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ABSTRACT

Most quantitative trait loci (QTL) mapping experiments typically collect phenotypic data on multiple
correlated complex traits. However, there is a lack of a comprehensive genomewide mapping strategy for
correlated traits in the literature. We develop Bayesian multiple-QTL mapping methods for correlated
continuous traits using two multivariate models: one that assumes the same genetic model for all traits, the
traditional multivariate model, and the other known as the seemingly unrelated regression (SUR) model
that allows different genetic models for different traits. We develop computationally efficient Markov chain
Monte Carlo (MCMC) algorithms for performing joint analysis. We conduct extensive simulation studies to
assess the performance of the proposed methods and to compare with the conventional single-trait model.
Our methods have been implemented in the freely available package R/qtlbim (http://www.qtlbim.org),
which greatly facilitates the general usage of the Bayesian methodology for unraveling the genetic
architecture of complex traits.

COMPLEX traits involve effects of a multitude of
genes in an interacting network. Mapping quan-

titative trait loci (QTL) means inferring the genetic
architecture (number of genes, their positions, and
their effects) underlying these complex traits. The QTL
mapping problem has several salient features: first, the
predictor variables in the regression (the genotypes of
QTL) are not observed; second, it is really a model se-
lection problem as there are typically thousands of loci
to choose from; and third, the genomic loci on the same
chromosome are correlated. Much has been done in this
regard, especially in the univariate case (e.g., Lander

and Botstein 1989; Jiang and Zeng 1997; Broman and
Speed 2002). Bayesian methods have been very success-
ful in the QTL mapping framework (Satagopan and
Yandell 1996; Yi and Xu 2002; Yi et al. 2003, 2005,
2007; Yi 2004); see a recent review by Yi and Shriner

(2008).
Most of these methods are applicable to mapping

QTL for a single trait. However, in QTL experiments
typically data on more than one trait are collected and,
more often than not, they are correlated. It seems nat-
ural to jointly analyze these correlated traits. There are
two distinct advantages for jointly analyzing correlated
traits: including information from all traits can increase
the power to detect QTL and the precision of the
estimated QTL effects. Biologically, it is imperative to
jointly analyze correlated traits to answer questions like
pleiotropy (one gene influencing more than one trait)

and/or close linkage (different QTL physically close to
each other influencing the traits). Testing these hypoth-
eses is key to understanding the underlying biochemical
pathways causing complex traits, which is the ultimate
goal of QTL mapping.

Several methods have been developed to jointly
analyze multiple correlated traits. Some of them use a
maximum-likelihood-based approach ( Jiang and Zeng

1995; Jackson et al. 1999; Williams et al. 1999a,b;
Vieira et al. 2000; Huang and Jiang 2003; Lund et al.
2003; Xu et al. 2005) or a least-squares approach (Knott

and Haley 2000; Hackett et al. 2001). Most of these
methods involve a single-QTL model or at most very few
QTL. A problem with the likelihood-based approach is
that with increasing complexity, due to the increase in
the number of parameters to be estimated, the increase
in degrees of freedom of the test statistic can restrain its
practical use when the number of traits is large (Mangin

et al. 1998). As a result, the advantage of joint analysis is
lost over single-trait analysis. Another approach for joint
analysis is to use a dimension reduction technique,
namely, principal component analysis (PCA) or discrim-
inant analysis (DA) or using canonical variables associ-
ated with the traits (Mangin et al. 1998; Mähler et al.
2002; Gilbert and Le Roy 2003, 2004), and then use
the linear combination of traits to map QTL. The
problem with this approach is that linear combinations
of traits are not biologically interpretable and can cause
spurious linkages (Mähler et al. 2002; Gilbert and Le

Roy 2003). Gilbert and Le Roy (2003) compared the
performance of PCA, DA, and the multivariate model
in a full-sib family and half-sib families under differ-
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ent scenarios. Lange and Whittaker (2001) use a
nonparametric generalized estimating equations ap-
proach to multivariate QTL mapping.

Meuwissen and Goddard (2004) used a Markov
chain Monte Carlo (MCMC) algorithm to map QTL,
using linkage disequilibrium and linkage information
for multiple-traits data. Recently, Liu et al. (2007) de-
veloped a Bayesian approach to map QTL for a com-
bination of normal and ordinal traits in a full-sib design
based on the variance components approach. They used
a reversible-jump (RJ) MCMC to estimate the unknown
number of QTL. The problem with RJ-MCMC is that
increased complexity drastically increases the computa-
tional burden, rendering it unsuitable for genomewide
scans where typically thousands of positions are scanned
for a putative QTL. Another major challenge is to
ascertain convergence of the RJ sampler and obtain a
rapidly converging sampler (Yi 2004). Yang and Xu

(2007) extended the Bayesian shrinkage analysis with a
fixed-interval approach (Wang et al. 2005), where a
QTL is placed in each marker interval, to a moving-
interval approach, where the position of a QTL can be
searched in a range that covers many marker intervals
for dynamic/longitudinal traits using a Legendre poly-
nomial. Their method, however, focuses on the study of
the growth trajectory of time-dependent or repeated-
measures types of outcomes (called dynamic traits) and
is very different from our approach.

All the multivariate methods mentioned here use the
traditional multivariate regression model, which as-
sumes the same genetic model for all traits. However,
almost all correlated traits are actually affected to some
extent by a different multilocus network. To capture this
facet of multiple traits we use the so-called ‘‘seemingly
unrelated regression’’ (SUR) model (Zellner 1962),
which allows each trait to have a different set of QTL.
Verzilli et al. (2005) implemented a Bayesian version of
SUR using RJ-MCMC to jointly analyze multiple corre-
lated traits with SNP data in a human population. They
found it difficult ‘‘to deal with very many loci’’ and
restricted attention to only 12 SNPs. Their method
appears unsuitable to genomewide scans.

In the literature of joint analysis for QTL mapping,
there is a lack of comprehensive genomewide strategies
to map multiple pleiotropic and nonpleiotropic QTL.
In this article, we extend the composite model space
approach of Yi (2004) to jointly analyze multiple cor-
related continuous traits. Multiple traits are modeled
using novel QTL SUR models that enable us to detect
either the same or different QTL for different traits,
facilitating the separation of pleiotropy and close link-
age. The QTL SUR models include the traditional multi-
variate model and the single trait-by-trait model as
special cases. We develop computationally efficient
MCMC algorithms for performing joint analysis. Fi-
nally, we conduct extensive simulation studies to assess
the performance of the proposed methods.

BAYESIAN MODELING OF MULTIPLE QTL FOR
MULTIPLE TRAITS

QTL SUR models: We focus our attention on
experimental crosses derived from two inbred lines.
Observed data in QTL mapping consist of phenotypic
values of complex traits and molecular marker data.
We extend the composite model space approach of Yi

(2004) to jointly analyze multiple correlated continuous
traits. We assume that the marker data include not only
the marker genotypes but also the genomic positions of
the markers. We approximate positions for all possible
QTL using a partition of the entire genome into evenly
spaced loci, including all observed markers and addi-
tional loci (called pseudomarkers) between flanking
markers (Sen and Churchill 2001; Yi et al. 2005).
Inserting pseudomarkers enables us to detect potential
QTL within the marker intervals, but introduces a
special statistical problem; i.e., QTL genotypes are
unobserved. Before mapping QTL, we calculate the
probabilities of genotypes at these preset loci given the
observed marker data as priors of QTL genotypes in our
Bayesian framework.

The actual number of detectable QTL for each trait in
a particular experiment is unknown, but usually not too
large. We employ a composite model space approach (Yi

2004; Yi et al. 2005) and consider at most L possible loci.
The upper bound L is larger than the number of
detectable QTL with high probability for a given data
set and can be set on the basis of the initial analyses using
conventional mapping methods on each trait (Yi 2004; Yi

et al. 2005). Conditioning on the genotypes at these L loci
for all individuals, the phenotypic values yti for individual
i on trait t can be expressed as a linear regression,

yti ¼ mt 1 Xtibt 1 eti ; t ¼ 1; 2; � � � ;T ; i ¼ 1; 2; � � � ;n;
ð1Þ

where T and n represent the numbers of traits and
individuals, respectively, the subscripts t and i represent
the tth trait and the ith individual, respectively, mt is the
overall mean for trait t, X ti is the row vector of the main-
effect predictors of L loci, determined from the geno-
types by using a particular genetic model [we use the
Cockerham genetic model, although other genetic
models are possible (Kao and Zeng 2002; Zeng et al.
2005)], bt is the vector of all main effects for L loci of
trait t, and the vector of residual errors across traits, ei, is
independent and normal with mean 0 and covariance
matrix S; i.e., ei �NT ð0;SÞ. Thus, the residual errors
are independent among individuals, but are correlated
among traits within individuals. The above equations
can be rewritten as

yi �NT ðm 1 Xib;SÞ; i ¼ 1; 2; � � � ;n; ð2Þ

where yi ¼ ðy1i ; � � � ; yTiÞ9, m ¼ ðm1; � � � ;mT Þ9, Xi ¼
diagðX1i ; � � � ;XTiÞ, and b ¼ ðb91; � � � ;b9T Þ9. This model
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can include a large number of effects, many of which
are irrelevant to modeling the phenotype and should
be excluded from the model. We use an unobserved
vector of indictor variables gt ¼ ðgt1; gt2; � � � ; gtj ; � � �Þ
to indicate which effects bt ¼ ðbt1;bt2; � � � ;btj ; � � �Þ9
are included in (gtj ¼ 1) or excluded from (gtj ¼ 0)
the model for the tth trait. We denote the genomic
positions of L loci for trait t by the vector lt ¼
ðlt1; � � � ; ltLÞ. The vector ðlt ;gtÞ thus determines the
genetic architecture of the tth trait, i.e., the actual
number of QTL, their positions, and the activity of the
associated genetic effects. Our goal is to infer the pos-
terior distribution of ðlt ;gtÞ and estimate the associated
genetic effects.

Model (1) or (2) uses trait-specific effect predictors
ðXtiÞ, positions ðltÞ, and indicator variables ðgtÞ, allow-
ing each trait to have a different set of QTL or a different
genetic model. Therefore, models for different traits
seem unrelated, but actually are related through corre-
lated residual errors (or observed phenotypes) or the
genotypes of linked QTL. Hereafter, we refer the above
model as the QTL SUR model. We consider two
different SUR models. In the first model as described
above, different traits can have different sets of L loci
ðltÞ and thus different indicator variables ðgtÞ and
predictors ðXtiÞ. The second SUR model uses the same
set of L loci, i.e., l1 ¼ � � � ¼ lT b l and thus
X1i ¼ � � � ¼ XTi , but different indicator variables for
different traits. We denote these two SUR models by
SUR modeling with different loci used for all traits
(SURd) and SUR modeling with the same loci used for
all traits (SURs). Note that both QTL SUR models
include two existing models as special cases, the
univariate single-trait approach (STA) where the re-
sidual errors are unrelated, i.e., S ¼ I, and the tradi-
tional multivariate (TMV) model where all traits have
the same set of loci and the same indicator variables, i.e.,
l1 ¼ � � � ¼ lT , X1i ¼ � � � ¼ XTi , and g1 ¼ � � � ¼ gT .

Prior distributions: To complete Bayesian modeling
of QTL SUR, we need to specify prior distributions for
all unknowns. We describe the prior distributions for
the model SURd in detail (appendix a), which can be
easily adapted to the models SURs and TMV. For SURd,
unknowns include the positions l ¼ ðl1; � � � ;lT Þ, in-
dicator variables g ¼ ðg1; � � � ;gT Þ, main effects b, over-
all mean m, residual covariance matrix S, and genotypes
g ¼ ðgtiq ; t ¼ 1; � � � ;T ; i ¼ 1; � � � ;n; q ¼ 1; � � � ;LÞ, where
gtiq is the genotype of individual i for trait t at locus q.

As described in the previous section, the prior on gtiq

is the probability of the genotype given the observed
marker data. For computational reasons, we directly
work on the inverse matrix S�1 instead of S (see the
next section and appendix b). The prior for S�1 can be
taken to be the commonly used noninformative prior;
i.e., pðS�1Þ� jS�1j�ð11T Þ=2 (see Gelman et al. 2004). We
assume that the unknowns ðlt ;gt ;mt ;btÞ are indepen-
dent among the traits. For each trait, the priors on

ðlt ;gt ;mt ;btÞ can be specified as in Yiet al. (2005, 2007),
which we describe in appendix a.

MARKOV CHAIN MONTE CARLO ALGORITHM

We fit the models using the MCMC algorithm,
applied to the joint posterior density of all the un-
knowns ðm;b;s;S�1; g;l;gÞ. The joint posterior distri-
bution can be expressed as

pðm;b;s;S�1; g;l;g j yÞ

}
Yn
i¼1

pðyi jm;b;S�1; Xi ;gÞ � pðg;m;b;s;S�1;l;gÞ;

ð3Þ

where the likelihood pðyi jm;b;S
�1; Xi ;gÞ is defined by

model (2), and the prior pðg;m;b;s;S�1;l;gÞ is de-
scribed in the last section and appendix a, and the
augmentation with hyperparameters s presents the
prior variances for the effects b (Yi et al. 2007; see
appendix a). For notational convenience, we suppress
the dependence on the observed marker data here and
afterward.

The joint posterior distribution can be simulated using
the Gibbs sampler and Metropolis algorithm, alternately
updating each unknown conditional on all other param-
eters and the observed data. We show all the conditional
distributions in appendix b. Conditional updates of m, b,
s, and S�1 are the same for the models SURd, SURs, and
TMV. However, conditional updates of g, l, and g are
illustrated only for the SURd model, which can be easily
adapted to the SURs and TMV models (see appendix b).
Below, we describe our algorithm, with more details on
steps for unknowns where the method involves explicit
extension for multiple correlated traits.

A commonly used updating scheme for the overall
means and the coefficients is performed by updating
jointly m and b for all traits (see Smith and Kohn 2000;
Griffiths 2001; Verzilli et al. 2005). This scheme
requires large matrix operations at each simulation
iteration, resulting in prohibitive computational burden
for genomewide multiple-QTL analysis. We have de-
veloped a pure Gibbs sampler to update one parameter
at a time: for each t and j, we sample mt and btj from their
conditional posterior distributions, respectively, which
are normal distributions (see Equations B1 and B2 in
appendix b). This one-at-a-time algorithm never requires
matrix operations and is computationally very efficient.
Note that if gtj ¼ 0, we do not need to sample btj .

The variance parameters s2
tk are updated one at a

time: for each t and k, the conditional posterior
distribution of s2

tk is a scaled inverse x2-distribution
and can be directly sampled (see Equation B3 in
appendix b). For computational convenience, we work
on the inverse matrix S�1 instead of S (see appendix b).
The conditional posterior distribution of S�1 is a stan-
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dard Wishart distribution, and thus both the Gibbs
sampler and the Metropolis algorithm can be applied
to update S�1 (see Equations B4 and B5).

The genotypes are usually updated one at a time from
the conditional posterior distributions. If locus q is
included in the model and the genotype gtiq is not
observed, the conditional posterior distribution of gtiq

is a simple multinomial (or binomial) distribution and
thus can be sampled directly (see Equation B6); other-
wise, we do not need to sample gtiq . The positions l are
also updated one at a time. As above, we need to update
only those loci that are included in the current model.
The conditional posterior distribution of (ltq , gtq) is not
a standard distribution, and thus a Metropolis algorithm
is needed to update (ltq , gtq) (see Equations B7 and B8
in appendix b).

The indicator variables g are also updated one at a
time. The binary indicator variables gtj for the SUR
models have independently binomial conditional pos-
terior distributions (see Equations B9 and B12 in
appendix b). At each iteration, therefore, the Gibbs
sampler can be used to generate each indicator from
its conditional posterior. However, for the QTL SUR
models, using the Gibbs samplers is computationally
demanding because the SUR models contain T times
the number of indicators as a single-trait model and
most of the indicators are zero. To speed up the algo-

rithm we extend the Metropolis–Hastings (MH) algo-
rithm proposed by Yi et al. (2007) to the QTL SUR
models in a natural way (see Equation B11). This MH
algorithm can be easily adapted to the TMV model.

SUMMARIZING AND INTERPRETING THE
POSTERIOR SAMPLES

Assessing the convergence and mixing behavior of
any MCMC algorithm is somewhat difficult to ascertain
and it is intensified for a high-dimensional problem.
Several methods have been developed so far; many are
implemented in R/coda (Plummer et al. 2004), an R
package providing an object-based infrastructure for
analyzing output of MCMC simulations and performing
convergence diagnostics.

The posterior samples generated by the above MCMC
algorithm contain all available information about the
unknowns in the QTL SUR and thus the genetic archi-
tecture of the multiple traits. The vector (lt ; gt) deter-
mines the number of QTL, their positions, and the main
effects of QTL, for the tth trait and hence identifies
its genetic architecture. The posterior inclusion proba-
bility for each locus is estimated as its frequency in the
posterior samples. The larger the effect size is for a locus,
the more frequently the locus is sampled. Taking the
prior probability into consideration, we use Bayes factors
(BF) to show evidence for inclusion against exclusion of
a locus. Bayes factors are calculated on the basis of the
idea of model averaging. The Bayes factor of the jth locus
for the tth trait can be represented as the ratio of the
posterior to prior odds of selecting that particular locus.
Model averaging accounts for model uncertainty and
hence provides more robust inference compared to a
single ‘‘best’’ model approach (Raftery et al. 1997; Ball

2001; Sillanpää and Corander 2002).
Since the information about correlation between

multiple traits is taken into account, the proposed
QTL SUR model is expected to increase the probability

TABLE 1

True positions of six QTL, their effects, and heritabilities

Q1 Q2 Q3 Q4 Q5 Q6

Chromosome 1 1 2 2 3 4
Position (cM) 22 55 22 65 65 45
y1 0.8 0.6 0 0 0.8 0.6
y2 0 0 �0.8 �0.6 0.8 0.6
y1 (%) 8.8 4.9 0 0 8.8 4.9
y2 (%) 0 0 9.3 5.2 9.3 5.2

TABLE 2

Average correct and incorrect QTL detected for traits y1 (first row) and y2 (second row)

Correct Extraneous

ðn; ry1y2
Þ STA TMV SURs SURd STA TMV SURs SURd

(100, 0.5) 0.65 0.8 0.67 0.64 0.7 1.34 0.45 0.65
0.74 0.78 0.64 0.81 0.39 1.36 0.26 0.59

(100, 0.8) 0.34 1.01 1.02 0.97 0.24 1.85 0.75 0.54
0.78 1.07 1.3 1.21 0.71 1.72 0.84 0.78

(200, 0.5) 1.69 2.13 2.12 1.78 1.06 2.53 0.78 1.02
1.76 2.2 2.16 1.67 0.63 2.55 0.78 0.69

(200, 0.8) 1.51 2.6 2.56 2.24 0.63 2.92 0.73 0.72
1.75 2.61 2.66 2.4 0.96 2.96 0.84 0.8

(500, 0.5) 3.54 3.72 3.76 3.66 1.01 3.1 0.83 1.22
3.59 3.79 3.75 3.56 0.76 3.07 0.67 0.88

(500, 0.8) 3.55 3.81 3.78 3.67 1.1 3.14 1.03 1.01
3.64 3.8 3.75 3.62 1.18 3.11 0.6 0.84
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of detecting QTL, especially weak-effect QTL. More
importantly, the QTL SUR model allows for a statistically
rigorous procedure to test a number of biologically
important questions involving multiple traits, such as
pleiotropy and pleiotropy vs. close linkage. To test if the
jth locus is a pleiotropic QTL we considered all models
that include the jth locus for all traits (i.e., all models
with gtj ¼ 1 for all t) and compute the joint posterior
inclusion probabilities. By jointly considering the posi-
tions l and the indicators g, one can distinguish
pleiotropy and close linkage.

IMPLEMENTATION IN R/QTLBIM

The proposed methods have been implemented in
R/qtlbim (Yandell et al. 2007), which is a freely avail-
able R library. The previous version of R/qtlbim per-
forms only single-trait analysis. R/qtlbim is built on top
of the widely used R/qtl (Broman et al. 2003) and pro-
vides an extensible, interactive environment for Bayes-
ian analysis of multiple interacting QTL in experimental
crosses. The MCMC algorithm is written in C and the
graphics and data manipulation are performed in R.

Figure 1.—(A) 2 logBF profile for n¼ 100 and
ry1y2
¼ 0:5 for all four methods. Shaded curves

represent 2 logBF profile for y1 and solid curves
that for y2; the shaded dotted lines denotes the
95% threshold for y1 for the null model and
the solid dotted lines denote the same for y2.
On the x-axis, large tick marks represent chromo-
somes and small tick marks represent markers.
(B) 2 logBF profile for n ¼ 100 and ry1y2

¼ 0:8
for all four methods. Shaded curves represent 2
logBF profile for y1 and solid curves that for y2;
shaded dotted lines denote the 95% threshold
for y1 for the null model and solid dotted lines
denote the same for y2. On the x-axis, large tick
marks represent chromosomes and small tick
marks represent markers.
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R/qtlbim provides tools to monitor mixing behavior
and convergence of the simulated Markov chain, either
by examining trace plots of the sample values of scalar
quantities of interest, such as the numbers of QTL and
main effects, or by using formal diagnostic methods
provided in the package R/coda. R/qtlbim provides
extensive informative graphical and numerical summa-
ries of the MCMC output to infer and interpret the
genetic architecture of complex traits (Yandell et al.
2007).

SIMULATION STUDIES

Design and method: With an increased complexity
and sophistication of a proposed method, it is very
important to compare its performance with existing
methods in an objective way. To achieve this end, we
conduct extensive simulation studies to compare the
proposed methods for joint analysis of multiple traits
among themselves and also with a single trait-by-trait
analysis. Any simulation experiment is necessarily in-

Figure 2.—(A) 2 logBF profile for n¼ 200 and
ry1y2
¼ 0:5 for all four methods. Shaded curves

represent 2 logBF profile for y1 and solid curves
that for y2; the shaded dotted line denotes the
95% threshold for y1 for the null model and
the solid dotted lines denote the same for y2.
On the x-axis, large tick marks represent chromo-
somes and small tick marks represent markers.
(B) 2 logBF profile for n ¼ 200 and ry1y2

¼ 0:8
for all four methods. Shaded curves represent
2 logBF profile for y1 and solid curves that for
y2; shaded dotted lines denote the 95% threshold
for y1 for the null model and solid dotted lines
denote the same for y2. On the x-axis, large tick
marks represent chromosomes and small tick
marks represent markers.
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complete and does not represent real QTL experi-
ments. Nevertheless, we try to simulate a relatively
‘‘realistic’’ QTL model and evaluate the performance
with different sample sizes and correlation structures.

We consider a backcross population with sample sizes
of 100, 200, and 500 to represent very small, small, and
large sample sizes. Two continuous traits (y1 and y2) are
considered for simplicity. We simulate a genome with 19
chromosomes, each of length 100 cM with 11 equally
spaced markers (markers placed 10 cM apart) on each
chromosome. Ten percent of the genotypes of these

markers were assumed to be randomly missing in all
cases. For each of the three sample sizes, we consider
two correlation structures, namely, low and high with
ry1y2
¼ 0:5 and ry1y2

¼ 0:8. Therefore, we have six cases
with three samples sizes and two correlation structures.
For each of these six cases, we simulate six QTL (Q 1–Q 6)
that control the phenotypes: Q 1 and Q 2 (Q 3 and Q 4) are
nonpleitropic QTL, influencing only the trait y1 (y2)
with moderate-sized and weak effects, respectively; Q 5 is
a moderate-sized pleiotropic QTL affecting both y1 and
y2; while Q6 is a weak pleiotropic QTL affecting both y1

Figure 3.—(A) 2 logBF profile for n¼ 500 and
ry1y2
¼ 0:5 for all four methods. Shaded curves

represent 2 logBF profile for y1 and solid curves
that for y2; shaded dotted lines denote the 95%
threshold for y1 for the null model and solid dot-
ted lines denote the same for y2. On the x-axis,
large tick marks represent chromosomes and
small tick marks represent markers. (B) 2 logBF
profile for n ¼ 500 and ry1y2

¼ 0:8 for all four
methods. Shaded curves represent the 2 logBF
profile for y1 and solid curves that for y2; shaded
dotted lines denote the 95% threshold for y1 for
the null model and solid dotted lines denote the
same for y2. On the x-axis, large tick marks repre-
sent chromosomes and small tick marks repre-
sent markers.
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and y2. Table 1 presents the simulated positions of six
QTL, their effect values, and their heritabilities (pro-
portion of the phenotypic variation explained by a QTL).

For each of the six cases, we generate 100 replicated
data sets, resulting in 600 total data sets. For each of
these 600 data sets we perform analysis using four
methods, namely, the STA, joint analysis using a TMV
model, joint analysis using a SURd model, and joint
analysis using a SURs model. For all analyses, pseudo-
markers were placed every 1 cM across the entire ge-
nome, resulting in a total of 1919 possible QTL positions.
The prior expected number of main-effect QTL was set
at l0 ¼ 4, and the upper bound on the number of QTL
was then L ¼ 10 (¼ l0 1 3

ffiffiffiffi
l0
p

, also see Yi et al. 2005). To
check posterior sensitivity to these prespecified values,
we analyzed the data with several other values of l0 and L
and obtained essentially identical results. We ran the
MCMC algorithm for 12 3 104 times after discarding the
first 1000 iterations as burn-in. The chain was thinned by
considering one in every 40 samples, rendering 3000
samples from the joint posterior distribution. The saved
posterior samples were used to make inference about
the genetic architecture.

To illustrate the advantages of using a more complex
method of analysis it is important to have an objective
and reproducible plan of evaluation. However, in the
model selection framework of multiple QTL mapping
this assessment becomes a little more complicated as
one has to account for model uncertainty (Burnham

and Anderson 2002). The model selection uncertainty
can lead to underestimation about the quantities of
interest, which could be quite large as shown by Miller

(1984) in the regression context. One could use the
Jeffreys relative scaling of Bayes factors to assess strength
of evidence, but the behavior of Bayes factors in
complex situations like multiple-QTL mapping is un-
known. Nonetheless, to assess the performance of dif-
ferent methods we adopt a simple approach. For all six
cases we simulate 100 null (no-QTL) data sets and com-
pute the genomewide maximum 2 logeBF (twice the
natural logarithm of Bayes factors) for each trait. The
95th percentile of the max 2 logeBF empirical distribu-
tion is considered as the threshold value above which a
QTL would be deemed ‘‘significant.’’ At each replica-
tion, the number of correctly identified QTL and the
number of incorrectly identified or extraneous QTL are
recorded. A peak in the 2 logBF profile is considered a
QTL if it crosses the significance threshold. It is deemed
correct if it is within 10 cM (Broman and Speed 2002) of
a true QTL. If there is more than one peak within 10 cM
of the true QTL, only one is considered correct.

Results: Table 2 represents the average correct and
extraneous (incorrect) QTL detections for the six situa-
tions and for all four methods for y1 and y2, respectively.
It can be seen that TMV detects the highest number of
correct as well as the highest number of extraneous
QTL. All the multivariate methods detect the higher
number of correct QTL compared to the univariate

Figure 4.—Profile of posterior
inclusion probabilities for the test
of pleiotropy for n ¼ 100. The
dotted line represents the 95%
threshold for the null model. On
the x-axis, large tick marks repre-
sent chromosomes and small tick
marks represent markers.
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procedure (especially in high correlation cases). The
performance of both the QTL SUR models is very close.

Figures 1–3 display the 2 logeBF profile for chromo-
somes 1–4 for the three sample sizes (n¼ 100, 200, 500),
respectively, in the four frameworks, namely, SURs,
SURd, TMV, and STA. Chromosomes 5–19 had negligi-
ble QTL samples (not shown). As can be seen in Figure
1A, both SUR procedures barely detected the moderate
effects Q 1 and Q 3 in the low correlation case, but
strongly detected the same QTL in the high correlation
case (Figure 1B); STA could barely detect them in either
case; TMV incorrectly detected Q 1 and Q 3 for both
traits. Figure 2, A and B, shows SURd performed
reasonably well in detecting all six QTL for both high
and low levels of correlation between traits; SURs
performed similarly but detected Q1 for both traits
incorrectly; however, STA failed to detect the weak
effects Q2 (Q4) in the high (low) correlation cases;
TMV identified all six QTL for each trait but only four
QTL were true for each trait. Finally, Figure 3, A and B,
shows STA, SURs, and SURd could correctly identify all
six QTL clearing the threshold for both correlation
situations comfortably; TMV, however, strongly detected
all six QTL for each trait, as in Figure 2, A and B.

Figures 4–6 display the posterior probability profiles
for the three sample sizes for testing pleiotropy (a
certain locus is simultaneously included in the model
for both traits) in the TMV, SURs, and SURd frame-
works. We follow the same procedure to measure the

threshold values for pleiotropic posterior probabilities.
As can be seen in Figure 4, TMV incorrectly detected Q 1

and Q 3 as pleiotropic QTL in the low correlation case;
but in the high correlation case it could only feebly
detect the true moderate pleiotropic QTL (Q 5) in
addition to the incorrectly detected ones; SURs de-
tected Q5 correctly and Q 3 incorrectly in both correla-
tion structures; SURd incorrectly detected Q 3 in the low
correlation case, but correctly detected both pleiotro-
pic QTL (Q 5 and Q 6) in the high correlation case. In
Figures 4 and 6, TMV incorrectly detected all 6 QTL
as pleiotropic QTL in both correlation structures. In
Figures 5 and 6, SURs detected both pleiotropic QTL
correctly but also detected some extraneous nonpleio-
tropic QTL for both correlation structures. SURd, how-
ever, detected both pleiotropic QTL correctly without
any incorrect detection in the small and large sample
size situations for both correlation structures.

The average times taken to conduct each MCMC for
all six cases and four methods are presented in Table 3.
TMV was the fastest in all cases followed by SURs, STA,
and SURd. However, the maximum difference between
the fastest and the slowest was only 1.62 min (1 min
37 sec). So computationally complexity does not really
pose a great threat.

In conclusion, it is evident and expected that the
multivariate procedures outperform STA in the small
sample size and high correlation situations. However,
one should not use the traditional multivariate model

Figure 5.—Profile of posterior
inclusion probabilities for the test
of pleiotropy for n ¼ 200. The
dotted line represents the 95%
threshold for the null model. On
the x-axis, large tick marks repre-
sent chromosomes and small tick
marks represent markers.
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to detect nonpleiotropic QTL as there was astounding
evidence of it being prone to erroneous detection. Both
the SUR models performed well, but SURs provided
slightly false evidence for a QTL influencing y1 (say)
for y2. If one wants to detect only pleiotropic QTL, a
traditional multivariate model can be used, but, in any
other situations, a SURd procedure is recommended in
light of a marginal increase in computational time.

DISCUSSION

Our goal in this article was to develop a comprehen-
sive genomewide QTL mapping technique for multiple
traits and assess its performance with existing single-trait
analysis. When a QTL mapping experiment is con-
ducted, an experimenter rarely measures only a single
trait. However, even in the presence of data on more
than one trait, there has been a lack of joint analysis of all
traits primarily due to the lack of a comprehensive
multivariate multiple-QTL mapping technique. From
the simulation experiments we have observed that for
relatively highly correlated traits the performance of
multivariate methods is better compared to single-trait
analysis in terms of QTL identification.

We have proposed two separate models for the joint
analysis of multiple traits, namely, the seemingly un-
related regression and the traditional multivariate
model. The advantage of the SUR model is that it per-

mits all traits to have separate genetic models, much like
an independent trait-by-trait analysis but including the
correlation structure between the traits, thereby making
it more powerful and precise. The traditional multivar-
iate model, however, assumes the same genetic model
for all traits. In the situation that we considered in the
simulation experiment, we saw poor performance of
the traditional multivariate model in terms of accuracy
and extraneous detections. The traditional multivariate
model is appropriate in the extreme sense when all
detectable QTL are pleiotropic (influencing all traits
simultaneously). Rarely, knowledge of this magnitude
about a complex trait is known a priori. In general, we
recommend using a SUR model.

We investigated two different QTL SUR models,
namely, SURs and SURd. The performance of both

Figure 6.—Profile of posterior
inclusion probabilities for the test
of pleiotropy for n ¼ 500. The
dotted line represents the 95%
threshold for the null model. On
the x-axis, large tick marks repre-
sent chromosomes and small tick
marks represent markers.

TABLE 3

Average MCMC time (in minutes) for four methods

ðn; ry1y2
Þ STA TMV SURs SURd

(100, 0.5) 1.17 0.96 1.10 1.18
(100, 0.8) 1.18 0.98 1.09 1.16
(200, 0.5) 2.47 1.99 2.23 2.52
(200, 0.8) 2.48 2.06 2.22 2.45
(500, 0.5) 6.94 6.14 6.51 7.76
(500, 0.8) 6.92 6.11 6.45 7.51
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these QTL SUR models has been good. SURs can favor,
though very slightly, a QTL of no effect on one trait but
having large effect on another trait. In these situations
SURd is recommended, since it consistently inferred
the correct underlying genetic architecture in simula-
tions. However, the current sampling scheme for
updating the genotypes of pleiotropic QTL based on
SURd may be suboptimal (as indicated by one of the
reviewers), because we always treat the genotypes for
different traits separately. In the case where inferring
genotypes is difficult we would advocate the use of SURs
or replace the genotypes by their conditional expecta-
tion in our QTL SUR models (i.e., similar to Haley–
Knott regression in QTL analysis). We also can improve
the step of updating the genotypes of pleiotropic QTL
by using a joint sampling method.

We have adopted the composite model space ap-
proach (Yi 2004) and extended it to the multivariate
case. The advantage of this approach is that it provides a
very efficient way to walk through the space of models,
spending more time at ‘‘good’’ models. The key idea
behind this approach is to reduce a variable dimen-
sional problem (number of unknown QTL) to a fixed
dimensional space and impose a constraint on the
maximum number of QTL that can be detected. Our
MCMC algorithm has smart strategies to improve
efficiency and conduct genomewide scans quickly. For
example, we developed a novel one-at-a-time Gibbs
sampler to sample regression coefficients that allows
us to avoid inverting matrices, saving a lot of precious
computational time. In high dimensional problems, in-
verting extremely large matrices for typically .100,000
iterations can be very computationally taxing and
prohibits the use of a multivariate algorithm (as seen
in the implementation of Verzilli et al. 2005). We also
use the inverse of the variance–covariance matrix for
the same reason. We have used informative hierarchical
priors for the regression coefficients that typically re-
flect most QTL mapping situations.

We have developed SUR models for QTL that act in
a strictly additive manner. However, it is important to
mention that this might not be a good assumption
especially in light of the growing number of QTL studies
providing evidence in favor of interactions between QTL.
Our method can extend to include gene–gene and gene–
environment interactions in a natural way. In the pres-
ence of such interactions, the search space for possible
QTL increases dramatically. We plan to investigate the
performance of epistatic SUR methods in the future. We
also plan to extend the multivariate framework to a
mixture of continuous, binary, and ordinal traits.
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APPENDIX A: PRIOR DISTRIBUTIONS

The independent priors across traits are straightforward extensions of Yi et al. (2005, 2007). We describe the priors
on ðlt ;gt ;mt ;btÞ for each trait, highlighting the distinctions pertinent to multiple correlated traits.

The prior distribution on QTL locations is uniformly distributed over the preset loci across the genome (Yi et al.
2005). Two constraints can be incorporated into the prior on QTL locations to reduce the model space: the first
restricts the spacing among multiple linked QTL and the second restricts the number of detectable QTL on each
chromosome (see Yi et al. 2007).

For the vector of indicators gt , we could use an independence prior, pðgtÞ ¼
Q

j w
gtj

t ð1� wtÞ1�gtj , with wt being the
prior inclusion probability of each effect for the tth trait. A useful reduction can be achieved by setting w1 ¼ � � � ¼ wT .
To specify wt, we first determine the prior expected numbers of main-effect QTL and then solve for wt from the
expressions of the prior expected numbers (see Yi et al. 2005). The prior expected number of main-effect QTL could
be set to the number of QTL detected by traditional mapping methods.

The prior for the overall mean mt is chosen to be normally distributed with mean and variance being sample mean
and variance of the tth trait, respectively. For the genetic effects bt , we extend the prior of Yi et al. (2007) that assumes
that different types of effects (e.g., additive effects or dominance effects) follow different prior distributions. For type k,
effects bk

tj have the prior, bk
tj j gtj �ð1� gtjÞI0 1 gtj N ð0;s2

tkÞ, where gtj is the indicator variable for bk
tj, and I0 is a point

mass at 0. Under this prior, when gtj ¼ 0, bk
tj is assigned to be 0 and thus is actually removed from the model; when

gkj ¼ 1, bk
tj follows a normal distribution N ð0;s2

tkÞ. The variance s2
tk is treated as a random variable with an inverse-x2

hyperprior distribution; i.e., s2
tk � Inv-x2ðntk ; s2

tkÞ. The degrees of freedom ntk control the skewness of the prior for s2
tk,

with larger values recommended (here ntk ¼ 6) to tightly center the prior around s2
tk (see Yi et al. 2007). The scale

parameter s2
tk controls the prior proportion of phenotypic variance explained by bk

tj. We set s2
tk ¼ ðntk � 2ÞhVt=ðntkV k

tj Þ,
leading to the proportion of phenotypic variance explained by bk

tj being h, where Vt is the phenotypic variance of trait t,
and V k

tj is the sample variance for the column of X associated with effect bk
tj . Expected effect heritability, h, can be set

small (say 0.05–0.2) to reflect prior knowledge about genetic architecture.

APPENDIX B: CONDITIONAL POSTERIOR DISTRIBUTIONS

We here derive conditional posterior distribution for each unknown from the joint posterior distribution (3).
Denote all the unknowns by u; i.e., u ¼ ðm;b;s;S�1; g;l;gÞ. We first present the conditional posterior distributions
for the model SURd and then make some changes to the models SURs and TMV if necessary.
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Conditional posterior distribution of each mt: The conditional posterior distribution for the overall mean of the tth
trait, mt , can be shown to be

mt j u�; y�N

P
n
i¼1ðyi � m�t � XibÞS�t�1

nS�1
tt

;
1

nS�1
tt

 !
; ðB1Þ

where u� represents all elements of u except mt , m�t is the vector m with the tth element mt replaced by 0, S
�1

�t is the tth
column of S�1, and S

�t
tt is the (t, t) element of S�1. Since the conditional posterior is a standard distribution, a Gibbs

sampler can be easily performed.
Conditional posterior distribution of each btj: If the jth effect of the tth trait, btj , is included in the model, the

conditional posterior distribution of btj can be shown to be

btj j u�; y�N

P
n
i¼1 xtijðyi � m� Xib�tjÞS�t�1

S�1
tt

P
n
i¼1 x2

tij 1 s�2
tj

;
1

S�1
tt

P
n
i¼1 x2

tij 1 s�2
tj

 !
; ðB2Þ

where u� represents all elements of u except btj , b�tj is the vector b with the element btj replaced by 0, S
�1
�t and S

�t
tt are

defined as in (A1), and xtij is the main-effect contrast for the jth effect for the tth trait and the ith individual. Note that
xtij ¼ xij "t for SURs and TMV.

Conditional posterior distribution of each stk
2 : For each type of genetic effects (additive and dominance), the

conditional posterior distribution of s2
tk is an inverse-x2 distribution,

s2
tk j u�; y � Inv-x2 ntk 1 qtk ;

ntk s2
tk 1

P
jðbk

tjÞ2

ntk 1 qtk

 !
; ðB3Þ

where qtk is the number of nonzero effects in fbk
tj ; j ¼ 1; 2; � � � g, and other parameters are defined earlier.

Conditional posterior distribution of S�1: Keeping the computationally efficient goal in mind, it should be noted
that generating S would involve computing its inverse to draw samples from (B1) and (B2) in each iteration. So, it is
not only convenient to work with S�1 but computationally efficient as well. The conditional posterior distribution for
S�1 can be calculated

S�1 j u�; y� jS�1jð1=2Þðn�T�1Þ exp � 1

2
tr ðVS�1Þ

� �
¼ WishartT ðV�1; nÞ; ðB4Þ

where u� represents all elements of u except S�1, and V is a T 3 T matrix of residuals where the (t, t9)th element of V,
vtt9 ¼

Pn
i¼1

�
yti � m̂t �

P
j b̂tij xtij

��
yt9i � m̂t9 �

P
j b̂t9ij xt9ij

�
. Since the posterior of S�1 follows a standard Wishart

distribution, a Gibbs sampler can be used to generate samples. An alternative Metropolis algorithm could also be
used to generate samples where a newly generated iterate S�1

new is accepted over an old value S�1
old with probability

a ¼ min 1;
pðS�1

new j u�; yÞqðS�1
oldÞ

pðS�1
old j u�; yÞqðS�1

newÞ

� �
¼ min 1;

jS�1
newjn=2 expf�ð1=2Þtr ðVS�1

oldÞg
jS�1

oldjn=2 expf�ð1=2Þtr ðVS�1
newÞg

( )
; ðB5Þ

where q(.) is the proposal density that is assumed to be the same as its prior. We have implemented both the Gibbs
sampler and the Metropolis algorithm for updating S�1 and in either case we get similar results.

Conditional posterior distribution of each gtiq: If locus q for trait t is included in the model and the genotype gtiq of
individual i is not observed, the conditional posterior distribution of gtiq is

pðgtiq ¼ k j u�; yiÞ} pðyi j u�; yi ; gtiq ¼ kÞpðgtiq ¼ k j ltqÞ; ðB6Þ

where u� represents all elements of u except gtiq , pðyi j u�; yi ; gtiq ¼ kÞ is the likelihood for individual i calculated by
model (2), and pðgtiq ¼ k j lqÞ is the prior probability of gtiq ¼ k. This posterior is a simple multinomial distribution and
thus can be sampled directly. If locus q is excluded from the model or gtiq is observed (e.g., for fully observed markers),
we do not need to sample gtiq .

Conditional posterior distribution of l: If locus q for trait t is included in the model, the joint conditional posterior
distribution of the position ltq and the genotypes gtq ¼ ðgt1q ; � � � ; gtnqÞ is

pðltq ; gtq j u�; yÞ} pðy j u�; ltq ; gtqÞpðltqÞpðgtq j ltqÞ; ðB7Þ
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where u� represents all elements of u except ltq and gtq, pðy j u�; ltq ; gtqÞ is the likelihood calculated by model (2),
pðltqÞ is the prior of ltq , and pðgtq j ltqÞ ¼

Qn
i¼1 pðgtiq jltqÞ is the prior probability of gtq .

This posterior is not a standard distribution, and thus a Metropolis algorithm is needed to update ltq and gtq

jointly. We first propose a new position l*
tq from a proposal distribution qðl*

tq ; ltqÞ and then generate new genotypes,
g *

tiq , at this new position for all individuals from the conditional posterior (B6). The proposals for l*
tq and g*

tq are then
accepted simultaneously with probability

a ¼ min 1;
pðl*

tq ; g
*
tq j u�; yÞqðltq ; l*

tqÞqðgtqÞ
pðltq ; gtq j u�; yÞqðl*

tq ; ltqÞqðg*
tqÞ

 !
: ðB8Þ

The proposal distribution for the new position qðl*
q ; lqÞ is usually constructed as uniformly distributed over 2d most

flanking loci of lq , with d being a predetermined tuning integer. In our implementation, we take d¼ 2 and incorporate
the preset constraints on QTL positions into our algorithm.

Conditional posterior distribution of each gtj: The conditional posterior distribution of gtj can be expressed as

pðgtj ¼ 1 j u�; yÞ ¼
pðgtj ¼ 1Þpðy j u�; gtj ¼ 1Þ

pðgtj ¼ 0Þpðy j u�; gtj ¼ 0Þ1 pðgtj ¼ 1Þpðy j u�; gtj ¼ 1Þ ; ðB9Þ

where u� represents all elements of u except gtj and btj , pðy j u�; gtj ¼ 0Þ is calculated using model (2) with btj replaced
by 0, and pðy j u�; gtj ¼ 1Þ does not depend on btj and can be calculated using the identity of simple conditional
probability

pðy j u�; gtj ¼ 1Þ ¼
pðy j u�; gtj ¼ 1;btjÞpðbtjÞ

pðbtj j y; u�; gtj ¼ 1Þ ; ðB10Þ

where pðy j u�; gtj ¼ 1;btjÞ is the phenotype likelihood calculated using model (2), pðbtjÞ is the prior distribution of btj ,
and pðbtj j y; u�;gtj ¼ 1Þ is the conditional posterior distribution of btj calculated by (B2). Notationally, the right side
of (B10) depends on btj , but from the definition of pðy j u�; gtj ¼ 1Þ, we know it cannot depend on btj in a real sense.
That is, the factors that depend on btj in the numerator and the denominator must cancel. Thus, we can compute
(B10) by inserting any value of btj into the expression. A convenient, stable choice is the conditional posterior mean of
btj (Gelman et al. 2004; Yi et al. 2007).

To calculate the conditional posterior probability (B9), we may need the values of parameters associated with gtj . If
gtj is currently 0 and the involved QTL(s) is (are) not currently in the model, we first sample new QTL position(s) from
their corresponding priors as needed, new genotypes for all individuals, and the prior variance of btj if this parameter
is currently out of the model. If the current value of gtj is 1, the associated unknowns were already generated at the
preceding iteration.

The Gibbs sampler can be used to generate each indicator gtj from its conditional posterior (B9). However, for the
QTL SUR models, using the Gibbs samplers is computationally demanding because the SUR models contain T times
the number of indicators as a single-trait model and most of the indicators are zero. To speed up the algorithm we
extend the Metropolis–Hastings algorithm proposed by Yi et al. (2007) to the QTL SUR models. As with the Gibbs
sampler, the MH scheme proceeds to update all indicator variables. Denote the current value of gtj by C (¼ 0 or 1). The
MH algorithm proposes a new value P (¼ 0 or 1) for gtj from the prior probability p(gtj ¼ C ). If P ¼ C, the MH
acceptance probability is 1, and thus gtj remains at C and there is no need to compute any values. Otherwise, we update
gtj from the current value C to the proposal 1 � C with acceptance probability

a ¼ min 1;
pðgtj ¼ 1� C j u�; yÞ

pðgtj ¼ C j u�; yÞ
�

pðgtj ¼ CÞ
pðgtj ¼ 1� CÞ

 !
; ðB11Þ

where pðgtj ¼ C j u�; yÞ and pðgtj ¼ 1� C j u�; yÞ are calculated in (B9).
The conditional posterior of g for the traditional multivariate model is a little tricky. Since the indicator variable

of a particular effect is the same for all traits, the conditional posterior distribution of gj can be expressed as

pðgj ¼ 1 j u�; yÞ ¼
pðgj ¼ 1Þpðy j u�; gj ¼ 1Þ

pðgj ¼ 0Þpðy j u�; gj ¼ 0Þ1 pðgj ¼ 1Þpðy j u�; gj ¼ 1Þ ; ðB12Þ

where gj is the indicator variable for the jth effects for all traits, u� represents all elements of u except gj and b
˜

j , b
˜

j

denotes the vector of the jth effects for all traits, and pðy j u�; gtj ¼ 0Þ is calculated using model (2) with b
˜

j replaced by
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0. The integration in (B10) should be with respect to joint distribution of all genetic effects for the traits in question.
Proceeding similarly as above we can get

pðy ju�; gj ¼ 1Þ ¼
pðy j u�; gj ¼ 1;b

˜
jÞpðb

˜
jÞ

pðb
˜

j j y; u�; gj ¼ 1Þ : ðB13Þ

As before, a choice of b
˜

j could be the posterior mean of the joint posterior distribution of b
˜

j calculated below,

b
˜

j �NT Sb

Xn

i¼1

xij S
�1ðyi� � m� x9i�b

˜
�jÞ;Sb

 !
; ðB14Þ

where xi� is the vector of main-effect contrast(s) for the ith individual for all loci, Sb ¼
�
S�1Pn

i¼1 x2
ij 1 diagðs

˜
�2
j Þ
��1

,
s
˜

2
j is the vector of the variances of the jth genetic effect for all traits, and b

˜
�j is the vector of coefficients with btj (t¼ 1,

� � � T) replaced as 0.
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