation of the results. Sites 677 in the MLM results and 2625 in the
GLM results are close to the cutoff and could be considered as well. Even
in this small example, the results of the three analyses vary, but without
additional information, there is no way to decide which is best.

The same days to silk data used to generate the results in Table 9
were also tested for association with 553 random unlinked SNPs from
maize genes. As linkage disequilibrium in maize decays very rapidly
with distance, randomly chosen SNPs are not expected to be linked to
any individual trait and should not be associated with it. The SNPs with
the lowest p-values from the GLM analysis are shown in Table 10. For

Table 10 Probability values for F-tests of a subset of 553 random SNPs from
maize genes. All 553 SNPs were tested. Those with the smallest p-values for the
GLM method are shown here.

SNP GIM GIM+Q MIM
514 0.00000 0.0212 0.0025
10 0.00000 0.0447 0.2464
429 0.00000 0.0031 0.0148
469 0.00000 0.0111 0.0103

319 0.00002 0.0308 0.076
318 0.00002 0.0000 0.0004
368 0.00003 0.0502 0.0954
45 0.00003 0.2761 0.6529
203 0.00003 0.0498 0.0909
46 0.00004 0.0431 0.1814
464 0.00005 0.3304 03111

478 0.00005 0.1382 0.175
388 0.00007 0.0527 0.2574
398 0.00014 0.6201 0.2859
307 0.00018 0.1304 0.2586
157 0.00020 0.0324 0.0827
526 0.00022 0.0001 0.0008
173 0.00022 0.2148 0.0969
| 0.00027 0.0061 0.0072
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Fig. 14 Cumulative probability curve from F-tests of the association of 553 random
SNPs with days to silk for three analysis methods. A straight line with a slope of | is
expected under the null hypothesis of no association. Solid = MLM, dashed = GLM +
covariate, dotted = GLM.

this set the Bonferroni corrected a-level corresponding to an overall
desired a-level of 0.01 is 0.01/553 = 2E-5. At that level, using GLM
several SNPs appear to be associated with flowering date. Only two of
those associations remain using GLM+Q. None of them are close to our
chosen significance level using MLM.

A more effective way to summarize the data from this example is
shown in Figure 14, a graph of the cumulative distribution functions. To
generate the graph, the p-values from the F-tests for SNP were sorted in
ascending order individually for each method. An order statistic was
assigned to each value with 1 for the lowest p-value and 553 for the
highest. The order statistic divided by 553 is plotted on the y-axis and the
actual p-value on the x-axis. Under the null hypothesis of no association,
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the points are expected to lie on a straight line with a slope of 1. A
deviation from that line is an indication of false positives probably
resulting from underlying population substructure. As was obvious from
Table 10, the GLM method has a number of false positives. Adding
population covariates to the model helps, but the cumulative probability
curve still deviates from a straight line. The MLM results lie almost
exactly on the line expected under the null hypothesis, indicating that in
this example the MLM method effectively eliminated association due to
population substructure alone. Other traits show the same trend, though
the strength of that trend varies depending on how strongly a trait is
associated with population structure (Yu et al. 2006).

Graphs showing the extent of LD between markers can help to
interpret the output from an association analysis. As described earlier, a
number of software packages can be used to visualize the pattern of
linkage disequilibrium between markers. The LD graph shown in
Figure 15 was generated by Haploview. This figure graphs the
relationships between SNPs and indels from the dwarf8 sequence
alignment used in the first example. It reveals two haplotype blocks
defined by high internal levels of LD. In addition, those two blocks are
seen to be in LD with each other. The graph shows why, using this
dataset, several polymorphisms are almost equally likely to be the cause
of phenotypic variation. Relative positions of the polymorphisms are
shown in the bar above the graph. Gray lines indicate SNPs and green
lines indicate indels because the indels were identified in the input file of
marker names. The color coding is based on values of D’ and its
associated LOD scores or tests of significance. Values of D" are displayed
in the sqaures. In addition, Haploview provides other color schemes, can
display r* values as well, has a display which shows haplotype values,
but only analyzes data for bi-allelic markers.
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