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Abstract 
Insulin resistance is necessary but not sufficient for the development of type 2 diabetes. 
Diabetes results when pancreatic beta-cells fail to compensate for insulin resistance by 
increasing insulin production through an expansion of beta-cell mass or increased insulin 
secretion. Communication between insulin target tissues and beta-cells may initiate this 
compensatory response. Correlated changes in gene expression between tissues can 
provide evidence for such intercellular communication. We profiled gene expression in 
six tissues of mice from an obesity-induced diabetes-resistant and a diabetes-susceptible 
strain before and after the onset of diabetes. We studied the correlation structure of 
mRNA abundance and identified 105 co-expression gene modules. We provide an 
interactive gene network model showing the correlation structure between the expression 
modules within and among the six tissues. This resource also provides a searchable 
database of gene expression profiles for all genes in six tissues in lean and obese 
diabetes-resistant and diabetes-susceptible mice, at 4 and 10 weeks of age. A cell cycle 
regulatory module in islets predicts diabetes susceptibility. The module predicts islet 
replication; we found a strong correlation between 2H2O incorporation into islet DNA in 
vivo and the expression pattern of the cell cycle module. This pattern is highly correlated 
with that of several individual genes in insulin target tissues, including IGF2, which has 
been shown to promote beta-cell proliferation, suggesting that these genes may provide a 
link between insulin resistance and beta-cell proliferation.  
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Introduction 
 Type 2 diabetes is a disorder that involves an increased demand for insulin 
brought about by insulin resistance, together with a failure to compensate with sufficient 
insulin production. Although Insulin resistance occurs in most obese individuals, diabetes 
is generally forestalled through compensation with increased insulin. This increase in 
insulin occurs through an expansion of beta-cell mass and/or increased insulin secretion 
by individual beta-cells. Failure to compensate for insulin resistance leads to type 2 
diabetes. 
 One way to understand the pathophysiology of diabetes is to examine the 
coordinate changes in gene expression that occur in insulin-responsive tissues and 
pancreatic islets in obese animals that either compensate for insulin resistance or progress 
to type 2 diabetes. In each case, there are groups of genes that undergo changes in 
expression in a highly correlated fashion. By identifying groups of correlated transcripts 
(gene expression modules) during the compensation and development of diabetes, we can 
gain insight into potential pathways and regulatory networks in obesity-induced diabetes.  
 We study two strains of mice that differ in obesity-induced diabetes susceptibility. 
In this study, we surveyed gene expression in six tissues of lean and obese C57BL/6 (B6) 
and BTBR mice aged 4 wks and 10 wks. B6 mice remain essentially non-diabetic at all 
ages, irrespective of obesity. When obese, BTBR mice become severely diabetic by 10 
weeks of age.  
 By analyzing the correlation structure of the genes under three contrast 
conditions, obesity, strain, and age, we identified gene expression modules associated 
with the onset of diabetes and provide an interactive co-expression network model of 
type 2 diabetes. We found a key module that is comprised of cell cycle regulatory genes. 
In the islet, the expression profile of these transcripts accurately predicts diabetes and is 
highly correlated with islet cell proliferation.  
 
Results 

Diabetes results from the convergence of age, strain, and obesity  
To understand the relative contribution of age, strain, and obesity to the etiology 

of type 2 diabetes, we compared mice across three primary axes: time; 4 vs. 10 wks of 
age, body mass; lean vs. obese, and strain; C57BL/6 (B6) vs. BTBR mouse strain (Fig. 
1A). B6 and BTBR mice differ in obesity-induced diabetes susceptibility. The B6 strain 
is essentially non-diabetic when it carries the leptinob/ob (ob) mutation, whereas, by 10 
weeks of age, the BTBR ob mouse is severely diabetic (Fig. 1B). Since the BTBR ob 
mouse is not yet diabetic at 4 wks of age, changes in gene expression at this time are 
potential causes rather than consequences of hyperglycemia. The ability of the B6 mouse 
to maintain euglycemia when challenged with morbid obesity is due to a >50-fold 
increase in circulating insulin at 10 wks of age (Fig. 1C). This contrasts with the relative 
hypoinsulinemia of the 10 wk old BTBR ob mouse. The difference in insulin at 10 wks of 
age is correlated with the number of islets harvested from the pancreas (Fig. 1D), 
suggesting that the ability to continue compensating for insulin resistance is a function of 
the ability to continue expanding β-cell mass.  

We observed significant differences between B6 and BTBR mice in circulating 
adipose-derived hormones (adipokines). Adiponectin has been shown to regulate 
peripheral insulin sensitivity. There was a ~50% decrease in circulating adiponectin in 
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BTBR mice relative to B6 mice, irrespective of age and obesity (Fig. 1E). Plasminogen 
activator inhibitor-1 (PAI-1), a bio-marker for inflammation, showed an obesity-
dependent increase at 4 and 10 wks only in BTBR mice (Fig. 1F). In rodents, resistin is 
highly expressed in adipose tissue and is thought to negatively regulate hepatic insulin 
sensitivity (Haluzik and Haluzikova 2006). Resistin showed an obesity-dependent 
increase in all but the diabetic BTBR mice (Fig. 1G). In summary, three key adipokines 
showed significant differences between the various groups of mice, consistent with a 
potential role for adipose tissue in the diabetes susceptibility of BTBR mice.   
 
Differential expression of individual genes among 6 key tissues  

Since age and obesity are necessary to unmask diabetes, we sought to deconstruct 
their relative contribution in B6 and BTBR mice by gene expression profiling of lean and 
obese male mice at 4 and 10 wks of age. In each strain, average expression levels from 
the four groups of mice can be sorted into 15 distinct theoretical patterns (Table S1). 
Using EBarrays, the empirical Bayes method described in Methods, for each transcript in 
each strain, we calculated the posterior probability for each of the 15 patterns and 
assigned the transcript to the expression pattern with maximum posterior probability 
(MPP). Differentially expressed (DE) transcripts are defined as those with MPP > 0.7 
(MPP > 0.5 for hypothalamus) for one of the DE patterns (patterns 2-15 in Table S1) in at 
least one mouse strain. Figure S1 plots the MPP for DE transcripts in B6 vs. the MPP for 
DE transcripts in BTBR.  We found that > 96% of the DE transcripts were confined to 7 
of the 14 possible DE patterns (shaded in Table S1). This approach has enabled us to 
identify primary and secondary drivers of changes in gene expression in the six tissues 
profiled. It is important to note that thresholds were chosen to balance FDR and number 
of genes identified (see legend of Figure S1). To ensure that modules identified were 
robust to more stringent thresholds for DE transcript identification, we varied the MPP 
cutoff and remapped the modules onto those identified at lower thresholds.  For all 
tissues, except hypothalamus, the modules identified with MPP > 0.9 dendrogram tree 
were remapped onto the MPP > 0.8 and MPP > 0.7 dendrogram trees, maintaining their 
color designation. For hypothalamus the modules from the 0.6 tree were remapped onto 
the 0.5 tree, as the 0.7 tree had only one module (turquoise). Figure S7 shows the result 
from islet (hypothalamus is similar).  As shown, most clusters are highly conserved.  

Primary vs. secondary drivers of differential gene expression at the individual 
transcript level 

There were three variables in our experiment: obesity, age and strain. Using a 
non-supervised hierarchical algorithm, the 40 mice, 5 in each of 8 groups, were clustered 
based solely on the DE transcripts for each tissue. Differential gene expression in islet, 
liver, and adipose tissue was primarily driven by obesity, whereas differential expression 
in the two muscle tissues and hypothalamus was driven primarily by age (Fig. S2). 
Secondarily, age determined the clustering of the mice in islet, liver, and adipose tissue, 
whereas obesity drove the secondary changes in muscle and hypothalamus. 

Each tissue contains modules of highly-correlated differentially expressed 
transcripts enriched for specific biological functions 

To create a framework to explore strain, obesity and age-dependent determinants 
of gene expression, we restricted ourselves to the DE transcripts in each tissue and 
calculated the correlation coefficient among all transcripts, and partitioned them into 
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color-coded modules by the method of Zhang and Horvath (Zhang and Horvath 2005) 
(Table S2). Such modules often contain transcripts of related biological function 
(Carlson et al. 2006; Gargalovic et al. 2006; Ghazalpour et al. 2006; Horvath et al. 2006). 
Each tissue yielded 19 distinct co-expression network modules, except hypothalamus, 
which had 10, for a total of 105 modules (Fig. S3). The modules were largely cohesive, 
as quantified by measuring the pairwise correlations of transcripts within each module. 
Average absolute pairwise correlations exceeded 0.7 for 84%, 100%, 79%, 95%, 90% 
and 30% of the modules in islet, adipose, liver, solues, gastrocnemius and hypothalamus, 
respectively (data not shown). 

To assess the biological relevance of the co-expression network modules we 
asked if modules contained genes enriched for specific biological processes. A substantial 
number of modules in each tissue were enriched for genes with specific gene ontology 
(GO) classifications. For example, in each tissue, except hypothalamus, we identified a 
single module significantly enriched with genes involved in cell cycle regulation (p < 10-

14 for each tissue) (Table S4). Thus, unsupervised clustering of genes with highly 
correlated expression profiles yields modules enriched for biologically relevant processes 
(Horvath et al. 2006).      

We examined the contrast condition(s) responsible for differential expression for 
all DE transcripts in each of the 6 tissues: obesity, age and/or strain (Fig. 2; see also 
http://diabetes.wisc.edu/kelleretal2008/fig2.php for hyper-linked data page). Strain-
dependent differences are evident when the pattern distribution for a particular color-
coded module is shifted in the two strains. For example, the cell cycle module in islets 
(greenyellow, arrowhead) is predominantly “all different” in B6, reflecting a combination 
of obesity and age as primary drivers of DE for this module. However, a large fraction of 
these genes change to an “age only” pattern in BTBR, resulting from the loss in an 
obesity-dependent signal present in B6. In contrast to the regulation of cell cycle genes 
observed in the islets, a similar set of genes in adipose tissue (lightgreen, arrow head), 
also enriched in cell cycle regulatory transcripts, showed an “all different” expression 
pattern in both mouse strains. Table S3 lists the number of transcripts contained within 
each co-expression module as a function of expression pattern, strain and tissue (see also 
http://diabetes.wisc.edu/kelleretal2008/tabs3.php). In short, an unsupervised analysis of 
expression modules identified a key change in cell cycle gene expression in islets that 
distinguishes a diabetes-susceptible from a non-diabetes-susceptible mouse strain. 

We identified a module of highly correlated genes in liver (turquoise module) that 
had a strain-specific expression pattern. Within this module is the glucagon receptor 
(GcgR), which shows an age-dependent increase in lean and obese B6 and BTBR mice 
and an obesity-dependent decrease in all mice except 10 wk B6. Hepatic glucagon 
receptor mRNA expression has been shown to increase in diabetic animals and in fasting 
conditions and its expression may be regulated by serum glucose levels via glucokinase 
(Burcelin et al. 1998). Inhibition of glucagon receptor mRNA expression in liver in db/db 
animals improves glucose tolerance and normalizes serum glucose, so it is clear that 
hepatic glucagon signaling plays a crucial role in the pathophysiology of diabetes (Liang 
et al. 2004). As glucagon signaling in the liver leads to increased nutrient mobilization, 
we looked in the same module for genes involved in these processes. We identified genes 
involved in carbohydrate metabolism (isocitrate dehydrogenase 2, aldolase 1A, 
phosphoglycerate mutase-2, and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3), 
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ketone body production (aldehyde dehyrogenase 1b1), and oxidative phosphorylation 
(succinate dehydrogenase A, mitochondrial F0 complex, subunit c). This suggests that by 
examining correlated genes within a module, we can identify strain-specific differences 
in key metabolic signals and their downstream effects on cellular metabolism.    

The cell cycle modules predict adipose & beta-cell replication and obesity & 
diabetes 

To maintain euglycemia, insulin-resistant animals must increase insulin 
production, which can occur through an expansion of pancreatic beta-cell mass. We focus 
here on two of the five tissue-specific modules that were highly enriched in genes 
controlling the cell cycle. The islet cell cycle module had 217 transcripts, which showed 
an age-dependent decrease in expression in both mouse strains and an obesity-dependent 
increase only in B6 mice (Fig. 3A). We calculated the 1st principle component (PC1) as a 
single descriptor of the expression pattern for the entire module (Fig 3B). The PC1 shows 
an obesity-dependent increase in cell cycle gene expression in the islets of B6 mice at 4 
and 10 weeks of age. This induction fails to occur in BTBR mice. The same strain-
specific differences in obesity-dependent induction of the islet cell cycle module were 
seen at 4 weeks, when the animals were still euglycemic. Thus, the islet cell cycle module 
changes precede the onset of diabetes.  

The cell cycle module profile predicts that obesity induces islet cellular 
proliferation in B6 but not BTBR mice. To measure islet cellular proliferation, we 
exposed the mice to 8% 2H2O in the drinking water for two weeks and measured the 
enrichment in 2H in DNA extracted from their islets. By normalizing the islet enrichment 
values to 2H enrichment in bone marrow DNA, which undergoes complete turnover 
during this period, we estimated the percent new cells in the islets (Neese et al. 2002). B6 
ob mice showed a 2.6-fold increase in the percent new islet cells relative to B6 lean mice 
(Fig. 3C). In contrast, BTBR islets showed no significant increase in the proportion of 
new islet cells in response to obesity.  

In contrast to islets, the cell cycle module in adipose did not show a strain 
difference in expression pattern: both B6 and BTBR show an obesity-dependent up-
regulation of expression for these genes at 10 weeks of age (Fig. 3A, B). Consistent with 
the gene expression data, cellular proliferation measured in adipose tissue showed no 
strain difference in the fraction of newly replicated cells, with mice in both strains 
showing an obesity-dependent increase in cellular growth (Fig. 3C). Thus, the adipose 
cell cycle module PC1 correctly predicted adipose tissue proliferation and obesity, just as 
the islet cell cycle module predicted islet proliferation and diabetes.  

Gene expression modules are highly correlated with glucose and insulin levels 
Modules in islet, adipose and soleus most strongly correlated with plasma glucose 

(Fig. S4) contained genes previously shown to have a role in glucose homeostasis. For 
example, the cyan module in islet contains the branched chain aminotransferase 1 
enzyme (BCAT1), which on its own had a 0.85 correlation with plasma glucose. BCAT1 
catalyzes the transamination of alpha-ketoisocaproate (KIC) and glutamate to yield 
leucine and alpha-ketoglutarate (alpha-KG). We have previously shown that BTBR islets 
are hyper-responsive to KIC-induced insulin secretion and that alpha-KG can directly 
stimulate insulin release from isolated pancreatic islets (Rabaglia et al. 2005).  

The magenta islet module, also enriched with transcripts highly correlated with 
plasma glucose (Fig. S4), contains transcripts from a number of genes previously 
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highlighted for their potential role in glucose homeostasis, including: gamma-subunit of 
the gamma-aminobutyric acid A-receptor, Gabrd (plasma glucose correlation = 0.93); 
peroxisome proliferator activated receptor-alpha, Ppar-alpha (0.92); and cocaine and 
amphetamine regulated transcript, Cart (0.86). Glucose suppresses glucagon release by 
activation of the GABA-A receptors on alpha-cells, mediated by GABA released from 
neighboring beta-cells (Rorsman et al. 1989; Wendt et al. 2004). More recent evidence 
suggests that glucose may directly suppress glucagon release from alpha-cells (Vieira et 
al. 2007). Chronic treatment of Ins-1 cells or primary rat islets with a high glucose 
medium has been shown to decrease Ppar-alpha expression (Roduit et al. 2000). Finally, 
Cart expression is up-regulated in the beta-cells of type 2 diabetic models in rat (Wierup 
et al. 2006) and Cart knockout mice have impaired GSIS and are glucose intolerant 
(Wierup et al. 2005). Taken together, our results indicate that modules highly correlated 
with plasma glucose may identify compensatory changes in gene expression elicited by 
hyperglycemia.  

Only islet, liver and adipose contained modules correlated with plasma insulin. 
Adipose contained the greatest number of modules correlated with insulin (11 of 19), 
whereas liver contained the module with the greatest absolute correlation with plasma 
insulin (Fig. S4). Obesity is a well-known driver of changes in plasma insulin, due to an 
obesity-induced increase in insulin resistance. The lack of correlation for insulin in the 
muscle tissues and hypothalamus is consistent with their “age-responsive” expression 
patterns, with few obesity-related transcripts (Fig 2). For islets, liver and adipose, 
modules with a high correlation with insulin were generally not correlated with glucose. 

We identified a module of correlated transcripts in adipose tissue enriched with 
genes involved in inflammation (the brown module, Fig. S3). These transcripts show 
increased expression in the obese animals, and older animals, of both strains. These data 
are consistent with the previous finding that adipose tissue from the B6 ob/ob mouse is 
enriched in transcripts found in macrophages (Weisberg et al. 2003; Xu et al. 2003). 
These cells are believed to secrete cytokines that affect peripheral insulin resistance. Up-
regulated transcripts in our module include: F4/80, the macrophage-specific surface 
marker; CD68, a macrophage transmembrane protein; CD11b, an integrin found 
primarily on macrophages and other inflammatory cells; and ADAM8, a monocyte 
metalloproteinase. Transcripts in this module showed a high correlation (MS = 0.7) with 
plasma glucose (Fig. S4).  

An inter-tissue gene expression network model 
A major challenge in diabetes research is to better understand the potential 

relationships between gene expression changes among various tissues. For example, there 
are dramatic changes in gene expression in liver, muscle, and adipose tissue associated 
with insulin resistance and consequent changes in islets. Insulin-resistant tissues may 
communicate with islets through the production and secretion of blood-borne factors.  

One way to search for molecules that mediate inter-organ communication is to 
identify relationships among the 105 modules across all 6 tissues. For each strain we 
represented each module with its strain-specific 1st principal component, (PC1strain), 
which is highly correlated with all the module-specific transcripts (Fig. S5). Each module 
corresponds to a node within the network (Fig. 4, see also 
http://diabetes.wisc.edu/kelleretal2008/fig4.php for hyper-linked data page). Strain-
specific edges are shown when two modules have significant partial correlation (PaCor). 
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PaCor is distinct from an ordinary correlation in that PaCor reveals the direct correlation 
between two PC1s after adjusting for the effects of all other module PC1s, as well as 
plasma glucose and insulin (see Methods). Adjusting for these two physiological traits 
has allowed us to more clearly establish direct gene-to-gene networks in B6 and BTBR. 
The strain-specific networks contained only 66 and 62 of 105 module nodes, forming just 
125 and 161 significant edges out of potentially 5,460 edges, in B6 and BTBR, 
respectively (Fig. 4). Few connections were formed out of the total possible number 
(~2%), which is consistent with the assumptions made in the network construction 
algorithm (Schafer and Strimmer 2005a).  Thus, in the diabetic strain, fewer network 
nodes were associated with a greater number of inter-tissue connections.  

Strain-specific PaCor among the 105 PC1strain variables, plasma glucose and 
insulin, revealed remarkable strain differences (Fig. S6). In B6, there were 14 
connections between glucose and gene modules, whereas in BTBR plasma glucose made 
no connections with any module after adjusting for insulin and other module nodes. For 
insulin, there were significant PaCor connections formed with 6 and 7 modules in B6 and 
BTBR mice, respectively, with only one in common. Many modules contain transcripts 
highly correlated with plasma glucose or insulin (Fig. S4).  

There were substantial differences between tissues in the degree of intra-tissue 
connectivity in the co-expression network (Fig. 4). The two muscle tissues had the most 
intra-tissue connections, whereas liver and hypothalamus had the fewest, in both strains. 
Gastrocnemius showed a 2-fold increase in the number of intra-tissue connections in 
BTBR vs. B6 mice. The number of connections present in the other tissues was similar 
between the strains. There was 2-8-fold more inter-tissue than intra-tissue connections in 
all tissues, except gastrocnemius, where there were ~60% fewer inter-tissue connections. 
All tissues showed an increase in inter-tissue connectivity in BTBR vs. B6. Soleus and 
liver had the greatest number of inter-tissue connections, whereas gastrocnemius had the 
fewest. Overall, connection strength was greater for intra-tissue connections than for 
inter-tissue connections throughout the network. Taken together, our results suggest that 
obesity-dependent diabetes results in dramatic changes in the intra-tissue correlation 
structure of the co-expression network.  

There were several nodes in each of the strain-specific networks that appear to be 
“hot spots”, or nodes that form the greatest number of connections within the network 
(Fig. 4, asterisks). These hot spots were found in both strains and in all tissues, excluding 
gastrocnemius, consistent with the relatively low inter-tissue connectivity of this tissue. 
Several of the hot spot nodes form as many as 10 or more connections with other nodes. 
It is interesting to note that these hot spots are highly inter-connected among themselves, 
as well as with other nodes. 

The islet cell cycle module, Isletgreenyellow (Fig. 4, arrow head) showed dramatic 
strain-dependent changes in its interconnectivity within the network. In the B6 network 
there is one connection between this node and a node derived from another islet module, 
Isletcyan, with a negative association (Fig. 4, arrow head). Interestingly, the Isletcyan 
module contains transcripts with expression patterns highly correlated with plasma 
glucose (Fig. S4), suggesting that genes positively correlated with glucose, have negative 
association with the genes within the cell cycle module in B6 islets.  

In the BTBR network, the intra-islet connection was lost, being replaced with two 
new connections: a negative association with the livermagenta node and a positive 
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association with the soleusmidnightblue node (Fig. 4, arrow heads). Both of these nodes are 
highly interconnected within the network, forming 16 and 10 connections, respectively. 
The soleus node contains transcripts with expression patterns highly correlated with 
plasma glucose (Fig. S4), suggesting glucose-regulated genes in soleus may positively 
associate with cell cycle regulatory genes in BTBR islets.  

The islet cell cycle module is highly correlated with individual transcripts in insulin 
target tissues 

The correlations between modules do not allow the identification of instances 
where there are strong correlations between a module and a transcript not belonging to a 
module. To identify transcripts highly correlated with the islet cell cycle module, we 
calculated the correlation between the module’s PC1 and all transcripts in each of the five 
non-islet tissues. We identified a few transcripts with high correlations to the islet cell 
cycle PC1, including: Gdf10 (0.85, gastrocnemius), BMP-1 (0.84, soleus), Igf2 (0.86, 
soleus), Igf2bp1 (0.85, adipose) and NGF-beta (0.8, soleus). These genes could 
potentially mediate a signal that promotes islet cellular proliferation. These results offer a 
hypothesis that one or more of these proteins mediates beta-cell proliferation in insulin-
resistant mice.  

A searchable type 2 diabetes gene expression database 
 We have created a searchable resource (http://diabetes.wisc.edu) of the gene 
expression data that was used to generate the network model described herein. This 
search tool allows the user to enter one to multiple genes and will display the gene 
expression profiles our 8 experimental groups (lean and obese B6 and BTBR mice at 4 
and 10 weeks of age) in any of 6 tissues (islets, adipose, liver, gastrocnemius, soleus and 
hypothalamus). In addition, we have incorporated a transcript-to-transcript correlation 
tool that can be used to identify groups of genes with highly correlated expression 
profiles. For example, searching the database for the expression profiles for Ccna2 
(cyclin A2) shows that this transcript was included in 4 co-expression gene modules 
(Gastrocnemiuscyan, Isletgreenyellow, Livermidnightblue and Soluesgreen), all of which were 
significantly enriched with GO terms associated with cell cycle regulation (see Table 
S4). Plots of the expression profiles reveal, in general, that Ccna2 decreases with age in 
all tissues and increases with obesity in adipose for both mouse strains and in islet for B6 
mice only. Searching the mlratio database in islets for transcripts that correlate with 
Ccna2 yields a list of 100 transcripts with a Pearson’s correlation, r > 0.94. Many of these 
highly correlated transcripts themselves are involved in cell cycle regulation, including 
FoxM1 (r = 0.99), Ccnb1 (r = 0.98), Ccnb2 (r = 0.98), Brca1 (r = 0.97) and Aurka (r = 
0.96), and are included in the cell cycle regulatory modules. In addition to positively 
correlated transcripts, the most negatively correlated transcripts are displayed, which in 
the case of Ccna2, included Ccnk (r = -0.77), a cyclin that has been shown previously to 
suppress cellular proliferation when over-expressed in human glioblastoma cells (Mori et 
al. 2002). This brief example has illustrated the utility of our searchable database. It can 
be used to survey gene expression in 6 key tissues as a function of obesity, strain and age 
in a mouse model of type II diabetes. We believe it will be a powerful resource tool that 
will benefit many in the diabetes research community.   
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Discussion 
 During the transition to diabetes, tissues undergo coordinated changes in gene 
expression and arrive at a new highly-regulated, although pathological, steady-state. 
These changes are highly correlated and thus enable us to identify modules of 
coordinately regulated genes. In this study, we exploited three primary variables that 
converge to cause type 2 diabetes in our model: obesity, age, and mouse strain, to study 
the correlation structure of the changes in gene expression in 6 tissues. We obtained a 
gene expression network model containing 105 modules and establish the modules’ inter 
and intra-tissue relationships in the non-diabetic and diabetic state. 
 A major finding in our study is that in 5 of the 6 tissues profiled, at least one of 
the tissue-specific modules was significantly enriched with cell cycle regulatory genes. 
Of direct relevance to diabetes pathogenesis, the islet cell cycle module exhibited a 
striking strain difference in expression pattern; B6, but not BTBR, showed an obesity-
dependent increase in expression at both 4 and 10 weeks of age.  
 These results predict a strain difference in beta-cell proliferation during the onset 
of obesity that would correlate with resistance or susceptibility to diabetes. This 
prediction was tested with a direct measure of cellular proliferation. We found that B6 
islets have a robust, obesity-dependent increase in islet cell replication, consistent with 
previous reports. In contrast, BTBR islets failed to increase proliferation in response to 
obesity. Thus, the islet cell cycle module predicted diabetes. 

Given the dramatic islet growth phenotypes that have been reported for the Cdk4 
knockout (Rane et al. 1999; Tsutsui et al. 1999) and constitutively-active transgenic 
(Rane et al. 1999) mouse, we asked whether Cdk4 or any of the D-type cyclins were 
present in the islet and other tissue-specific cell cycle modules. These genes were not 
present in the cell cycle modules, suggesting that age, obesity and strain were not factors 
that alter their expression in our experimental model. However, cyclins (Ccn) A, B and E 
were identified in several cell cycle modules, suggesting these molecules play a critical 
role in obesity and age-related changes in cell cycle progression. CcnA was present in the 
cell cycle modules in all tissues except adipose, whereas CcnE was unique to adipose.  
 There are a number of Cdk inhibitors (Cdkn), but only two that were identified in 
the cell cycle modules: Cdkn2c (p18) in the liver module and Cdkn3 in both liver and 
islet modules. Similar to the partnership that is formed between Cdk4/6 and CcnD, Cdk2 
partners with either CcnE or CcnA to mediate phosphorylation of retinoblastoma tumor 
suppressor protein (pRb) at sites distinct from those phosphorylated by Cdk4/6 (Cozar-
Castellano et al. 2006). Remarkably, Cdk2 was uniquely included in the cell cycle 
module of the islets, suggesting that Cdk2-dependent phosphorylation of pRb may be a 
key regulatory step that mediates the strain difference in islet cell proliferation between 
B6 and BTBR mice. pRb is widely regarded as the molecular “brake” that controls 
transition from G1 into S phase of cellular growth (Cozar-Castellano et al. 2006). Once 
relieved of pRb-dependent inhibition, a family of E2F transcription factors mediates 
coordinate regulation of gene expression that is required for cellular replication. 
However, it is important to note that beta-cell specific ablation of pRb does not lead to 
pancreatic beta-cell mass or glucose homeostatic phenotypes, suggesting that other 
factors (e.g., the additional pocket proteins, p107 or p130), can compensate to achieve 
growth arrest in the absence of pRb (Vasavada et al. 2007).      
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 E2F1 and E2F2 were found in soleus and liver, whereas E2F8 was in adipose and 
islet cell cycle modules. E2F7 was found exclusively in the islet cell cycle module. Our 
results reveal key molecular components of the cell cycle regulatory machinery that form 
expression pathways in most of the tissues profiled. Some of these components are 
uniquely contained in islet pathways and may play a critical role in islet cell proliferation 
during aging or under the stimulus evoked by obesity-induced insulin resistance. 
 The cell cycle module results also predicted an obesity-dependent increase in 
adipose cell proliferation in both mouse strains. The prediction was tested in vivo and 
again, the results are entirely consistent with the cell cycle module data; both mouse 
strains showed an obesity-dependent increase in adipose cell proliferation. 
 What is the link between obesity and an increase in islet cellular proliferation? 
One possibility is expression and secretion of mitogenic factors from peripheral insulin-
resistant tissues that circulate in the blood, and stimulate beta-cells to proliferate, a 
mechanism supported by transplantation studies (Flier et al. 2001). Perhaps B6 mice 
express a beta-cell mitogenic signal in peripheral tissues and this signal is missing or not 
functional in BTBR mice.  
 To search for possible candidates for these factors, we identified genes in insulin 
target tissues tissues with expression profiles highly correlated to the islet cell cycle 
regulatory module and whose products were putative secreted peptides. Several 
candidates were identified, including NGF-beta, IGF2, IGF2bp1, Gdf10 and BMP-1.  
 Several studies have provided compelling evidence that these molecules play a 
critical role in regulating beta-cell mass. Widespread (Petrik et al. 1999) or local 
(Devedjian et al. 2000; Okamoto et al. 2006) over-expression of IGF2 has been shown to 
promote islet cell hyperplasia, and application of IGF2 to beta-cells in culture, induces 
proliferation (Milo-Landesman and Efrat 2002). Recent genome-wide association studies 
have identified genetic variants in IGF2bp2 that are associated with type 2 diabetes in 
human patients (Saxena et al. 2007; Scott et al. 2007; Zeggini et al. 2007). While distinct 
from IGF2bp2, IGF2bp1 functions similarly to IGF2bp2 to stabilize IGF2 mRNA, 
resulting in increased synthesis and secretion of IGF2 protein. Removal of NGF-beta 
from isolated islets in culture induces apoptosis (Pierucci et al. 2001). Finally, recent 
work has shown that BMP-3, a member of the BMP ligand super-family that includes 
Gdf10 and BMP-1, may play a critical role in regulating beta-cell mass. BMP-3 knockout 
mice have decreased islet Mki67-positive immunoreactivity, reduced beta-cell mass and 
increased random-fed blood glucose, suggesting a role for BMP-3 in regulating beta-cell 
proliferation (Lee et al. 2007).  
 Recent evidence suggests that beta-cell replication is the primary means by which 
animals increase beta-cell mass during adulthood and under conditions of islet 
regeneration (Dor et al. 2004). All beta-cells have equal capacity to replicate (Brennand 
et al. 2007) and this replicative capacity requires functional cyclin-D2 (Georgia and 
Bhushan 2004). Mice harboring beta-cell specific ablations of the transcript factor FoxO1 
(Okamoto et al. 2006) or InsR (Okada et al. 2007) fail to show islet cell hyperplasia in 
response to severe insulin resistance. Taken together, these data strongly support a model 
whereby the expansion of beta-cell mass in response to insulin resistance is due to 
replication of pre-existing beta-cells. Our finding of obesity-dependent differences in the 
expression of genes critical for cell cycle regulation in isolated islets, coupled with our 
direct in vivo measure of islet cellular proliferation corroborates this model. 
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 These studies provide the scientific community with the first gene expression 
network model of type 2 diabetes across multiple tissues. In addition, it provides a large 
database inferring intra- and inter-tissue connections between gene expression modules 
across a wide array of cellular functions. The modules can be broadly used to make 
predictions about the regulation of numerous pathways as we did with the cell cycle 
module.   
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Methods 
Animals 
All mice used in this study were male, bred from our in-house colonies at the University 
of Wisconsin Biochemistry Department and housed in an environmentally-controlled 
facility on a 12 hr light/dark cycle (6 AM – 6 PM, respectively). Mice were provided free 
access to water at all times and to a standard rodent chow (Purina #5008) ab libitum, 
except during a fasting period (8 AM – noon) in order to obtain plasma at 4 or 10 wk of 
age, after which they were sacrificed by decapitation. For each animal, the following 
tissues were collected in order: left lateral lobe of the liver, hypothalamus, right gonadal 
fat pad (adipose), pancreas, soleus and gastrocnemius. For the two muscle tissues, both 
the right and left were combined for gene expression profiling. All tissues, except the 
pancreas, were flash frozen in liquid nitrogen.  All procedures were approved by 
University of Wisconsin Animal Care and Use Committee. 
 
Materials 
Collagenase Type XI, RIA-grade BSA, dextrose, and Ficoll Type 400-DL were 
purchased from Sigma. Hanks’ balanced salt solution was from GIBCO. RNeasy Mini 
Kit was from Qiagen. DEPC-treated water was from Ambion. 
 
Plasma measurements 
Glucose was measured by the glucose oxidase method using commercially available kits 
(Sigma-Aldrich, St. Louis MO). For lean mice, insulin was measured by 
radioimmunoassay (RIA; RI-13K, Linco Research, St. Charles, MO). For ob mice, 
insulin was measured by an in-house developed ELISA using a pair of anti-
insulin/proinsulin antibodies (clones D6C4 and D3E7-BT) purchased from Research 
Diagnostics (Concord, MA). Briefly, 96-well high-binding plates (Corning #3690) were 
coated (50 µl/well) overnight with 3 µg/ml of D6C4. After removal of D6C4, plates were 
blocked with PBS containing 4% RIA-grade BSA (Sigma) for 1 hour (100 µl/well) and 
then incubated for 1 hour with insulin standards (Linco Research, 0.1 to 10 ng/ml), whole 
plasma or whole pancreas extract (25 µl/well). D3E7-BT (25 µl/well), 1 µg/ml in 
PBS/1% BSA was added, gently mixed and incubated for an additional hour. After 
washing each well 3 times (50 mM Tris, 0.2% Tween-20, pH 8), 1 µg/ml of streptavidin-
HRP (Pierce, Rockford, IL) in PBS/0.1% BSA was added (50 µl/well) and incubated for 
30 minutes. Following an additional 3 washes, 16 µmol/ml of o-phenylenediamine 
(Sigma), dissolved in citrate buffer (0.1 M citrate-phosphate, 0.03% H2O2, pH 5), was 
added (50 µl/well) and incubated for 30 minutes, followed by an equal volume of 0.18 M 
sulphuric acid to quench the reaction. Absorbance at 492 nm was determined by a plate 
reader (Ultra 384 TECAN). Insulin contents in plasma were calculated by comparison to 
known standards. Adiponectin, PAI-1 and resistin were determined by commercial 
ELISA services at Linco Research (St. Charles, MO). 
 
Islet isolation and RNA purification 
Intact pancreatic islets were isolated from mice using a collagenase digestion procedure 
as previously described (Rabaglia et al. 2005). Islets were carefully hand-picked under a 
stereo microscope to remove contaminating acinar tissue, after which the islets were 
washed twice with phosphate buffered saline (PBS) and centrifuged at 2,500 rpm, 5 
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minutes, 4°C. The PBS supernatant was removed and 200 µl RLT buffer (Qiagen) was 
added. Islets were homogenized by hand for 1 minute with a plastic micro-pestel (USA 
Scientific), and stored at -80°C until RNA purification. RNA was purified using the 
Qiagen RNeasy Mini Kit, according to manufacturer directions. An Agilent Bioanalyzer 
2100 was used to assess RNA quality for all islet samples, which typically showed a 
28/18S ratio of ~1.5 or greater. 
 
RNA isolation from non-islet tissues, gene expression profiling, data 
normalization, and GO term enrichment analysis. 
RNA preparations (liver, muscles, adipose and hypothalamus) and all array 
hybridizations were performed at Rosetta Inpharmatics (Merck & Co., Seattle, WA, 
USA). The custom ink-jet microarrays used in this study were manufactured by Agilent 
Technologies (Palo Alto, CA) and consisted of 4,732 control probes and 39,558 non-
control oligonucleotides extracted from mouse Unigene clusters and combined with 
RefSeq sequences and RIKEN full-length cDNA clones. Mouse tissues were 
homogenized and total RNA extracted using Trizol reagent (Invitrogen, CA, USA) 
according to manufacturer's protocol. Total RNA was reverse transcribed and labeled 
with either Cy3 or Cy5 flurochrome. For a given strain, labeled complementary RNA 
(cRNA) from each animal of that strain was hybridized against a pool of labeled cRNAs 
constructed from equal aliquots of RNA from all of the animals for that strain (over both 
time points).  All hybridizations were performed in fluor-reversal for 48 hours in a 
hybridization chamber, washed, and scanned using a confocal laser scanner.  Arrays were 
quantified on the basis of spot intensity relative to background, adjusted for experimental 
variation between arrays using average intensity over multiple channels, and fitted to a 
previously described error model to determine significance (type I error) (He et al. 2003).  
Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). 
Gene expression data that was used for the trait-gene correlations was generated using the 
ratio splitter pair wise ratio builder function in Resolver 6.0 (Rosetta Biosoftware, 
Seattle, WA) to account for the strain-specific reference pools. This pipeline allows the 
creation of new experiments based on comparisons of intensity channels from existing 
ratio hybridizations without having to prepare new hybridizations. The ratio splitting 
operation which generates intensity profiles includes error modeling of the channels of 
the ratio scan, group normalization, forward transformation of intensities, group de-
trending and inverse transformations. Experiments are then rebuilt by ratioing each 
sample to a new baseline value, represented here as a super-pool (average of all array 
hybridizations in the experiment). The statistical significance of the overlap between 
input sets from the co-expression networks, and GO biological process gene sets was 
assessed using the hypergeometric distribution and a multiple test correction 
(Bonferroni).  
 
In vivo islet proliferation measurement 
The proliferation rate of islet cells was measured using a recently-developed heavy water 
(2H2O) labeling technique (Busch et al. 2004; Shankaran et al. 2006; Shankaran et al. 
2007). Briefly, the incorporation of deuterium (2H) from 2H2O into the deoxyribose 
moiety of deoxyribonucleotides in cells replicating their DNA is measured by gas 
chromatography/mass spectrometry (GC/MS). To rapidly attain stable 2H2O enrichment 
in body water, mice were given an IP injection of 2H2O in 0.9% NaCl at 6 wk of age. The 
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volume, V (mL) of the IP injection was calculated for each animal according the formula 
for lean and ob animals respectively, Vlean = 0.03 * body weight (gm) and Vob = 0.015 * 
body weight (gm). On the same day of the IP injection, mice were placed on drinking 
water containing 8% 2H2O for a period of two weeks ad libitum. Mice were sacrificed at 
8 weeks of age, at which time plasma was collected and islets and adipose tissue isolated 
as described above. This procedure yielded average 2H2O enrichment in plasma of 5.7% 
± 0.5% in all mice except BTBR ob where 7.8% ± 0.5% enrichment was achieved, owing 
to polyuria, in turn due to hyperglycemia, in these diabetic mice. Hind legs were 
collected in order to determine the 2H2O enrichment in the DNA of bone marrow, a 
cellular population considered to have completely, or nearly completely, turned over 
during the 2 week labeling period (Neese et al. 2002). DNA was extracted from islets, 
whole adipose tissue or bone marrow using Qiagen DNEasy tissue kits (Qiagen Inc, 
Valencia, CA) and hydrolyzed to deoxyribonucleosides.  The deoxyribose moiety of 
purine deoxyribonucleosides was then converted to the pentafluorobenzyl triacetate 
derivative by reaction with excess pentafluorobenzyl hydroxylamine under acidic 
conditions, followed by acetylation with acetic anhydride. GC/MS analysis was 
performed in negative chemical ionization mode using an Agilent (Palo Alto, CA) model 
5973 mass spectrometer and a 6890 gas chromatograph fitted with a db-225 column. 
Selected ion monitoring was performed on ions with mass-to-charge ratios (m/z) 435 and 
436, Incorporation of 2H into purine deoxyribose was quantified as the molar excess 
fraction M1 (EM1), correcting for injected amount of material as described (Neese et al. 
2002).The fraction of newly replicated cells in islet or adipose was calculated as the ratio 
of the 2H-enrichment for each tissue to that observed in bone marrow.  

 
In vivo adipose proliferation measurement 
Measurement of adipose cell proliferation was performed as described above for islets.  
The whole epididmal adipose tissue was removed and frozen.  Genomic DNA was 
isolated and 2H enrichment was determined by GC/MS as above.   
 
Identification of differentially expressed (DE) genes 
To classify genes into differential expression patterns, we used an empirical Bayes 
hierarchical modeling approach called EBarrays (Kendziorski et al. 2006; Newton et al. 
2001; Yuan and Kendziorski 2006), which is implemented in R, a publicly-available 
statistical analysis environment (R Development Core Team. 2005. R: A language and 
environment for statistical computing. R Foundation for Statistical Computing, Vienna, 
Austria) and available through Bioconductor (www.bioconductor.org). EBarrays 
describes the probability distribution of a set of expression measurements. It accounts 
generally for differences among genes in their true underlying expression levels, 
measurement fluctuations, and distinct expression patterns for a given gene among cell 
types or conditions. An expression pattern is an arrangement of a gene’s true underlying 
intensities (µ) in each condition. The number of patterns possible depends on the number 
of conditions from which the expression measurements were obtained. For example, 
when measurements are taken from two conditions, two patterns of expression are 
possible: equivalent expression (µ1 = µ2) and differential expression ( 21 µ≠µ ). Given the 
4 conditions within each strain (4wk or 10wk; lean or obese), 15 expression patterns are 
possible (Table S1). Since we do not know a priori which genes are in which patterns, 
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the marginal distribution of the data is a mixture over the possible patterns with model 
parameters determined by the full set of array data. In this way, the approach utilizes 
information across a set of arrays to optimize model fit and is thus more efficient than a 
number of methods that make gene inferences one gene at a time. Posterior probabilities 
for each of the 15 patterns are calculated for every transcript and used for transcript 
classification. For each tissue, a transcript is assigned to the expression pattern with 
maximum posterior probability (MPP). Differentially expressed (DE) transcripts are 
defined as those with MPP > 0.7 (MPP > 0.5 for hypothalamus) in at least one mouse 
strain. For a given threshold, FDR is estimated by averaging the posterior probabilities of 
equivalent expression for each transcript on the list (Newton 2006). Primary expression 
data for all arrays used in this study have been uploaded to the GEO repository (accession 
no. GSE10785).  
 
Identification of co-expression modules 
We used a previously-developed method to identify transcript co-expression modules 
(Zhang and Horvath 2005). For transcripts identified as DE by EBarrays, an adjacency 
matrix was constructed. Each entry in the matrix is the absolute value of Pearson’s 
correlation, adjusted so that the overall network is approximately scale-free. Connection 
strength between two genes (xi and xj) in the network was determined according to the 
adjacency function, aij = |cor(xi,xj)|

β, using the estimated power parameter β, resulting in 
a weighted network (Zhang and Horvath 2005). We note that this allows for all 
correlations to be used, unlike approaches that invoke arbitrary thresholds. For a 
discussion of the advantages of weighted vs. unweighted networks, see (Zhang and 
Horvath 2005) and references therein. The 8,000 most connected transcripts were used in 
the topological overlap matrix (TOM) calculation, and 1 – TOM was used as a distance 
matrix in the hierarchical clustering of the transcripts for module identification. When 
there were fewer than 8,000 DE transcripts in a particular tissue (adipose, soleus and 
hypothalamus), all were used for module identification. We found that clusters were 
robust to more stringent thresholds of 0.8 or 0.9 (MPP) for DE transcript identification 
(Fig. S7).  
 
Partial correlation based networks 
A Gaussian graphical modeling framework was used for gene-gene network construction 
(Schafer and Strimmer 2005a), (Schafer and Strimmer 2005b). Briefly, the method 
assumes a linear relationship among variables that can be described by a multivariate 
normal distribution. In this setting, the partial correlation (PaCor) matrix completely 
prescribes dependence relationships among variables since a non-zero PaCor between 
two variables indicates conditional dependence given all other variables; and a zero 
PaCor indicates that the variables are conditionally independent. More precisely, given 
(X1, X2, …, Xn), the partial correlation between X1 and X2 is defined as the correlation of 
X1r and X2r where Xir denotes the residuals obtained after regressing Xi upon (X3, …, Xn) 
(i=1,2).  In contrast to Pearson’s correlation coefficient between two variables, which can 
be high if those two variables are both related to a third variable, the PaCor quantifies the 
direct correlation between two variables since effects from all other variables are 
adjusted for, or more specifically regressed away.  Significant PaCor’s were identified as 
previously described (Schafer and Strimmer 2005b), with FDR controlled at 0.005. For 
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each mouse strain, 1,000 simulations of multi-variate normal data were generated for 20 
mice and 107 nodes, using the strain-specific empirical covariance matrix, to verify that 
FDR was well-controlled and to evaluate power and the positive predictive value (percent 
of correctly detected edges) for each network. 
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Figure legends 
Figure 1 
10 week old BTBR ob mice are severely diabetic. (A) Schematic representation of 
experimental model depicting a gene expression network connecting key tissues in a 
mouse when examined over 3 primary axes: obesity, strain and age. Clinical phenotypes 
are shown for 5 to 7 animals for each of the 8 groups of mice used for study. Plasma 
glucose (B), insulin (C), total number of islets harvested per pancreas (D), adiponectin 
(E), PAI-1 (F) and resistin (G) are plotted. Open (lean) and closed (ob/ob) circles 
represent individual mice. Horizontal bars show mean values for each group (± S.D.).  
 
Figure 2 
Co-expression modules can be deconstructed to show strain-dependent changes in 
transcript expression patterns. The strain-specific expression pattern for each co-
expression module is illustrated for all six tissues profiled. The color of a particular 
module within one tissue is not related to that same color for a module of another tissue, 
but is preserved across strains. The vertical size of the lines used to illustrate the module 
transcripts is proportional to the strain-specific posterior probability determination 
illustrated in Fig S1. A decrease in the size of the symbols is evident in the hypothalamus 
compared to the other tissues, reflecting the decreased posterior probability cut-off (0.5) 
that was used for DE transcript identification in hypothalamus. For each strain and all 
tissues, every transcript has a unique expression pattern.  Filled arrow heads highlight the 
cell cycle regulatory modules in islet and adipose tissue. Strain-dependent differences in 
expression pattern are evident when the pattern distribution for a particular color-coded 
module is shifted in the two strains. For example, the cell cycle regulatory gene set in 
islets largely shifts from pattern 15 in B6 to pattern 7 in BTBR (see arrow heads). This 
figure is hyperlinked to our micro array gene expression data base at 
http://diabetes.wisc.edu/kelleretal2008/fig2.php.  
 
Figure 3 
Co-expression modules enriched with cell cycle regulation accurately predict 
diabetes and obesity. Expression heat maps (A) and the 1st principal component (PC1) 
on log10 scale (B) of the cell cycle regulatory modules in islets (217 transcripts) and 
adipose (96 transcripts) are shown. For the heat maps, red shows increased expression, 
green shows decreased expression and black is neutral. Bar plots in B show the PC1 for 
individual mice and correspond to an expressed decrease for negative values and 
increased expression for positive values. The percentage of new cells, derived from an in 
vivo measure of 2H incorporation into newly synthesized DNA, is shown for islets and 
adipose tissue (C). Where significant obesity-dependent differences were observed, p-
values are shown. Arrows are used to show influence of obesity. NS, not significant.    
 
Figure 4 
A gene-gene network model is distinct between B6 and BTBR mice. A gene-gene 
network was constructed based on the partial correlation (PaCor) between the strain-
specific PC1 calculated between all modules identified in the 6 tissues profiled. Modules 
are illustrated as colored bricks along the inside and outside of the network wheels and 
preserve the color scheme illustrated in Fig 2. Inter-tissue edges within the network are 

 Cold Spring Harbor Laboratory Press on March 19, 2008 - Published by www.genome.orgDownloaded from 

http://www.genome.org
http://www.cshlpress.com


 20

shown as lines connecting inside modules; intra-tissue edges are depicted as arcs 
connecting the outside modules. The cell cycle regulatory module in islet and those 
modules that form a direct connection to the cell cycle islet module are highlighted with 
open arrow heads. Network hot spots are indicated with asterisks. Line thickness is 
proportional to the magnitude of the PaCor, which ranged from 0.487 to 0.093 in B6 and 
from 0.303 to 0.086 in BTBR, for maximum and minimum respectively. Positive 
predictive value for edge accuracy, obtained from simulations (see methods), were on 
average 78% in B6 and 77% in BTBR. Red, negative PaCor; Green, positive PaCor. 
Significance is set to control FDR at 0.5%.  This figure is hyperlinked to our micro array 
gene expression data base at http://diabetes.wisc.edu/kelleretal2008/fig4.php.  
 
 
Supplementary material 
 
Figure S1 
Each tissue yielded a unique collection of differentially expressed genes. The 
maximum posterior probability (MPP) for B6 is plotted against MPP for BTBR for each 
tissue. Only transcripts that are differentially expressed (DE) in at least one strain are 
shown. Vertical and horizontal lines illustrate the MPP threshold that was used to classify 
a transcript as DE. Each dot represents a transcript, the total of which is the sum of the 
two numbers listed under the tissue type. Transcripts plotted in black have their MPP for 
the same expression pattern, whereas those plotted in red do not. For each tissue except 
hypothalamus, DE transcripts are defined as those with an MPP exceeding 0.7 in all 
tissues except hypothalamus, yielding a false discovery rate (FDR) of islet 0.2, adipose 
0.17, liver 0.19, soleus 0.2 and gastrocnemius 0.2. The threshold was chosen to balance 
FDR with the total number of genes identified. For hypothalamus, a slightly lower MPP 
threshold of 0.5 was used, which yielded an FDR of 0.42 and 3,704 genes identified; this 
was done as the threshold of 0.7 yielded too few genes (357) for meaningful clustering 
and module construction.  
 
Figure S2 
Non-supervised hierarchical clustering of the mice results in obesity vs. age-driven 
gene expression tissue groups. For each tissue, gene expression was determined in 8 
groups of 5 individuals per group. The mice were hierarchically clustered for each tissue 
based solely on the transcripts determined to be differentially expressed as illustrated in 
Fig. S1. Mice in Islet, adipose and liver segregate first by obesity and then by age, 
whereas in the muscles and hypothalamus, the reverse was observed. Obese animals are 
indicated by shading.   
 
Figure S3 
Transcript modules with highly correlated expression profiles are present in all six 
tissues. Dendrogram trees were produced for each tissue by average linkage hierarchical 
clustering of the DE transcript sets illustrated in Fig. S1. Co-expression gene modules are 
indicated by the vertical branches and were assigned colors as shown. Modules showing 
significant enrichment with gene ontology are annotated. Figure S7 indicates that the 
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modules constructed are largely robust to the thresholds chosen. Height represents 
distance between clusters, with distance measured by topological overlap dissimilarity. 
 
Figure S4 
Co-expression modules can be highly correlated with plasma glucose or insulin. The 
absolute value of the Pearson’s correlation coefficient was calculated between all 
transcripts and fasting plasma glucose or insulin. The mean absolute correlation for each 
module is reported as the module significance (MS) (Ghazalpour et al. 2006) and is 
defined as the mean of the glucose (top panel) or insulin (bottom panel) absolute 
correlation values for all transcripts contained within a given module. Arrow heads 
indicate modules with greatest glucose and insulin MS values. Significance is shown for 
p-values at 0.05, 0.01 and 0.001.  Brightly colored modules are those that achieve a p-
value ≤ 0.05.  
 
Figure S5 
Strain-specific 1st principal component can accurate depict all the transcripts 
contained within a co-expression module. The heat map in A illustrates the 452 
transcripts that are contained within the brown module in adipose, which was 
significantly enriched with gene ontology associated with inflammation (see Fig. S4). 
Red indicates increased expression; green, decreased expression; and black is neutral. A 
strain-specific PC1 (black trace) is shown superimposed on the individual expression 
profiles for all transcripts within the module plotted as the log ratio of gene expression 
(B). The majority of transcripts show an up-regulation with obesity (orange traces), while 
a small number show a down-regulation with obesity (blue traces). A Pearson’s 
correlation was calculated between the individual transcripts and the PC1 for each strain. 
A histogram of the resulting correlation values yielded two discrete populations, at -1.0 
and 1.0 (C).  
 
Figure S6 
Plasma glucose and insulin form significant partial correlations with co-expression 
modules. A gene-to-clinical trait network was constructed based on the partial correlation 
(PaCor) between the strain-specific PC1 calculated between all modules and either 
glucose or insulin. Modules are illustrated as in Fig. 4. Line thickness is proportional to 
the magnitude of the PaCor. Red, negative PaCor; Green, positive PaCor.   

 
Figure S7 
Co-expression modules are well preserved across a wide range of posterior 
probability thresholds. Dendrogram trees are illustrated for DE transcripts identified in 
islets using moderate (MPP > 0.7), intermediate (MPP > 0.8) or high (MPP > 0.9) 
posterior probability thresholds. (A) The number of transcripts, value of β necessary to 
achieve a “scale-free” network (see methods) and resulting modules (color-coded for 
each tree) are shown as a function of MPP. The dendrogram calculated from the 
moderate threshold is redrawn from that shown for islets in Fig. S3. The color 
designation for transcripts contained within specific modules for the high threshold 
dendrogram (A) is preserved to show the location of those module-specific transcripts in 
the moderate and intermediate dendrograms illustrated in B. Arrow heads highlight the 
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cell cycle regulatory module identified for each dendrogram. A similar degree of module 
preservation as a function of MPP threshold was observed for the other tissues profiled 
(data not shown).  
 
Table S1 
There are 15 possible patterns of gene expression in 4 groups of mice.  
As detailed in methods, EBarrays was used to classify transcripts into one of 15 patterns. 
The patterns represent the possible ways in which the average expression levels across 
groups can equal or differ from one another. Numbers 1 – 4 are used to indicate if one 
group is the same or different from another. For example, pattern #1 (null hypothesis, 
none different) occurs when the average expression levels in each group are equal. 
Pattern #15 (age and obesity, all different) is a pattern consisting of transcripts with 
different average expression levels across the four groups. Pattern #6 (obesity only) 
describes the situation where the lean mice are different from the obese mice; but neither 
the lean mice nor the obese mice differ as a function of age. Shaded rows show the 
expression patterns exhibited by the vast majority (>96%) of differentially expressed 
(DE) transcripts. 
 
 
Table S2 
Color table used for reference to co-expression gene modules.  
 
Table S3 
Co-expression modules can be used to deconstruct strain-specific changes in 
expression patterns. Co-expression modules are identified by color name for each of the 
6 tissues profiled. There were 19 modules identified in all tissues, except hypothalamus, 
where there were 10. The number of transcripts contained in each module is shown for 
both strains and as a function of expression pattern. Only those patterns where >96% of 
the DE transcripts were confined are shown. The table is a numerical representation of 
what is graphically illustrated in Fig. 2 and is hyperlinked to our data base at 
http://diabetes.wisc.edu/kelleretal2008/tabs3.php. 
 
Table S4 
Co-expression gene modules in 6 mouse tissues contain transcripts highly enriched 
with specific gene ontology (GO) categories. Bonferroni-corrected (for multiple testing 
penalty) and non-corrected p-values are shown. GO terms with Bonferroni p-values ≤ 
0.01 are included.  
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