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ABSTRACT

A major goal in the study of complex traits is to decipher the causal interrelationships among correlated
phenotypes. Current methods mostly yield undirected networks that connect phenotypes without causal
orientation. Some of these connections may be spurious due to partial correlation that is not causal. We
show how to build causal direction into an undirected network of phenotypes by including causal QTL for
each phenotype. We evaluate causal direction for each edge connecting two phenotypes, using a LOD score.
This new approach can be applied to many different population structures, including inbred and outbred
crosses as well as natural populations, and can accommodate feedback loops. We assess its performance in
simulation studies and show that our method recovers network edges and infers causal direction correctly at
a high rate. Finally, we illustrate our method with an example involving gene expression and metabolite

traits from experimental crosses.

ETWORK models derived from microarray experi-
ments have shed light on the manner and extent
of connectedness among expressed genes. However,
these networks mostly summarize association, connect-
ing phenotypes without causal direction. Genetical ge-
nomic studies, with microarray data in a segregating
population, have shown evidence for cisacting and
lrans-acting genomic regions (BREM et al. 2002; SCHADT
et al. 2003). These studies yield expression quantitative
trait loci (eQTL) (KENDzIORSKI and WANG 2006) that
provide a causal experimental system where genotype
drives phenotype. Directed graphs inferred from such
a system (JANSEN and Nap 2001; ZHU et al. 2004; BING
and HorscHELE 2005; Kurp and JAGALUR 2006;
KEURENTJES et al. 2007) can yield causal gene networks
that predict biochemical pathways, generating new hy-
potheses about functional relationships among ex-
pressed genes. These methods need a network node
that consists of a gene physically located within the
QTL support interval of one or more transcripts. This
gene thus becomes a candidate regulator for the other
transcripts. Unfortunately, phenotypes such as metab-
olites and physiological traits cannot serve as causal
nodes in these networks. SCHADT et al. (2005) allowed
for causal clinical traits by using pairs of phenotypes
that share multiple QTL. However, their method can-
not infer causal direction between phenotypes without
a common QTL.
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In this article, we introduce a novel method for build-
ing causal networks among phenotypes that may not
have common QTL, allowing the use of phenotypes
other than gene expression. We first build an undi-
rected graph that infers associations among pheno-
types, using either an undirected dependency graph
(UDG) (SHipLEY 2002; DE LA FUENTE et al. 2004) or a
skeleton derived from the PC (Peter-Clark) algorithm of
SPIRTES et al. (2000). We next use a LOD score to
determine causal direction for every edge that connects
a pair of phenotypes, conditional on connected QTL.
Our method differs from the PC algorithm, which first
infers a graph skeleton (with the “PCskeleton algo-
rithm”) and then uses partial correlations among phe-
notypes to infer the direction of some, but not all, edges
of the inferred skeleton. Our QTL-directed dependency
graph (QDG) can include feedback loops, which are
common in biology. This integrated QDG approach
overcomes serious limitations of both the genetical ge-
nomics network methods and the PC algorithm.

Our goal, in short, is to causally orient every edge
connecting a pair of phenotypes in an undirected net-
work. That is, does phenotype 1 drive phenotype 2, or
vice versar:
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Model selection procedures cannot distinguish between
M, and M, because they are distribution or likelihood
equivalent. Thatis, variation in the level of phenotype 1,
91, causing a variation in the level of phenotype 2, ys,
yields the same joint density as the reverse situation,
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However, if in addition to the two phenotypes, we have
measured genotypes, q1 = {q11, - - ., g1} on k QTL affec-
ting y; and qo = {go1, . .., qof on I QTL affecting yo, we
can now resolve direction. The new models
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are notlikelihood equivalent because the predictive den-
sities disagree,
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Therefore, we distinguish between models M;" and M,
by inferring direction of causation between phenotypes
using a LOD score that conditions on genotypes at mul-
tiple QTL. We assume distinct QTL for different phe-
notypes and consider allegedly pleiotropic QTL in the
DISCUSSION.

The methods of this article are widely applicable to
human studies and outbred populations. Here, we con-
fine attention to experimental crosses, such as a back-
cross or intercross derived from two disparate inbred
lines. We focus on a mouse intercross with a set of
already identified phenotypes of interest, ideally in-
volved in or related to a common pathway. Further, we
assume that multiple QTL associated with these traits
had previously been determined.

We present a series of simulation studies where we
evaluate the recovery rate of undirected edges and (1)
compare the performance of the QDG and the PC
algorithm for causal orientation in a network contain-
ing 100 phenotypes; (2) assess the accuracy of the QDG
method for the inference of small cyclic graphs; and (3)
study a causal model describing the relationship of 20
QTL, five gene expression traits, and one metabolite,
constructed with the QDG method and presented in
FERRARA ef al. (2008).

METHODS

Undirected graph: We build an association network
using UDGs (SHipLEY 2002) and PC skeletons (SPIRTES
et al. 2000). These methods are better suited to causal
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F1GURE 1.—The causal network for three nodes
(a) yields a Gaussian graphical model (GGM) us-
ing partial correlations (b). The edge between

@ phenotypes 1 and 2 reflects partial correlation
given 3, even though these two variables are caus-
/ ally independent. The undirected dependency

graph (UDG) infers the correct edges (c) by first
using the fact that 1 and 2 are uncorrelated to re-
move the 1-2 edge.

inference than other association networks such as
Gaussian graphical models (GGMs) (SCHAFER and
STRIMMER 2005a,b), which include edges between any
pair of nodes that has significant partial correlation.
However, partial correlation can exist even when two
nodes are uncorrelated, leading to spurious edges
(Figure 1). In directed acyclic graphs, UDGs and PC
skeletons avoid this problem by first removing edges
where there is no significant correlation. In directed
cyclic graphs, it may not be possible to remove all
spurious edges. The PC-skeleton algorithm performs
fewer computations than the UDG algorithm for sparse
graphs, but it is less accurate in small sample sizes
(SHIPLEY 2002). An efficient implementation of the PC
algorithm for sparse high-dimensional directed graphs
(KariscH and BuHLMANN 2007) is available in the R
package pcalg (R DEVELOPMENT CORE TEAM 2006).

Distinguishing QTL with direct and indirect effects:
The edge orientation procedure requires the inclusion
of QTL that directly affect the phenotypes. Since it is
possible that a strong QTL affecting an upstream trait
may also be incorrectly detected as a QTL for a down-
stream phenotype, we first employ the following two-
step preprocessing procedure to distinguish QTL with
direct and indirect effects: (1) identify all pairs of con-
nected phenotypes that share common QTL and (2)
apply a generalization of the method proposed by
ScHADT et al. (2005) to each of these pairs to determine
if the common QTL directly affects both traits or if it has
an indirect effectin one of the phenotypes. If the pair of
phenotypes is affected by a single common QTL (in
addition to the QTL particular to each trait) we score
the three graphical models presented in Figure 2, using
the Bayesian information criterion (BIC) or Akaike’s
information criterion (AIC), and select the model with
the smallest value. Figure 2a has both phenotypes
directly affected by the common QTL, while in Figure
2b ghas an indirect effect on phenotype y, and no direct
effect on y. Figure 2c represents the reverse situation.
Supplemental Figure S1 illustrates the case where a pair
of connected phenotypes map to two common QTL.

We point out that the original goal of SCHADT et al.
(2005) was to determine the causal direction between a
pair of phenotypes. Here, we test the direct vs. the indi-
rect effect of a common QTL on two phenotypes. We
note in the b1SCUSSION how causal direction inference
for our method can be extended to orient edges that
have only common QTL.
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Ficure 2.—Distinguishing direct and indirect

effects of a common QTL. Suppose that QTL
@ @ @ @ @ @ @ @ @ mapping of phenotype y; detected QTL ¢ and

LN LS

\ q; and mapping of phenotype y, detected the
common QTL ¢ plus QTL qo. A strong QTL di-
@ rectly affecting an upstream trait may also be (in-

correctly) detected as a QTL for a downstream

phenotype. To resolve this situation we apply a generalization of SCHADT et al. (2005), allowing for multiple QTL, where we score
the three models above using BIC or AIC. Model a supports both traits being directly affected by the common QTL ¢. Model b
implies that ¢ directly affects y; but should not be included as a QTL of phenotype y,. Model c supports the reverse situation.
Observe that the assumption behind model a is that the correlation between y; and y, can be explained by the common QTL
¢, in addition to common environmental influences or other shared loci.

Preprocessing the undirected graph: Whenever a
pair of connected phenotypes have a common QTL,
as in the situation described in Figure 2a, we further test
the null hypothesis of no partial correlation between the
phenotypes conditional on the common QTL. If we
accept the null, we drop the edge between the pheno-
types since their correlation is caused by the pleiotropic
effect of the common QTL.

Edge orientation: We orient causal edges between all
pairs of connected phenotypes in an undirected net-
work using associated multiple QTL to break likelihood
equivalence. The QTL are assumed to come from earlier
gene mapping of phenotypes. Edge orientation among
pairs of phenotypes is based on a linear regression model
with phenotypes regressed on QTL genotypes and on
additive or interacting covariates such as sex, age, and
other phenotypes. We orient each edge, conditioning on
all other nodes (phenotypic, genotypic, or covariate) that
are connected to that edge. For each edge, we evaluate a
LOD score comparing the two possible orientations. We
orient the edge in favor of the direction with the higher
likelihood in the ratio. For the toy network presented in
the Introducton this ratio is

LOD — logw{H;-lf(yu | dy,)f (y2i | 31 qu)}
i:lf(yQi o) (i | yeis ‘hi)
= LOD; + LODy; — LODg — LODjo,

where f() represents the predictive density, that is, the
sampling model with parameters replaced by the corre-
sponding maximum-likelihood estimates, and
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represent standard LOD scores comparing the “full”
model (a multiple-QTL model possibly containing
covariates and interactions) with the “reduced” model
(no QTL or covariates).

In more complex networks we orient edges in two
steps: (1) build an initial directed network orienting
each edge as above and (2) recompute the LOD score
for each edge, connecting a pair of phenotype nodes by
conditioning on all other phenotypes causative to either
or both nodes. We repeat the second step for all edges
until no edge switches direction and this involves some
iteration to find the best orientation across the entire
graph. With four phenotypes, an initial directed net-
work might look like D >©@ NOP: @.
The second step recomputes the LOD score for the
edge between nodes 2 and 3, conditioning, respectively,
on nodes 1 and 4. Similarly, we recompute the LOD
score for the 3-4 edge, conditioning on node 2 for
phenotype 3. If the direction of the 2-3 edge switches,
the graph becomes D NOP: B« @®. We
then recompute the LOD scores for the 1-2 edge, using
node 3 as a covariate for 2, and for the 2-3 edge
conditioning, respectively, on 1 and 4.

In complex networks this algorithm may find more
than one solution. Thatis, starting the algorithm from a
different edge ordering may yield a different graph. To
get the best solution we (1) rerun this algorithm using
different initial edges to get all possible solutions, (2)
score each solution using a likelihood-based overall
measure of fit, and (3) select the graph with the highest
score. This algorithm may oscillate between two graphs
changing directions on some edges. In this case we
choose the graph with the highest measure of fit.

QDG algorithm:

1. Construct an UDG (PC skeleton or an association
graph).

2. Use QTL genotypes to direct each edge in the UDG.
Call it DG.

3. Randomly choose an ordering of all edges in the DG.
Call this list ODG.

4. For an edge in the ODG recompute the direction
LOD score using all other causative phenotypes to
either or both nodes, according to the DG, in addition
to the QTL genotypes. If the direction changes,
update the DG and move to the next edge in the ODG.
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F1cURE 3.—Randomly sampled sparse directed acyclic graph (DAG) composed of 100 nodes (phenotypes) connected by 107
edges, using the randomDAG function from the pcalg R package (R DEVELOPMENT CORE TEAM 2006). We generated data accord-
ing to this network, adopting two or three QTL (not shown) per phenotype. This network demonstrates many features that can be
inferred with varying degrees of difficulty by the PC algorithm. For instance, nodes organized in an unshielded collider pattern
(SurpLEY 2002) such as x— z<y are easier to direct than nodes organized in a bifurcation or line pattern such as x<z—y and
x— z— y. Figure 8 compares the performances of the QDG and PC algorithms for nodes involved in unshielded collider structures
and all other remaining patterns pooled together. In supplemental Figures S2 and S3 we highlighted all nodes involved in un-

shielded collider patterns.

5. Repeat step 4 until no more edges change direction.
The corresponding directed graph is one solution. If
step 4 keeps oscillating between different graphs
without converging to a solution in 30 steps, we in-
clude all distinct graphs as solutions.

6. Repeat steps 3, 4, and 5 1000 times and store all
different solutions.

7. Score all solutions in step 6, using a likelihood-based
measure of fit of the whole graph, and choose the
graph with the highest score.

We point out that for each solution of this algorithm,
the direction of each edge connecting two nodes is
computed conditional on the parents of the nodes.
While we start the QDG as a pairwise algorithm (step
2), the last steps actually represent a multivariate algo-
rithm, where we perform local computations of direction
on subsets of the graph. An R package (R DEVELOPMENT

Core TeEaM 2006) implementing our procedure is under
development and we intend to make it available at
Bioconductor.

Simulations: One hundred phenotypes network: In each
simulation experiment we generated synthetic data
according to the network in Figure 3, using linear
regression models. Each phenotype node was affected
by two or three QTL (not shown in Figure 3), and we
allowed only additive genetic effects. The QTL for each
phenotype were randomly selected among 200 markers,
with 10 markers unevenly distributed on each of 20
autosomes. We allowed different phenotypes to poten-
tially share common QTL. For each phenotype, the
regression coefficients with other phenotypes were
chosen uniformly between 0.5 and 1; residual standard
deviations were chosen between 0.1 and 0.5. The
regression coefficient of the phenotype on the QTL
ranged from 0.2 to 0.6. More specifically, we assumed
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Ficure 4.—Cyclic graphs. (a) A single three-
node cycle. (b) Two neighboring four-node cycles.

0] ®) (c) A reciprocal interaction cycle between nodes 2
0 % 2 and 5. This graph has two pairs of nodes (1, 5) and
/ \ / \ ) (2, 4) that are not directly connected but are d-
3 @) ©, © @ ) ©® @ 5—>(6) connected (PEARL 1988).

intralocus additivity (no dominance) and an increment
of 0.1 per allele. The coefficients for genotype aa were
drawn uniformly between 0.2 and 0.4. The coefficients
for genotypes Aa and AA were calculated by adding
0.1 and 0.2, respectively. For each simulation experi-
ment, we generated 100 realizations and applied the
QDG and PC algorithms to infer causal directions for
the edges of the skeleton obtained by the PC-skeleton
algorithm.

Cyclic networks: For Figure 4, a and b, we generated
data sets with 100 and 200 individuals, fixing regression
coefficients at 0.5, error variances at 0.025, and the
QTL effects at 0.2, 0.3, and 0.4 for the three Fy geno-
types. We used a Gibbs sampling scheme to generate 100
data sets in each simulation study. For Figure 4c, we
adopted a sample size of 100 and parameter values as
above with the exception of the reciprocal parameters
Bos and Bse. We used a burn-in of 2000 for the Gibbs
sampler and inspection of Markov chains showed good
mixing.

Permutation tests for directions: P-values for the
LOD scores are computed using 10,000 permutations.
To get the null distribution for the direction we permute
blocks of data in such a fashion that we break all the
connections thataffect the direction, keeping the others
intact. As an example, consider Figure 5 and suppose we
are interested in computing a permutation P-value for
the arrow pointing from phenotype v, to phenotype y,
conditional on covariates x and z. Here, x represents a
covariate of both phenotypes (could be another pheno-
type, age, sex, etc.). zis a covariate only of y;. q; and qq
correspond to sets of QTL affecting y; and y., respec-
tively. To break the connections (brk) that affect the
direction of an edge, we permute the corresponding
pair of nodes (and their common covariates) as a block.
Thus in Figure 5a we permute (y;, y2, x) as a block
breaking the connections with z, q;, and qe. If instead we
keep the connection between zand y; by permuting only

@ @
S N %/\
Q=) =) @ (©2)

q: and qo (Figure 5b), we would not break all the
connections affecting the directionality [resulting mod-
els fiyr | z %) f(y2 | y1, %) and fly1 | ye, z %) f(ye
likelihood equivalent and can be used to infer the
direction between y and jy]. Finally, the common
covariate x to y; and Yy improves the fit of the linear
model, even though it does not directly affect the di-
rection between y; and ys since f(y; | x) f(y2 | y1, x) = f(y1,
%) = fOn [ 3o, 0) /(e

Simulating data from cyclic networks: Consider the
set of structural equations

Ve = Z kgt

where pa(y;) represents the set of parental nodes of y,
that is, the set of phenotypes that directly affect y,; €, ~
N(O, (ri) are independent error terms; and ¢, = 1, 2, 3,
where u indexes all QTL associated with phenotype y;.

Let € represent the vector of error terms. Using the
Jacobian transformation from € —y, we get the joint
density of the phenotypes conditional on the QTL
genotypes.

We simulate a data set of n individuals from a cyclic
network in two steps. First, we simulate the QTL genotype
data. Next, we generate phenotype data, conditional on the
QTL genotype data, using a Gibbs sampling scheme. The
distribution of each phenotype conditional on the remain-
ing phenotypes, QTL genotypes, and parameters is univar-
iate normal. Because each individual may have a unique
multilocus genotype and the phenotype distributions are
conditional on the QTL genotypes, we run separate Markov
chains to generate each of the n data points.

Distinguishing graphs inside an equivalence class: In
the Introduction we demonstrated how the incorpora-
tion of driving QTL allows for causal direction inference
in a network composed by two phenotypes linked by an
edge. This result readily extends to more complex
networks belonging to an equivalent class. Suppose,

Z Bkvyv + €r, (2)

vy, Epaly)

FIGURE 5.—Preserved neighborhoods for per-
mutation Pvalue computation. The Pvalue for
the arrow pointing from phenotype y; to pheno-
type y» depends on edges to neighboring nodes. x
represents a covariate of both phenotypes (could

brk O

be another phenotype, age, sex, etc.). zis a cova-

riate of y;. q; and qq correspond to sets of QTL affectlng y1 and yo, respectively. To break the connections (brk) that affect direction
of an edge, we permute the corresponding pair of nodes (and their common covariates) as a block. In a we permute (y;, yo, x) as a
block breaking the connections with z, q;, and qg; in b we incorrectly keep zin the permutation block. We keep the connections to
a common covariate x to y; and y, in because of its role in improving the fit of the linear model.



1094 E. Chaibub Neto et al.

for example, that two N-mnode directed acyclic graphs
belong to the same equivalence class. Then

Hf (| pa(ye)) = fOr, -+ ow)

N
= [1/001paly.))
v=1

where the indexes k and v represent different factoriza-
tions of the same joint predictive density f(y;, . .., yn). By
incorporating the driving QTL we are able to break the
likelihood equivalence between these two phenotype
networks since

Hf (| @y pa(n)) # Hf (0| 9, pa(y.))-
v=1

This result is also true for directed cyclic graphs. Con-
sider, for example, two phenotype networks composed by a
cycle with three nodes, ) > ® s D
and @ < @« B« @®. The predictive den-
sities of the phenotypes agree by application of Bayes’
formula:

SO 1ys)f O [y1)f (95 [ 92)
S On 1) O [3)f (5 | 32) dy

SO lye)f Oalys)f (s | y)
LSO Lye)f O ys)f (95 [ 1) dy

However, when we include the respective driving QTL,

SO s q)f 02131, 92)f (03] 32. q3)
_ SOslya)fOnlay) fOn 12 99)f (02 9)
SO lay) SO lay)
SO ly3:95)f (93 195)
f(y2|‘I3)
7,éf(yz Lyt ay)f O [qy) fOs 152, 99)f (2 | do)
S lay) f(31qy)
SOnlys:95)f (93 195)
S(n |‘h)
=fOn 2, 9,)f (9 | 33,99)f (35 | 31,95)

X

and the graphs are no longer likelihood equivalent.

Thus incorporating driving QTL in the analysis allows
us to distinguish between phenotype networks that
would otherwise be undistinguishable. Therefore, if
the QDG algorithm converges to solutions belonging to
the same equivalence class (considering the phenotypes
only), it is still able to distinguish between then and
reconstructs a single network.

Likelihood-based overall measure of fit: For directed
acyclic graphs the joint likelihood factors nicely and
maximume-likelihood analysis is straightforward. There-
fore, we adopted the maximized log likelihood of the
whole graph as an overall measure of fit in this case.

For directed cyclic graphs, the likelihood cannot be
completely factored (because of the normalization con-

o
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FIGURE 6.—Average percentage of discovered edges (PC
skeleton) and average percentage of edges that could not
be directed by the PC algorithm relative to the discovered
edges for the network in Figure 3. Averages were computed
across all edges in the network.

stant) and maximum-likelihood estimators do not have
closed analytical forms, requiring numerical techniques
for their evaluation. When comparing cyclic networks
with reversed directions, we can avoid these computations
because the normalization constants agree and we can
simply compare the unnormalized likelihoods. To see
why that is the case, recall that the QTL enter as a location
parameter (6;,,) in the structural Equations 2 defining
the cyclic graphs, so that the hypervolume under the N-
dimensional integral (the inverse of the normalization
constant) is not affected by a shifting of the N-dimen-
sional curve.

If we need to compare acyclic and cyclic graphs, the
normalization constant of the cyclic graph cannot be
ignored. Butsince an acyclic graph cannot be likelihood
equivalent to a cyclic one, we can simply fit a path model
to the respective phenotype networks (using any struc-
tural equation models package) and use the respective
maximized log likelihood as an overall measure of fit.

RESULTS

In simulations, we contrast our QDG method with the
PC algorithm (SPIRTES e/ al. 2000), which can orient
some but not all edges in an undirected network using
only partial correlations.

Network topology: In all simulation studies, we as-
sessed the performance of the PC skeleton or the UDG
algorithm in terms of the average (across all edges in the
respective graphs) of the percentage of times the
algorithm recovered each of the true edges. Edge re-
covery rates were strong, increasing with sample size.

One hundred phenotypes network: A complicated net-
work with 100 phenotypes and 107 edges (Figure 3)
illustrates how the percentage of edges recovered using
the PC skeleton increases with sample size (Figure 6;
supplemental Figures S2 and S3). Similar improve-
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TABLE 1

Measures of overall performance of the PC skeleton

Sample True False True

size positive rate positive rate discovery rate
60 0.5207 0.0007 0.9453
300 0.8733 0.0010 0.9518
500 0.9364 0.0020 0.9122

True positive rate is the number of correctly inferred edges
divided by the number of “true edges.” False positive rate is
the number of incorrectly inferred edges divided by the num-
ber of “true gaps.” True discovery rate is the number of cor-
rectly inferred edges divided by the number of inferred edges.
The averages across the 100 simulations are shown.

ments were found for the true positive rate, while false
positive rates were uniformly low and true discovery
rates were uniformly high (Table 1).

Cyclic networks: We investigated the properties of three
cyclic graphs (Figure 4). As sample size increased from
100 to 200, the average percentage of true recovered
edges using the PC skeleton improved from 83 to 99%
for Figure 4a, and from 78 to 99% for Figure 4b (Tables
2 and 3). Figure 4c had two pairs of nodes, (1, 5) and (2,
4), that had no direct connection but were not d-
separated (PEARL 1988). We expected the PC skeleton
to detect spurious edges between them, but we found
only 2 realizations in 100 with an edge between nodes 1
and 5 and none between 2 and 4 (Tables 4 and 5).
Therefore, the PC skeleton successfully recovered im-
portant features of cyclic graph topology.

Causal direction inference: One hundred phenotypes
network: Both QDG and PC algorithms improved in
terms of correct causal direction as sample size in-
creased. In all cases, the QDG method got more correct
directions (Figure 7a) than the PC algorithm and,
except for a sample size of 60, fewer incorrect directions
(Figure 7b). Supplemental Figures S2 and S3 show the
results per edge.

TABLE 2

Proportion of recovered edges (using the PC skeleton) and
correct edge direction (using QDG) for Figure 4a

Recovered edges Correct direction

Edge n = 100 n = 200 n =100 n = 200
1-2 0.57 1.00 0.96 1.00
2—-4 0.95 1.00 0.98 1.00
5—-2 0.96 1.00 0.90 0.98
3—-4 0.77 1.00 0.97 1.00
4—-5 0.78 0.98 0.99 1.00
5—6 1.00 1.00 1.00 1.00

A false positive edge between nodes 1 and 3 was detected in
the simulation study with sample size 100. One and two false
positive edges between nodes 1 and 3 and 4 and 6, respec-
tively, were detected with sample size 200.

TABLE 3

Proportion of recovered edges (using PC skeleton) and
correct edge direction (using QDG) for Figure 4b

Recovered edges Correct direction

Edge n = 100 n = 200 n = 100 n = 200
1—-2 0.50 0.99 0.90 1.00
1—-3 0.74 0.99 0.99 1.00
2—4 1.00 1.00 0.95 1.00
5—1 0.64 0.98 1.00 1.00
3—6 0.85 1.00 0.99 1.00
4—-5 0.83 1.00 1.00 1.00
6 —5 0.96 1.00 0.97 1.00

False positive edges between nodes 2 and 3, nodes 2 and 5,
and nodes 3 and 5 were detected, respectively, six, eight, and
three times in the simulation study with sample size 100. No
false positives were detected with sample size 200.

The network in Figure 3 demonstrates many features
that can be inferred with varying degrees of difficulty by
the PC algorithm. For instance, nodes organized in an
unshielded collider pattern (SHipLEY 2002) such as
x — z < yare easier to direct than nodes organized in a
bifurcation or line pattern such as x < z—y or
x — z — y. In Figure 8, we present the average perform-
ances of the QDG and PC algorithms for nodes involved
in unshielded collider structures separately from the
performances of all other remaining patterns (that we
pooled together). As expected, the PC algorithm per-
formed much better in the unshielded collider pattern,
relative to all other patterns, in terms of correct causal
direction inference and of proportion of undirected
edges. The QDG algorithm performed equally well for
all patterns and was better than the PC. All nodes
involved in unshielded collider patterns were high-
lighted in supplemental Figures S2 and S3.

The QDG method is robust with respect to the
number of QTL per phenotype. We randomly selected
only one QTL per phenotype (from the two or three

TABLE 4

Proportion of recovered edges (using PC skeleton) and
correct edge direction (using QDG) for Figure 4c

Recovered edges Correct direction

Bas = PBas < Paos > Bas = P < Pos >
Edge Bso Bso Bs2 Bso Bso Bso

1-2 0.41 0.37 0.23 1.00 1.00 1.00
2—-3 1.00 0.99 1.00 0.97 0.99 1.00
4—-5 0.62 0.37 0.48 0.94 0.97 0.96
5—6 099 1.00 1.00 0.99 0.99 0.99

When Bo5 < Bsg, the net effect is from phenotype 2 toward
phenotype 5, whereas when Bos > Bs9, the net effect is toward
phenotype 2. There is no net effect when B95 = B50. False pos-
itive edges between nodes 2 and 6, 1 and 5, and 3 and 5 were
detected six, two, and one times, respectively.
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TABLE 5

Proportion of correct direction (using QDG) for the
reciprocal nodes 2 and 5 from Figure 4c for
different regression coefficient patterns

Inferred direction

2« b 5«2
Bos = Bs2 0.61 0.39
Bas < Pso 0.13 0.87
Bos > Bso 0.74 0.26

The proportion of recovered edges (using PC skeleton) was
1 for the three patterns. When Bos < B59 the net effect is from
phenotype 2 toward phenotype 5, whereas when Bos > 59 the
net effect is toward phenotype 2. There is no net effect when

[325 = 852-

QTL used to generate the data) for causal orientation.
We found a relatively small decrease in performance
when only one QTL was used (Figure 9). While the QDG
algorithm required more iterations to converge on a
solution when using only one driving QTL per pheno-
type, there was little loss in percentage of correct
directions.
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FIGURE 7.—Average percentage of correctly inferred direc-
tions (a) and average percentage of incorrectly inferred direc-
tions (b) for the network in Figure 3. Averages were computed
across all edges in the network.
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F1GUure 8.—Comparison of the QDG and PC algorithms rel-
ative to the 69 edges involved in unshielded colliders and the
other 38 edges involved in other patterns. (a and b) The aver-
aged percentage of correct directions (across all nodes belong-
ing to the respective pattern). (c) The averaged percentage of
undirected edges in PC alone.
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FiGure 9.—Comparison of the performance of the QDG
method when all QTL (two or three per phenotype) were used
to infer the directions vs. the performance of the QDG method
using only one QTL (randomly selected from the two or three
QTL used to generate the data). Averages were computed
across all edges in the network in Figure 3.

Cyclic metworks: For the three small cyclic graphs
shown in Figure 4, the QDG inferred the correct
direction most of the time. As sample size went from
100 to 200, the average percentage of correct direction
relative to the proportion of recovered edges increased
from 96 to 99% for Figure 4a (Table 2) and from 97 to
100% for Figure 4b (Table 3).

The simulations for Figure 4c illustrate that even
though our method cannot detect reciprocal interac-
tions (e.g., between phenotypes 2 and 5), it can still infer
the stronger direction, that s, the direction correspond-
ing to the higher regression coefficient. Tables 4 and 5
present the results of three simulation studies where we
adopted the following regression coefficients: (1) Bos =
Bs2 = 0.5; (2) Bos = 0.5, Bs2 = 0.8; and (3) Pos = 0.8,
Bse = 0.5.

METABOLITE AND GENE EXPRESSION NETWORK

We inferred a causal network among expression and
metabolite traits and validated the network with in vitro
experiments (FERRARA el al. 2008). Here we simulate
from a connected subset of this inferred network to
study its statistical properties.

The causal network was constructed using in vivogene
expression and metabolite data from a sample of 58
mice from an Fo — 0b/ 0b population generated from the
C57BL/6] (B6) and BTBR founder strains (LAN e al.
2006). The B6 and BTBR strains, when made obese,
differ in diabetes susceptibility (STOEHR et al. 2000); B6-
ob/ ob mice are diabetes resistant, whereas BTBR-0b/ 0b
mice develop severe diabetes. The included transcripts
had a high positive correlation with glutamine plus
glutamate (Glx) and/or comapped eQTL and mQTL
(FERRARA et al. 2008). Our QDG algorithm with random-

edge orderings converged to two solutions. Figure 10
shows the major connected subset of this network.

We simulated 1000 realizations from the network
depicted in Figure 10, inferring the correct edge direc-
tions for recovered edges on average 83% of the time.
The average percentage of true recovered edges was
75%. All edges except Slcla2— Gix were recovered at
least 70% of the time, with correct direction at least 72%
of the time (Figure 10). False edges were detected at rates
<2% (Table 6). In the construction and simulations, age
was used as an additive covariate and we allowed for sex-
by-genotype interactions. Estimates from the real data
were used as the parameter values in the simulations and
we adopted o = 0.05 for the UDG algorithm.

Our network predicted six edge directions (Figure
10), which we tested by isolating hepatocytes from the
B6 and BTBR parental strains. We used quantitative real-
time PCR to measure gene expression changes in re-
sponse to the 10-mM glutamine supplement in wvitro
(normalization to Actb). Our results indicated that glu-
tamine does significantly change expression of Agxt, Argl,
and Pckl in both strains, as predicted by the network.
Glutamine increased expression of Assl, which is con-
sistent with previous studies showing that glutamine
increases urea cycle enzyme expression. Glutamine de-
creased expression of Slcla2 in both strains and decreased
Ivd in the B6 strain, contradicting our best network,
but our confidence in these directions was marginal
(FERRARA et al. 2008). Thus we used our inferred network
for hypothesis generation, and we confirmed four of six
predictions with subsequent laboratory work.

DISCUSSION

In genetical genomics or eQTL studies, we are
increasingly interested in inferring causal networks for
sets of phenotypes that map to coincident genomic
regions. We typically believe that there is a “master
regulator” and that most comapping is due to indirect
effects. Thus our objective is to untangle the direct and
indirect effects of QTL and phenotypes. We provide a
novel method that can first infer what phenotypes have
proximal relationships (undirected graphs) and then
orient those edges to infer causal relationships, leading
to a unified causal network.

In recent years, there has been a large effort to model
phenotypic networks. Several approaches have been
employed to construct association networks (SCHADT
and Luwm 2006). H. L1 et al. (2006) based association
networks on partial correlations among phenotypes
with significant eQTL; ZHANG and HorvaThH (2005)
clustered phenotypes into modules on the basis of a
power function of pairwise correlation; LAN et al. (2006)
used phenotype correlation with strong eQTL to iden-
tify sets of functionally related expression traits.

Much work has been done to infer causal networks. R.
L1 et al. (2006) built causal networks among phenotypes
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(D2Mit395)
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D1Mit64)

(Arg)

(0.99,0.96)

D10Mit233

and genotypes, using structural equation modeling
involving a hierarchy of interconnected linear models.
Their model selection procedure was computationally
intensive, searching over a wide class of possible models.
In the genetical genomics setting, ZHU et al. (2004)
extended standard Bayesian network reconstruction
methods to include detected major QTL driving gene
transcript abundance. Due to computational restric-
tions, only a few QTL were included for each expression

TABLE 6

Proportion of false positive (PFP) edges detected by
the UDG algorithm for the network in Figure 10

Node 1 Node 2 PFP

Slcla2 Agxt 0.019
Slcla2 Argl 0.001
Slcla2 Pckl 0.006
Glx Ivd 0.002
Glx Argl 0.008
Glx Pckl 0.015
Ivd Argl 0.007
Ivd Pckl 0.004
Agxt Pckl 0.006

(D2Mita11)

F1Gure 10.—Connected subset of the metabo-
lite and gene expression causal network pre-
sented in FERRARA et al. (2008). Age and sex
(not shown) were used as covariates in the causal
orientation. Edges from Slc1a2 were reversed in
the second-best network. Values on edges are
the proportion of times the edge was recovered
and the proportion of correct direction relative
to the recovered edges.

trait. Further, no feedback cycles were allowed in the
model. ScHADT et al. (2005) related expression to
clinical traits, providing a conditional probability-based
approach to distinguish whether expression changes
associated with a QTL were causal, reactive, or in-
dependent from clinical changes. BING and HOESCHELE
(2005) proposed a strategy to build a network extending
from candidate genes in eQTL genomic intervals to cis-
and transregulated mRNAs. However, their approach
required identifying all candidate genes in genomic
intervals and did not infer direction between pheno-
types (expressed genes) except from a cisacting gene
affecting the expression of another gene in frans. KuLp
and JAGALUR (2006) built partially directed networks of
expression phenotypes using a gene of interest as a seed
and including trans-acting regulator—target pairs iden-
tified by gene mapping. KEURENTJES ¢t al. (2007) used
the BING and HorscHELE (2005) approach in Arabi-
dopsis to rediscover a well-studied regulatory network
associated with flowering time. However, none of these
genetical genomics methods can infer the causal
direction between two phenotypes that do not share a
common QTL or when one expressed gene is not phys-
ically located within the QTL support interval of other
transcripts.
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We have proposed a simple method for causal
network construction that extends existing causal net-
work methods by accommodating phenotypes that
have no common QTL. Our QDG method does not
require that any phenotype correspond to a gene in
a QTL support interval for another phenotype. We have
shown how to infer causal direction in an association
network of phenotypes by conditioning on causal QTL,
even when graphs include cycles. This method is part of
a larger strategy to reveal phenotypic networks. We
begin with a feature selection to reduce from thousands
of phenotypes to a manageable number (¢f. ZHANG and
Horvath 2005; LAN et al. 2006) followed by a focus on a
particular functional group. We then use QTL mapping
methods to identify major QTL of phenotypes in this
functional group (Y1et al. 2005, 2007) . Finally, we use the
approach described in this article to infer a phenotypic
network for this functional group.

This proposed method can handle multiple QTL and
covariates (additive or interactive) and has computing
time proportional to the number of edges. It can be
readily extended to include discrete driving factors
other than genotypes, such as sex or treatment group.
Furthermore, this method can be applied to a wide
variety of phenotypes, and here we demonstrate its ap-
plication to gene expression and metabolite data. The
incorporation of genotypes (or discrete driving factors)
allows the reconstruction of a single directed network of
phenotypes (see METHODS). Previous work in gene ex-
pression network reconstruction using Bayesian networks
(FRIEDMAN et al. 2000) was limited to the inference of
equivalence classes, that is, a set of networks that have the
same likelihood. Another noteworthy advantage is that
the QDG does not require sequence information and can
therefore be useful in the discovery process for a broader
range of genetical genomics experiments. However, we
can use sequence data to improve models in a similar
fashion to KEURENTJES et al. (2007).

Our QDG method shows superior performance over
the PC algorithm (SPIRTES et al. 2000) to infer correct
direction of edges that bifurcate from a node. That is,
the pleiotropic effect of one gene expression phenotype
on two other phenotypes is readily detected by our QDG
method, but missed by the PC algorithm. Both methods
do well in detecting unshielded collider patterns, which
correspond to the interactive effect of two gene expres-
sion phenotypes on a third phenotype. The enhanced
ability of the QDG algorithm to infer both pleiotropy
and epistasis will be valuable as eQTL and mQTL studies
become more prevalent in experimental crosses.

In preliminary simulation studies (using data gener-
ated from Figure 3) we also investigated the perfor-
mance of the method proposed by OPGEN-RHEIN and
STRIMMER (2007) to partially direct graph skeletons.
Because their method was unable to recover any of the
directions in our preliminary studies, we did not pursue
further comparisons.

In this article we assume that a set of multiple QTL
affecting each of the phenotypes has been previously
determined. With sample sizes in the order of 300-500
we expect to have enough power to detect QTL for a set
of functionally related phenotypes appropriate for our
causal network methods. Furthermore, phenotypes with
no detectable QTL can still be included in the analysis.
Edge direction involving these nodes is largely deter-
mined by neighboring phenotypes and their QTL. For
instance, if we did not detect any QTL for phenotype y;
we still can orient the edge since the causal models
are not likelihood equivalent, f(ys | y1, g2) f{y1) # fy1 | y2)
f(y2 | ¢2). Finally, we point out that previous studies have
considered applying relaxed LOD score thresholds to
detect minor QTL that would have otherwise been
missed and have successfully uncovered interesting
pathways (CHESLER el al. 2005; LAN et al. 2006). We
anticipate that such a strategy would work effectively
with our proposed method.

Distinct QTL are necessary to infer causal direction in
a phenotype network. We can orient an edge between a
pair of phenotypes with common QTL if there is at least
one additional QTL or causal phenotype that affects one
of the pair but not the other. However, two phenotypes
with only one common QTL have causal models that are
likelihood equivalent, f(q) f(y1 | ¢)f(y2 | y1. 9) = Q) f(32 |
q) f(y1 | yo, g). In these cases, we can modify the network to
determine directionality by breaking genotype-pheno-
type edges (SCHADT et al. 2005), thatis, in addition to the
pleiotropic causal model, we also consider models
@—>@—>@ and @—>@ —>@ Note,
however, that if the data best support the pleiotropic
model, we cannot infer a direction. Further, our QDG
method determines a P-value to orient each edge. If that
Prvalue is large, then we have little confidence in the
direction. Such edges may be interpreted as undirected.

Our METHODS section describes an application of the
SCHADT et al. (2005) approach to test whether a QTL has
a direct or an indirect effect on a phenotype. Further-
more, we are currentlyinvestigating a strategy to integrate
QTL as nodes in the undirected dependency graph,
allowing the algorithm to automatically test for direct and
indirect QTL effects. We feel, however, that these further
investigations are out of the scope of this article.

As is the case with any other network inference
method, UDGs (and PC skeletons) can show false edges
due to latent variables, including other phenotypes and
genotypes. The absence of hidden variables is a com-
mon assumption in correlation-based network infer-
ence methods (e.g., DE LA FUENTE et al. 2004; SCHAFER
and STRIMMER 2005a,b). Potential problems caused by
hidden phenotypes include erroneous inference of
direct causation between phenotypes where there is
either (a) indirect causation through an intermediate
missing phenotype or (b) independence of the pheno-
types examined given a hidden variable (DE LA FUENTE
et al. 2004).
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While our approach can detect circular paths involv-
ing three or more phenotypes, it merges reciprocal in-
teractions between two phenotypes, @C@ In
these cases, a single edge is oriented in the direction of
higher strength. Currently we are investigating a Bayes-
ian approach to formally incorporate prior information
about network topology and edge orientation.

In conclusion, we have presented a novel, efficient
causal network construction method, QDG, with four
main advantages: (1) we reduce computation time by
avoiding a search over the entire graph space; (2) we
screen out edges associated with partial correlation that
are not causative in directed acyclic graphs; (3) we can
infer feedback loops, which are common in genetic,
metabolic, and biochemical networks; and (4) we can
infer a single network, instead of an equivalence class of
networks. The causal phenotype network method de-
veloped here may have broad applicability across a
range of population structures. This can include, but
is not limited to, inbred crosses, outbred crosses, and
natural populations. The causal networks that emerge
can form the basis for hypotheses about critical path-
ways that can be individually tested using knockouts or
overexpression of genes.
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