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Abstract

Causal inference approaches in systems genetics exploit quantitative trait loci (QTL) genotypes
to infer causal relationships among phenotypes. The genetic architecture of each phenotype may
be complex, and poorly estimated genetic architectures may compromise the inference of causal
relationships among phenotypes. Existing methods assume QTLs are known or inferred without
regard to the phenotype network structure. In this paper we develop a QTL-driven phenotype
network method (QTLnet) to jointly infer a causal phenotype network and associated genetic
architecture for sets of correlated phenotypes. Randomization of alleles during meiosis and
the unidirectional influence of genotype on phenotype allow the inference of QTLs causal to
phenotypes. Causal relationships among phenotypes can be inferred using these QTL nodes,
enabling us to distinguish among phenotype networks that would otherwise be distribution
equivalent. We jointly model phenotypes and QTLs using homogeneous conditional Gaussian
regression models, and we derive a graphical criterion for distribution equivalence. We validate
the QTLnet approach in a simulation study. Finally, we illustrate with simulated data and a
real example how QTLnet can be used to infer both direct and indirect effects of QTLs and
phenotypes that co-map to a genomic region.

1 Introduction

In the past few years it has been recognized that genetics can be used to establish causal
relationships among phenotypes organized in networks (Schadt et al. 2005, Kulp and Jagalur
2006, Li et al. 2006, Chen et al. 2007, Liu et al. 2008, Aten et al. 2008, Chaibub Neto et
al. 2008). These approaches aim to generate hypothesis about causal relationships among
phenotypes involved in biological pathways underlying complex diseases such as diabetes.
A key element in these methods is the identification of quantitative trait loci (QTLs) that
are causal for each phenotype. The genetic architecture of each phenotype, which consists
of the locations and effects of detectable QTLs, may be complex. Poorly estimated genetic

1



architectures may compromise the inference of causal relationships among phenotypes. Ex-
isting methods that estimate QTLs from genome scans that ignore causal phenotypes bias
the genetic architecture by incorrectly inferring QTLs that have indirect effects.

In this paper we propose a novel framework for the joint inference of phenotype net-
work structure and genetic architecture (QTLnet). We model phenotypes and QTL geno-
types jointly using homogeneous conditional Gaussian regression (HCGR) models (Lauritzen
1996). The genetic architecture for each phenotype is inferred conditional on the phenotype
network. Because the phenotype network structure is itself unknown, the algorithm iter-
ates between network structure and genetic architecture using a Markov chain Monte Carlo
approach. The posterior sample of network structures is summarized by Bayesian model
averaging. To the best of our knowledge, no other proposed method explicitly uses an in-
ferred network structure among phenotypes when performing QTL mapping. Tailoring QTL
mapping to network structure avoids the false detection of QTLs with indirect effects and
improves phenotype network structure inference.

We employ a causal inference framework with components of both randomized experi-
ments and conditional probability. Randomization of alleles during meiosis and the unidirec-
tional influence of genotype on phenotype allow the inference of causal QTLs for phenotypes.
Causal relationships among phenotypes can be inferred using these QTL nodes, enabling us
to distinguish between networks that would otherwise be distribution equivalent.

We are particularly interested in inferring causal networks relating sets of phenotypes
mapping to coincident genomic regions. It is widely asserted that alleged “hotspots” may
have a “master regulator” and that most co-mapping is due to indirect effects (Breitling et al.
2008). That is, such a hotspot QTL could influence a single phenotype that is upstream of
many others in a causal network; ignoring the phenotype network would result in a perceived
hotspot. One objective of our QTLnet method is to sort out the direct and indirect effects
of QTLs and phenotypes in such situations.

Section 2 describes the homogeneous conditional Gaussian regression (HCGR) model
adopted in this work, while Section 3 derives our causal inference framework and a graphical
criterion to determine distribution equivalence. Section 4 shows how a conditional LOD score
can formally measure conditional dependence among phenotypes and QTLs and how QTL
mapping can be embed in a graphical models framework. Section 5 presents the MCMC
approach for QTLnet. Simulation studies in Section 6 validate the QTLnet approach and
provide a explanation for some QTL hotspots. Section 7 uses real data to illustrate how
QTLnet can be used to infer direct and indirect effects of QTLs and phenotypes that co-
map to a genomic region. The discussion in Section 9 puts this work in context of open
questions. Proofs of formal results are given in the Supplementary materials.

2 HCGR Genetic Model

In this section, we recast the genetical model for QTL studies as a homogeneous conditional
Gaussian regression (HCGR) model that jointly models phenotypes and QTL genotypes.
Conditional on the QTL genotypes and covariates, the phenotypes are distributed according
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to a multivariate normal distribution. The QTLs and covariates enter the HCGR model
through the mean in a similar fashion to the seemingly unrelated regression (SUR) model
(Banerjee et al. 2008). However, the correlation structure among phenotypes is explicitly
modeled according to the directed graph representation of the phenotype network. We derive
the genetic model from a system of linear regression equations and show that it corresponds
to a homogenous conditional Gaussian regression model.

In QTL studies, the observed data consist of phenotypic trait values, y, and marker
genotypes, m, on n individuals derived from an inbred line cross. Following Sen and Churchill
(2001) we condition on unobserved QTL genotypes, q, to partition our model into genetic and
recombination components, respectively relating phenotypes to QTLs and QTLs to observed
markers across the genome,

p(y , q | m) = p(y | q , m) p(q | m) = p(y | q) p(q | m) ,

where the second equality follows from conditional independence, y ⊥⊥ m | q. That is,
given that QTL genotypes, the marker genotypes provide no additional information about
the phenotypes. The recombination model, p(q | m), has been extensively studied in the
past and is a well solved problem, with many efficient algorithms now available (Broman et
al. 2003).

We assume that T phenotype traits are correlated in such a way that

yti = µ?
ti +

∑

v∈pa(yt)

βtv yvi + εti , (1)

with means µ?
ti = µt + Xti θt, i = 1, . . . , n, t = 1, . . . , T , and independent error terms εti. µt

is the overall mean for trait t. θt is a column vector of all genetic effects constituting the
genetic architecture of trait t plus any additional additive or interactive covariates. pa(yt)
represent the set parent nodes of yt, that is, the set of nodes that directly affect yt. Xti is
the row vector of genetic effects predictors derived from the QTL genotypes along with any
covariates. Genetic effects may follow Cockerham’s genetic model, but need not be restricted
to this form (Zeng et al. 2005).

Combine together the phenotypes and independent error terms for the ith individual as
εi = (ε1i, . . . , εTi)

′ and yi = (y1i, . . . , yTi)
′, respectively. The Jacobian transformation from

εi → yi allows us to represent the joint density of the phenotype traits conditional on the
respective genetic architectures as multivariate normal with the following mean vector and
covariance matrix.

Result 1. The set of structural equations

yti = µ?
ti +

∑

v∈pa(yt)

βtv yvi + εti, εti ∼ N(0, σ2
t )

with i = 1, . . . , n, t = 1, . . . , T and εti independent error terms has distribution

yi | µ?
i , β, σ2 ∼ NT

(
Ω−1 γi , Ω−1

)
(2)
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where µ?
i = (µ?

1i, . . . , µ
?
T i)

′, β = {βtv : v ∈ pa(yt), t = 1, . . . , T}, σ2 = (σ2
1, . . . , σ

2
T )′, Ω is the

concentration matrix with entries given by

ωtv =





1

σ2
t

+
∑

s

β2
st

σ2
s

11{t→s}, for t = v

−βvt

σ2
v

11{t→v} − βtv

σ2
t

11{v→t} +
∑

s

βsv βst

σ2
v

11{v→s , t→s}, for t 6= v

γi is a vector with entries
µ?

ti

σ2
t
− ∑

s6=t
βst µ?

si

σ2
s

11{t→s}, and 11{t→s} is the indicator function that

trait t affects trait s.

Remarks: (1) The model allows different genetic architectures for each phenotype. (2)
The covariance structure depends exclusively in the relationships among phenotypes since
Ω depends only on the partial regression coefficients relating phenotypes (βs) and variances
of error terms (σ2s), and not on the genetic architectures defined by the θs. (3) When the
correlation between two phenotypes arises exclusively because of a pleoitropic QTL, condi-
tioning on the QTL genotypes makes the phenotypes independent; thus the concentration
matrix of the conditional model does not depend on the genetic architecture. (4) This model
can represent acyclic and cyclic networks. However, we focus on acyclic networks in this
paper.

We now show that our model corresponds to a homogeneous conditional Gaussian re-
gression model. The conditional Gaussian (CG) parametric family models the covariation
of discrete and continuous random variables. Continuous random variables conditional on
discrete variables are multivariate normal (Lauritzen 1996). The joint distribution of the
vectors of discrete (qi) and continuous (yi) variables have a density f such that

log f(qi , yi) = g(qi) + h′(qi)yi − y′i K(qi)yi/2 (3)

where g(qi) is a scalar, h(qi) is a vector and K(qi) is a positive definite matrix. The density
f depends on observed markers mi as

log f(qi , yi) = log p(yi , qi | mi) (4)

where g(qi) = log p(qi | mi) − 1
2
(T log 2π − log det(Ω) +

∑T
t=1 µ? 2

ti /σ2
t ). Observe that the

linear coefficients h(qi) = γi depends on qi, through Xti, while the concentration matrix
K(qi) = Ω does not. Thus, our model is a homogeneous CG model (Lauritzen 1996, page
160). Furthermore, since our genetic model was derived from a set of regression equa-
tions with normal errors, our model is in the homogeneous conditional Gaussian regression
(HCGR) parametric family.

3 A causal framework for systems genetics

This section formalizes our causal inference framework for systems genetics that combines
ideas from randomized experiments with a purely probabilistic approach to causal inference.

4



We argue that while causal claims about the relationship between QTLs and phenotypes are
justified by randomization of alleles during meiosis and the unidirectional influence of geno-
type on phenotype, causal claims about the relationships between phenotypes follow from
conditional probability. In a nutshell: by adding QTL nodes to phenotype networks we can
distinguish between phenotype networks that would, otherwise, be distribution equivalent.

In order to formalize our approach we first show that adding causal QTL nodes can break
Markov-equivalence among phenotype networks by creating new conditional independence
relationships among nodes. Secondly, we note that two models in the HCGR parametric
family are distribution equivalent if and only if they are Markov equivalent. The last re-
sult together with Theorem 1 (see below) provide a simple graphical criterion to determine
whether two DAGs belonging to the HCGR parametric family are distribution equivalent.

Current literature in systems genetics (Li et al 2006, Kulp and Jagalur 2006, Aten et al
2008) claim that causality in systems genetics follows solely from the fact that recombination
during meiosis mimics the process of randomization of treatments in a designed experiment.
More correctly, randomization of alleles allows us to detect causal QTLs, but does not
justify causal claims among phenotypes. Causality can be unambiguously inferred from
a randomized experiment for two reasons (Dawid 2007) : (1) because application of the
treatment to the experimental unit precedes the measurement of the outcomes, the direction
of the causality must go from the treatment to measured outcome; (2) by randomly allocating
treatments to experimental units, we guarantee that common causes to the outcome (other
than the experimental treatment) get averaged out, that is, we eliminate the effects of
confounding.

Pursuing the analogy of QTL mapping and a randomized experiment, let the different
QTL genotypes represent treatment levels and the phenotypes measurements represent the
measured outcomes of the experiment, then: (1) the central dogma of molecular biology
(Crick 1958) guarantees that the application of the treatment (QTL genotypes) precedes the
measurement of the outcomes (phenotype measurements). Therefore the direction of the
causality must go from the QTL to the phenotype; (2) by randomly allocating treatments
(QTL genotypes), we guarantee that other common causes to the phenotype get averaged out,
that is, we eliminate the effects of confounding in the form of other genetic and environmental
effects.

However, this analogy does not carry over to the relationships between phenotypes. Sup-
pose we have a QTL, Q, and two phenotypes Y1 and Y2 mapping to Q, and their true causal
relationship is Q → Y1 → Y2. One could argue that randomization of genotypes in Q leads
to a randomization of Y1 itself, so that we could think of Y1 as a new randomized treatment
affecting a second phenotype Y2 (Chen et al. 2007). Because the randomization would aver-
age out confounding affects, we would be one step closer to claiming that Y1 → Y2. However,
contrary to the QTL/phenotype case, we have no a priori reason to believe that the “ran-
domized treatment” Y1 precedes the measurement of the “outcome” Y2; it is possible that
instead Y1 ← Y2. That is, causal claims need both randomization and precedence.

We next formalize a simple probabilistic causal framework that allows us to make causal
claims about relationships among phenotypes. But first we need to present some graphical
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model definitions and results. A path is any unbroken, nonintersecting sequence of edges in
a graph, which may go along or against the direction of the arrows.

Definition 1. (d-separation) A path p is said to be d-separated (or blocked) by a set of
nodes Z if and only if

1. p contains a chain i → m → j or a fork i ← m → j such that the middle node m is in
Z, or

2. p contains an inverted fork (or collider) i → m ← j such that the middle node m is
not in Z and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X
to a node in Y. X and Y are d-connected if they are not d-separated (Pearl, 1988, 2000).

Two graphs are Markov equivalent (or faithful indistinguishable) if they have the same
set of d-separation relations (Spirtes et. al. 2000). The skeleton of a causal graph is the
undirected graph obtained by replacing its arrows by undirected edges. A v-structure is
composed by two converging arrows whose tails are not connected by an arrow.

Theorem 1. (Detecting Markov equivalence) Two directed acyclic graphs (DAGs) are
Markov equivalent if and only if they have the same skeletons and the same set of v-structures.
(Verma and Pearl 1990).

Two models are likelihood equivalent if f(y | M1) = f(y | M2) for any data set y, where
f(y | M) represent the prior predictive density of the data, y, conditional on model M
(Heckerman et. al. 1995). In this paper we extend the definition of likelihood equivalence to
predictive densities obtained by plugging-in maximum likelihood estimates in the respective
sampling models. A closely related concept, distribution equivalence, states that two models
are distribution equivalent if one is a re-parametrization of the other. While likelihood
equivalence is defined in terms of predictive densities (prior predictive density or sampling
model evaluated on the maximum likelihood estimates), distribution equivalence is defined
in terms of the sampling model directly. Because of the invariance property of maximum
likelihood estimates, distribution and likelihood equivalence are equivalent concepts in the
frequentist setting. This is also true in the Bayesian setting with proper priors invariant to
model re-parameterizations.

Suppose that for each pair of connected phenotypes in a graph there exists at least one
QTL affecting one but not the other phenotype. Denote this new graph with QTLs included
by the “extended graph”. The next result shows that, in this particular situation, we can
distinguish between causal models belonging to a Markov equivalent class of phenotype
networks.

Result 2. Consider a class of Markov equivalent DAGs G. Let Y1 and Y2 be any two adjacent
nodes in the graphs in G. Assume that for each such pair there exists at least one variable,
Q, directly affecting Y1 but not Y2. Let GE represent the class of extended graphs. Then the
graphs in GE are not Markov equivalent.
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As an illustrative example consider the following class of Markov equivalent models:
G = {Y1 → Y2 → Y3 , Y1 ← Y2 ← Y3 , Y1 ← Y2 → Y3}. These causal models are Markov
equivalent because they have the same set of conditional independence relations, namely
Y1 ⊥⊥ Y3 | Y2. In accordance with Theorem 1 the three models have the same skeleton,
Y1− Y2− Y3, and the same set of v-structures (no v-structures). Now consider one QTL, Q,
affecting Y2 but not Y1 and Y3. Then GE is composed by

Q

²²

Q

²²

Q

²²
Y1

// Y2
// Y3 Y1 Y2

oo Y3
oo Y1 Y2

oo // Y3

Observe that these models still have the same skeleton but different sets of v-structures:
Y1 → Y2 ← Q, Q → Y2 ← Y3 and ∅, respectively.

The next result guarantees that for the HCGR parametric family Markov equivalence
implies distribution equivalence and vice-versa.

Result 3. For the HCGR parametric family, two DAGs are distribution equivalent if and
only if they are Markov equivalent.

It follows from Results 2 and 3 that by extending the phenotype network to include QTLs
we are able to infer a single network, instead of an equivalence class of graphs. Furthermore,
if we consider Theorem 1 and Result 3 together, we have

Result 4. For the HCGR parametric family, two DAGs are distribution equivalent if and
only if they have the same skeletons and same sets of v-structures.

Result 4 provides a simple graphical criterion to determine whether two HCGR models are
distribution equivalent. This allows us to determine distribution equivalence by inspection of
graph structures without the need to go through algebraic manipulations of joint probability
distributions as in Chaibub Neto et al. (2008).

4 QTL mapping and phenotype network structure

In this paper, we rely heavily on the d-separation criterion to interpret the results of uncon-
ditional and conditional mapping analysis. d-separation (Pearl 1988, 2000) is a graphical
criterion that allows us to predict conditional independence relationships in the data by sim-
ple inspection of the graph structure underlying the data generation process. In this section,
we show that the conditional LOD score can be used as a formal measure of conditional
independence relationships between phenotypes and QTLs. Contrary to partial correlations,
the conditional LOD score does not require the assumption of multi-normality of the data in
order to formally test for independence (recall that only in the Gaussian case, a zero (par-
tial) correlation implies statistical (conditional) independence), and it can handle interactive
covariates.
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The conditional LOD score is defined as

LOD(y , q | x) = LOD(y , q , x)− LOD(y , x)

= log10

{
f(y | q , x)

f(y)

}
− log10

{
f(y | x)

f(y)

}
, (5)

where f() represent a predicting density (a maximized likelihood or the prior predictive
density in a Bayesian setting). It follows directly from this definition that

LOD(y , q | x) = 0 ⇔ f(y | q , x) = f(y | x) ⇔ Y ⊥⊥ Q | X. (6)

Therefore we can use conditional LOD scores as a formal measure of independence between
continuous (Y ) and discrete (Q) random variables, conditional on any set of variables X,
that could be either continuous, discrete or both. Observe that the unconditional LOD score,
defined as log10{f(y | q)/f(y)}, will be zero if and only if Y ⊥⊥ Q.

Furthermore, the conditional LOD score can be used to formally test for conditional
independence in the presence of interacting covariates (denoted by X ·Q) since

LOD(y , q | x , x · q) = log10

{
f(y | q , x , x · q)

f(y)

}
− log10

{
f(y | x)

f(y)

}
= 0 (7)

if and only if Y ⊥⊥ {Q , X · Q} | X. This is a very desirable property since, in general,
testing for conditional independence in the presence of interactions is not strait forward. For
example, Andrei and Kendziorski (2008) point that in the presence of interactions, there is no
one-to-one correspondence between zero partial correlations and conditional independencies,
even when we assume normality of the full conditional distributions.

Traditional QTL mapping focuses on single trait analysis, where the network structure
among the phenotypes is not taken into consideration in the analysis. Thus, single-trait
analysis may detect QTLs that directly affect the phenotype under investigation, as well as
QTLs with indirect effects, affecting phenotypes upstream to the phenotype under study.
Consider, for example, the causal graph in Figure 1. The outputs of single trait analysis
when Figure 1 represents the true network are given in Figure 2.

Q2
// Y2

ÃÃ@
@@

@

Q1
// Y1

>>}}}}
//

ÃÃA
AA

A Y3

²²

// Y5 Q5
oo

Q4
//__ Y4

>>~~~~

Figure 1: Example network with five phenotypes and four QTLs.

Now let’s consider QTL mapping according to the phenotype network structure. When
the phenotype structure corresponds to the true causal model, we avoid detecting indirect
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Q1
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Q2

ÃÃ

Q4

~~

Q5

vvm m m m m

Y1 Y2 Y3 Y4 Y5

Figure 2: Output of a single trait QTL mapping analysis for the phenotypes in Figure 1.
Dashed and pointed arrows represent direct and indirect QTL/phenotype causal relation-
ships, respectively.

(a) Q2
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//__ Y2 (b) Q2
//__ Y2
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??

?

Q1
//__ ((
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//
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A Y3

²²

// Y5 Q5
oo_ _ Q1
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Y1

>>}}}}
//

ÃÃA
AA

A Y3

²²

// Y5

~~~~
~~

Q5
oo_ _

ww w7 w7 w7 w7 w7 w7

Q4
// Y4

>>~~~~
Q4

//__ Y4

Figure 3: QTL mapping tailored to the network structure. (a) and (b) display the re-
sults of QTL mapping according to slightly altered network structures from Figure 1.
Dashed, pointed and wiggled arrows represent, respectively, direct, indirect and incorrect
QTL/phenotype causal relationships.

QTLs by simply performing mapping analysis of the phenotypes conditional on their parents.
For example, in Figure 1, if we perform a mapping analysis of Y5 conditional on Y2, Y3 and
Y4 we do not detect Q1, Q2 and Q4 because Y5 ⊥⊥ Q1 | Y2, Y3, Y4, Y5 ⊥⊥ Q2 | Y2, Y3, Y4 and
Y5 ⊥⊥ Q4 | Y2, Y3, Y4. We only detect Q5 since Y5 6⊥⊥ Q5 | Y2, Y3, Y4.

Now consider Figure 3 (a). If we perform a mapping analysis of Y5 conditional on Y3 and
Y4 we still detect Q1 and Q2 as QTLs for Y5, since failing to condition on Y2 leaves the paths
Q1 → Y1 → Y2 → Y5 and Q2 → Y2 → Y5 in Figure 1 open. In other words, Q1 and Q2 are
d-connected to Y5 conditional on (Y3, Y4) in the true causal graph.

Furthermore, if we perform mapping analysis of a phenotype conditional on phenotypes
located downstream in the true network, we induce dependencies between the phenotype
under study and QTLs affecting downstream phenotypes, and end up incorrectly detecting
these QTLs. Consider, for example, Figure 3 (b). If we perform a mapping analysis of Y4

conditional on Y1, Y3 and Y5 we incorrectly detect Q5 as a QTL for Y4 because in the true
network the paths Y4 → Y5 ← Q5 and Y4 ← Y3 → Y5 ← Q5 in Figure 1 are open when we
condition on Y5.

In the next section we present a Metropolis-Hastings algorithm that at each step proposes
a slightly modified phenotype network and fits the genetic architecture conditional on this
proposed network. The proposal is accepted or rejected relative to the current network of
phenotypes and QTLs. Models with better inferred genetic architectures should generally
lead to higher marginal likelihood scores. Therefore, accounting for network structure in
the mapping analysis should allow more efficient determination of the phenotype network
structure.
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5 QTLnet algorithm

In this section we propose a statistical framework (QTLnet) for the joint inference of pheno-
type network structure and genetic architecture in systems genetics studies. Work to date
in genetical network reconstruction has treated the problems of QTL inference and pheno-
type network reconstruction separately, generally performing genetic architecture inference
first, and then using QTLs to help in the determination of the phenotype network structure
(Chaibub et al 2008, Zhu et al 2008). As indicated in the previous section, such strategy
can incorporate QTLs with indirect effects into the genetic architecture of phenotypes.

The great challenge in the reconstruction of networks is that the graph space grows
super-exponentially with the number of nodes, so that exhaustive searches are impracti-
cal even for small networks, and heuristic approaches are needed to efficiently traverse the
graph space. The Metropolis-Hastings algorithm below integrates the sampling of network
structures (Madigan and York 1995, Husmeier 2003) and QTL mapping.

Let M represent the structure of a phenotype network composed of T nodes. The
posterior probability of a specified structure is given by

p(M | y , q) =
p(y | q , M) p(M)∑
M p(y | q , M) p(M)

(8)

where the marginal likelihood

p(y | q , M) =

∫

Γ

p(y | q , Γ , M) p(Γ | M) dΓ (9)

is obtained by integrating the product of the prior and likelihood of the HCGR model with
respect to all parameters Γ in the model. Assuming that the phenotype network is a DAG,
the likelihood function factors according to M as

p(yi | qi , Γ , M) =
∏

t

p
(
yti | qti , pa(yt)

)
(10)

where

p
(
yti | qti , pa(yt)

)
= N


µ?

ti +
∑

yk∈pa(yt)

βtk(yki − µ?
ki) , σ2

t


 (11)

and the problem factors out as a series of linear regression models. (Note that QTL genotypes
qti enters the model through µ?

ti).
A Metropolis-Hastings step involves proposing a new network with a single modification

from the last accepted network. Allowed modifications include single arrow deletions, addi-
tions or reversions that do not result in a cyclic network. (See Supplementary Figure S1 for
details of the mechanics for the proposal scheme and for the computation of the proposal
probabilities.) The Metropolis-Hastings proposal ratio q(Mold | Mnew)/q(Mnew | Mold) is
the ratio of the neighborhood sizes of the two networks involved in the proposal modification.
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The neighborhood of a DAG, ne(M) is defined as the number of DAGs that can be obtained
from the present DAG in a single proposal modification. Specifically, the QTLnet algorithm
proceeds as follows:

1. Given a phenotype network structure Mold, propose a new network, Mnew, with a
proposal probability q(Mnew | Mold) = 1/|ne(Mold)|, Mnew ∈ ne(Mold).

2. Factor the likelihood according toMnew and perform mapping analysis of yt conditional
on its parents, pa(yt), for each phenotype yt separately.

3. Estimate each piece of the marginal likelihood, p
(
yt | qt , pa(yt)

)
, and combine then to

obtain p̂(y | q , Mnew).

4. Accept Mnew with probability

α = min

{
1 ,

p(Mnew | y , q)

p(Mold | y , q)

q(Mold | Mnew)

q(Mnew | Mold)

}

= min

{
1 ,

p̂(y | q , Mnew) p(Mnew)

p̂(y | q , Mold) p(Mold)

q(Mold | Mnew)

q(Mnew | Mold)

}
.

Mapping analysis and the estimation of each component, p(yt | qt, pa(yt)), of the marginal
likelihood can be done in two different ways: (1) perform Bayesian interval mapping (Yi et
al. 2005) and use the posterior samples generated in the mapping analysis to estimate
the marginal likelihood pieces using the stabilized harmonic mean estimator (Raftery et
al 2008); (2) perform classical interval mapping, sum the BIC score for each piece of the
sampling model to obtain the BIC score of the whole network, and then use the asymptotic
approximation of the Bayes factors by BIC scores. It is a well known (cf. Kass and Raftery
1995) that when sample size is big enough, we can approximate the Bayes factor comparing
old and new models by, in this case,

p(y | q , Mnew)

p(y | q , Mold)
≈ exp

{
−1

2
(BICMnew −BICMold

)

}
. (12)

Step 2 in the QTLnet algorithm is the most computationally demanding. Given the big
size of the graph space even for small networks, efficient computation is key. The first obvious
gain in efficiency is to store the estimates of the p(yt | qt , pa(yt)) as we proceed. Because
Mnew will only slightly differ from Mold, most of the factor pieces of the network will not
need to be recomputed. Actually, we will only need to perform new mapping analysis to the
pair of nodes involved in an arrow reversal or to the child node involved in an arrow addition
or deletion. In the first case, we need to redo the mapping analysis for both nodes when
we reverse the arrow y1 → y2 to y1 ← y2, since we need to include y2 as a covariate in the
mapping of y1 and we need to exclude y1 as a covariate in the mapping of y2. For a child
node, when we add (or delete) an arrow from y1 to y2 we need to include (or exclude) y1 as
a covariate in the mapping of y2.
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Another way to improve computational efficiency is to first perform a multiple-trait
multiple-QTL analysis to all phenotypes with the SUR model (Banerjee et al 2008) and then
only consider the QTLs detected by this analysis in the rest of the analysis. In this way,
instead of considering all locations in the genome as potential QTLs every time we need to
redo a mapping analysis, we simply consider the locations that were detected by the SUR
analysis, greatly decreasing the total amount of necessary computations. Still another way
to decrease computational time, in Step 2, is to perform classical interval mapping instead of
Bayesian interval mapping, and then use the asymptotic approximation of the Bayes factors
by BIC scores. We should point out, however, that since classical interval mapping is less
powered to detect multiple QTL and misses epistasis altogether, the gain in computational
efficiency provided by this approach comes at the expense of performing an inferior job in
terms of genetic architecture inference.

Because the graph space grows rapidly with the number of phenotype nodes, the network
structure with the highest posterior probability may still have a very low probability. There-
fore, instead of selecting the network structure with the highest posterior probability, we
perform Bayesian model averaging (Hoeting et al 1999) for the causal relationships between
phenotypes and infer an averaged network. Explicitly, let ∆uv represents a causal relationship
between phenotypes u and v, that is, ∆uv = {Yu → Yv , Yu ← Yv , Yu 6→ Yv and Yu 6← Yv}.
Then

p(∆uv | y) =
∑

k

p(∆uv | Mk , y , q) p(Mk | y , q)

=
∑

k

11{∆uv ∈Mk} p(Mk | y , q) . (13)

Note that p(Yu → Yv | Mk , y) = 11{Yu → Yv ∈ Mk} since the probability that Yu directly
affects Yv conditional on a graph structure Mk is either one or zero depending on whether
Yu does, or does not, directly affects Yv in Mk. The averaged network is constructed by
putting together all causal relationships with maximum posterior probability or with poste-
rior probability above a predetermined threshold.

6 Simulations

In this section we evaluate the performance of the QTLnet approach in simulation studies of
a causal network with five phenotypes and four causal QTLs. We consider situations with
strong or weak causal signals, leading respectively to high or low phenotype correlations.
We show that important features of the causal network can be recovered. Further, this
simulation illustrates how an alleged hotspot could be explained by sorting out direct and
indirect effects of the QTLs.

We generated 1,000 data sets according to Figure 1. Each simulated cross object (Broman
et al. 2003) had 5 phenotypes simulated for an F2 population with 500 individuals. The
genome had 5 chromosomes of length 100cM with 10 equally spaced markers per chromosome.

12



We simulated one QTL per phenotype, except for phenotype Y3 with no QTLs. The QTLs
Qt, t = 1, 2, 4, 5 were unlinked and placed at a the middle marker on chromosomes t.

Each simulated cross object had different sampled parameter value combinations for
each realization. In the strong signal simulation, we sampled the additive and dominance
effects according to U [0.5, 1] and U [0, 0.5], respectively. The partial regression coefficients
for the phenotypes were sampled according to βuv ∼ 0.5 U [−1.5,−0.5] + 0.5 U [0.5, 1.5]. In
the weak signal simulation, we generated data sets with additive and dominance effects
from U [0, 0.5] and U [0, 0.25], respectively, and partial regression coefficients sampled with
βuv ∼ U [−0.5, 0.5]. The residual phenotypic variance was fixed at 1 in both settings.

We first show the accuracy of the mapping analysis in our simulated data sets. We used
interval mapping with a LOD score threshold of 5 to detect significant QTLs. Table 1 shows
the results of both unconditional and QTL mapping according to the phenotype network
in Figure 1. In the strong signal setting, the unconditional mapping often detected indirect
QTLs, but the mapping of phenotypes conditional on their parent nodes increased detection
of the true genetic architectures. In the weak signal simulation, the unconditional mapping
did not detect indirect QTLs in most cases, but we still observe improvement in detection
of the correct genetic architecture when we condition on the parents.

The expected architecture contains the d-connected QTLs when conditioning (or not)
on other phenotypes as indicated in the first column of Table 1. For instance, Q1 and Q2

are d-connected to Y2, but only Q2 is d-connected to Y2 when properly conditioning on Y1.
Supplementary Tables S1, S2, S3, S4 and S5 show the simulation results for all possible
conditional mapping combinations.

strong signal weak signal
Phenotypes Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Expected architecture
Y1 0.997 0.000 0.000 0.000 0.431 0.000 0.000 0.000 {Q1}
Y2 0.884 0.930 0.000 0.000 0.001 0.384 0.000 0.000 {Q1, Q2}
Y3 0.941 0.000 0.000 0.000 0.003 0.000 0.000 0.000 {Q1}
Y4 0.603 0.000 0.690 0.000 0.003 0.000 0.370 0.000 {Q1, Q4}
Y5 0.637 0.321 0.321 0.340 0.000 0.000 0.001 0.336 {Q1, Q2, Q4, Q5}
Y2 | Y1 0.001 0.999 0.000 0.000 0.000 0.424 0.000 0.000 {Q2}
Y3 | Y1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ∅
Y4 | Y1, Y3 0.000 0.000 0.999 0.000 0.000 0.000 0.422 0.000 {Q4}
Y5 | Y2, Y3, Y4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.415 {Q5}

Table 1: Frequencies of QTL detection for both unconditional (top half) and conditional
(bottom half) QTL mapping according with the true phenotype network structure in Figure
1. Results, for each simulation, based on 1,000 simulated data sets described in the text.
The expected architecture is the set of d-connected QTLs for the phenotype conditioning
with respect to the network in Figure 1.

.

For each simulated data set we applied the QTLnet algorithm using simple interval
mapping for QTL detection. The ratio of marginal likelihoods in the Metropolis-Hastings
algorithm was computed using the BIC asymptotic approximation to the Bayes factor. We
adopted uniform priors over network structures. We ran each Markov chain for 30,000
iterations, sampled a structure every 10 iterations, and discarded the first 300 (burnin)
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network structures producing posterior samples of size 2,700. Posterior probabilities for
each causal relationship were computed via Bayesian model averaging.

Table 2 shows the frequency, out of the 1,000 simulations, the true model was the most
probable, second most probable, etc. The results show that in the strong signal setting the
true model got the highest posterior probability in most of the simulations. In the weak
signal setting the range of rankings was very widespread.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th ≥15th
Strong 842 100 21 11 3 4 3 2 1 1 3 1 1 1 6
Weak 21 33 18 19 19 16 17 15 8 12 13 5 9 13 782

Table 2: Frequencies that the posterior probability of the true model was the highest, second
highest, etc. Results based on 1,000 simulated data sets described in the text.

Table 3 shows the proportion of times that each possible causal direction (Yu → Yv,
Yu ← Yv) or no causal relation ({Yu 6→ Yv , Yu 6← Yv}) had the highest posterior probability
for all pairs of phenotypes. The results show that in the strong signal simulations, the correct
causal relationships were recovered with high probability. The results are weaker but in the
correct direction in the weak signal setting.

strong signal weak signal
Phenotypes → ← 6→, 6← → ← 6→, 6←

(1,2) 0.996 0.002 0.002 0.594 0.177 0.229
(1,3) 0.990 0.002 0.008 0.471 0.263 0.266
(1,4) 0.990 0.001 0.009 0.541 0.196 0.263
(1,5) 0.054 0.002 0.944 0.028 0.005 0.967
(2,3) 0.016 0.022 0.962 0.018 0.017 0.965
(2,4) 0.037 0.012 0.951 0.018 0.015 0.967
(2,5) 0.997 0.003 0.000 0.712 0.075 0.213
(3,4) 0.967 0.031 0.002 0.482 0.253 0.265
(3,5) 0.997 0.003 0.000 0.653 0.116 0.231
(4,5) 0.996 0.004 0.000 0.670 0.115 0.215

Table 3: Frequencies that each possible causal relationships had the highest posterior proba-
bility (computed via Bayesian model averaging). Results based on 1,000 simulated data sets
described in the text.

Interestingly, single trait analysis with strong signal showed that Y5 mapped to Q1 more
frequently than to Q5 (Table 1). This result can be understood using a path analysis (Wright
1934) argument. In path analysis, we decompose the correlation between two variables among
all paths connecting the two variables in a graph. Let Duv represent the set of all direct and
indirect directed paths connecting u and v (a directed path is a path with all arrows pointing
in the same direction). Then the correlation between these nodes can be decomposed as

cor(yu, yv) =
∑

P ∈Duv

φp2u φp3p2 . . . φvpm−1 =

{
var(yu)

var(yv)

}1/2 ∑
P ∈Duv

βp2u βp3p2 . . . βvpm−1 (14)

where φij = βij

{
var(yj)

var(yi)

}1/2

is a standardized path coefficient. Assuming intra-locus addi-

tivity and encoding the genotypes as 0, 1 and 2 (for the sake of easy computation), we have
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from equation (14) that

cor(y5, q1) = β1,q1(β52 β21 + β53 β31 + β54 β41 + β54 β43 β31)

{
var(q1)

var(y5)

}1/2

,

cor(y5, q5) = β1,q5

{
var(q5)

var(y5)

}1/2

.

We therefore see that if the partial regression coefficients between phenotypes are high,
and the QTL effects β1,q1 and β5,q5 and QTL variances are close (as in the strong signal
simulation), then cor(y5, q1) will be higher than cor(y5, q5) and Y5 will map to Q1 with
stronger signal than to Q5.

This result suggests a possible scenario for the appearance of eQTL hotspots when phe-
notypes are highly correlated. A set of correlated phenotypes may be better modeled in
a causal network with one upstream phenotype that in turn has a causal QTL. Ignoring
the phenotype network can result in an apparent hotspot for the correlated phenotypes.
Here, all phenotypes detect QTL Q1 with high probability when mapped unconditionally
(Table 1). In the weak signal setting, the phenotypes map mostly to their respective QTLs
and do not show evidence for a hotspot. No hotspot was found in additional simulations
having strong QTL/phenotype relationships and weak phenotype/phenotype relations (re-
sults not shown). Thus, our QTLnet approach can effectively explain a hotspot found with
unconditional mapping when phenotypes show strong causal structure.

7 Real data example

In this section we illustrate the application of QTLnet to a subset of gene expression data
derived from a F2 intercross between inbred lines C3H/HeJ and C57BL/6J (Ghazalpour
et al. 2006, Wang et al. 2006). The data set is composed of genotype data on 1,065
markers and liver expression data on the 3421 available transcripts from 135 female mice.
Interval mapping indicates that 14 transcripts map to the same region on chromosome 2
with a LOD score higher than 5.3 (permutation p-value <0.001). Only one transcript,
Pscdbp, is located on chromosome 2 near the hotspot locus. The 14 transcripts show a
strong correlation structure, and the correlation structure adjusting for the peak marker on
chromosome 2, rs3707138, is still strong (see Supplementary Table S6). This co-mapping
suggest all transcripts are under the regulation of a common factor. Causal relationships
among phenotypes could explain the strong correlation structure that we observe, although
other possibilities are environmental factors or a latent factor that is not included.

We applied the QTLnet algorithm on the 129 mice that had no missing transcript data
using Haley-Knott (1992) regression (and assuming genotyping error rate of 0.01) for the
detection of QTLs conditional on the network structure, and approximated the marginal
likelihood ratio in the Metropolis-Hastings algorithm according to equation (12). We adopted
uniform priors over network structures. We ran a Markov chain for 1,000,000 iterations
and sampled a network structure every 100 iterations, discarding the first 1,000 and basing
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inference on a posterior sample with 9,000 network structures. Inspection of the trace plots
suggest good mixing of the Markov chain (Supplementary Figure S2).

We performed Bayesian model averaging and, for each of 91 possible pairs (Yu, Yv), we
obtained the posterior probabilities of Yu → Yv, Yu ← Yv and of no direct causal connection.
The results are shown in Supplementary Table S7. Figure 4 show a model-averaged network.

chr4@117.92

chr13@119.28

chr1@16.19

chr17@33.34

chr16@84.51

chr13@110.29

chr17@34.03

chr1@161.08

chr2@55.95

Apbb1ip

Frzb

Il16

Clec2

Trpv2

Unc5a

Pscdbp

Il10rb

Stat4

Tnfsf6

Riken

D13Ertd275eMyo1fAif1

Figure 4: Model-averaged posterior network. Arrow thickness is proportional to the posterior
probability of the causal relation computed via Bayesian model averaging. For each pair of
phenotypes, the figure displays the causal relationship (presence or absence of an arrow) with
highest posterior probability. Light grey nodes represent QTLs and show their chromosome
number and position in centimorgans. Riken represents the riken gene 6530401C20Rik.

This network suggests a key role of Il16 in the regulation of the other transcripts in the
network. Il16 is upstream to all other transcripts, and is the only one directly mapping to
the locus of chromosome 2. We would have expected the cis transcript, Pscdbp, to be the
upstream phenotype in this network. However, the data suggests Pscdbp is causal to only
two other transcripts and that some other genetic factor on chromosome 2 may be driving
this pathway. This estimated QTLnet causal network provides new hypotheses that could
be tested in future mouse experiments.
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8 Discussion

We have developed a statistical framework for causal inference in systems genetics. Causal
relationships between QTLs and phenotypes are justified by the randomization of alleles dur-
ing meiosis together with the unidirectional influence of genotypes on phenotypes. Causal
relationships between phenotypes follows from breakage of distribution equivalence due to
QTL nodes augmenting the phenotype network. We have proposed a novel approach to
jointly infer genetic architecture and causal phenotype network structure using HCGR mod-
els. We argue in this paper that failing to properly account for phenotype network structure
for mapping analysis can yield QTLs with indirect effects in the genetic architecture, which
can decrease the power to detect the correct causal relationships between phenotypes.

Current literature in systems genetics (Chaibub Neto et al. 2008, Zhu et al 2008) has
considered the problems of genetic architecture and phenotype network structure inference
separately. Chaibub Neto et al. (2008) used the PC-algorithm (Spirtes et al 2000) to first
infer the skeleton of the phenotype network and then use QTLs to determine the directions
of the edges in the phenotype network. Zhu et al. (2008) reconstructed networks from a
consensus of Bayesian phenotype networks with a prior distribution based on causal tests
of Schadt et al. (2005). Their prior was computed with QTLs determined by single trait
analysis.

Liu et al. (2008) presented an approach based in structural equation models (and ap-
plicable to species where sequence information is available) that partially accounts for the
phenotype network structure when selecting the QTLs to be incorporated in the network.
They perform eQTL mapping using cis, cis-trans and trans-regulation (Doss et al. 2005,
Kulp and Jagalur 2006) and then use local structural models to identify regulator-target
pairs for each eQTL. The identified relationships are then used to construct an encompass-
ing directed network (EDN) with nodes composed by transcripts and eQTLs and arrows
from (1) eQTls to cis-regulated target transcripts; (2) cis-regulated transcripts to cis-trans-
regulated target transcripts; and (3) trans-regulator transcripts to target transcripts, and
from trans-eQTL to target transcripts. The EDN defines a network search space for network
inference with model selection based on penalized likelihood scores and an adaptation of Oc-
cam’s window (Madigan and Raftery 1994). Their local structural models, which fit at most
two candidate regulators per target transcript, can include indirect eQTLs in the genetic
architecture of target trancripts when there are multiple paths connecting a cis-regulator
to a cis-trans-target transcript. In other words, some transcripts identified as cis-regulated
targets may actually be cis-trans.

Current interest in the eQTL literature centers on understanding the relationships among
expression traits that co-map to a genomic region. It is often suggested that these eQTL
“hotspots” result from a master regulator affecting the expression levels of many other genes
(see Breitling et al. 2008). A path analysis argument suggest that if the correlation structure
between the phenotypes is strong because of a strong causal signal, a well defined hotspot
pattern will likely appear when we perform single trait analysis. Our simulations and real
data example suggest that this is the situation where the QTLnet algorithm is expected to
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be most fruitful.
The QTLnet approach is based on a Metropolis-Hastings algorithm that at each step pro-

poses a slightly modified phenotype network and fits the genetic architecture conditional on
this proposed network. Conditioning on the phenotype network structure should generally
lead to a better inferred genetic architecture. Likewise, a better inferred genetic architecture
should lead to a better inferred phenotype structure (models with better inferred genetic
architectures should have higher marginal likelihood scores. A poorly inferred genetic ar-
chitecture may compromise the marginal likelihood of a network with phenotype structure
close to the true network).

Because the proposal mechanism of the Metropolis-Hastings algorithm is based in small
modification of the last accepted network (addition, deletion or reversion of a single edge),
the mixing of the Markov chain is generally slow and it is necessary to run long chains
and use big thinning windows in order to achieve good mixing. This is a bottle-neck to
the scalability of this approach. We therefore plan to investigate more efficient versions of
the Metropolis-Hastings algorithm for network structure inference. In particular a new and
more extensive edge reversal move proposed by Grzegorczyk and Husmeier (2008) and an
approach based in a Markov blanket decomposition of the network (Riggelsen 2005).

One of the most attractive features of a Bayesian framework is its ability to formally
incorporate prior information in the analysis. Given the complexity of biological processes
and the many limitations associated with the partial pictures provided by any of the “omic”
data sets now available, incorporation of external information is highly desirable. We are
currently working in the development of priors for network structures.

The QTLnet approach can be seen as a method to infer causal Bayesian networks com-
posed of phenotype and QTL nodes. Standard Bayesian networks provide a compact rep-
resentation of the conditional dependency and independencies associated with a joint prob-
ability distribution. The main criticism of a causal interpretation of such networks is that
different structures may be likelihood equivalent while representing totally different causal
process. In other words, we can only infer a class of likelihood equivalent networks. We have
formally shown how to break likelihood equivalence by incorporating causal QTLs.

We have focussed on experimental crosses with inbred founders as the recombination
model and genetic architecture are relatively straightforward. However, this approach might
be extended to outbred populations with some additional work. The genotypic effects are
random, and the problem needs to be recast in terms of variance components.

In this paper we only consider directed acyclic graphs. We point out, however, that the
HCGR parametric family accommodates cyclic networks. In the QTLnet approach we work
under the assumption of no latent variables and we do not explicitly model measurement er-
ror. These complications can impact network reconstruction. We are currently investigating
extensions of the proposed framework along these lines.
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Supplementary figures and tables
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Figure S 1: Adapted from Husmeier 2003. Metropolis-Hastings proposal moves and ra-
tio. This figure illustrates the three proposal modifications: adding, deleting or revers-
ing one arrow in the network structure. When adding or reversing an arrow we need to
check if the proposed modification leads to a cyclic network such (as in graph a2). Cyclic
structures are not valid and need to be discarded. The Metropolis-Hastings proposal ratio
q(Mold | Mnew)/q(Mnew | Mold) is given by the ratio of the neighborhood sizes of the
two networks involved in the proposal modification. The neighborhood of a DAG, ne(M)
is defined as the number of DAGs that can be obtained from the present DAG in a single
proposal modification. As an example, let structure a be Mold. Since structure a2 is cyclic,
ne(Mold) = 5 and the q(Mnew | Mold) = 1/5. Suppose we sampled structure a5 so that
a5 = b = Mnew. Then ne(Mnew) = 6 and the q(Mold | Mnew) = 1/6. In this case the
Metropolis-Hastings proposal ratio is 5/6.

22



strong signal weak signal
Phenotypes Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Expected architecture
Y1 0.997 0.000 0.000 0.000 0.431 0.000 0.000 0.000 {Q1}
Y1 | Y2 0.969 0.948 0.000 0.000 0.405 0.006 0.000 0.000 {Q1, Q2}
Y1 | Y3 0.956 0.000 0.000 0.000 0.406 0.000 0.000 0.000 {Q1}
Y1 | Y4 0.945 0.000 0.494 0.000 0.408 0.000 0.003 0.000 {Q1, Q4}
Y1 | Y5 0.972 0.158 0.151 0.149 0.432 0.000 0.000 0.000 {Q1, Q2, Q4, Q5}
Y1 | Y2, Y3 0.862 0.759 0.000 0.000 0.376 0.004 0.000 0.000 {Q1, Q2}
Y1 | Y2, Y4 0.855 0.798 0.395 0.000 0.382 0.004 0.002 0.000 {Q1, Q2, Q4}
Y1 | Y2, Y5 0.911 0.857 0.119 0.117 0.400 0.003 0.000 0.000 {Q1, Q2, Q4, Q5}
Y1 | Y3, Y4 0.867 0.000 0.766 0.000 0.382 0.000 0.003 0.000 {Q1, Q4}
Y1 | Y3, Y5 0.903 0.116 0.143 0.106 0.406 0.000 0.000 0.000 {Q1, Q2, Q4, Q5}
Y1 | Y4, Y5 0.908 0.191 0.452 0.178 0.412 0.000 0.003 0.000 {Q1, Q2, Q4, Q5}
Y1 | Y2, Y3, Y4 0.731 0.651 0.638 0.000 0.360 0.004 0.003 0.000 {Q1, Q2, Q4}
Y1 | Y2, Y3, Y5 0.810 0.700 0.110 0.067 0.372 0.003 0.000 0.000 {Q1, Q2, Q4, Q5}
Y1 | Y2, Y4, Y5 0.831 0.752 0.407 0.175 0.378 0.004 0.002 0.000 {Q1, Q2, Q4, Q5}
Y1 | Y3, Y4, Y5 0.817 0.107 0.714 0.084 0.379 0.000 0.003 0.000 {Q1, Q2, Q4, Q5}
Y1 | Y2, Y3, Y4, Y5 0.734 0.650 0.636 0.000 0.354 0.003 0.003 0.000 {Q1, Q2, Q4}

Table S 1: Frequencies of QTL detection for all possible conditional mapping analysis of Y1.
Results based on 1,000 simulated data sets described in the text. The expected architecture
is the set of d-connected QTLs for the phenotype conditioning with respect to the network
in Figure 1.

strong signal weak signal
Phenotypes Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Expected architecture
Y2 0.884 0.930 0.000 0.000 0.001 0.384 0.000 0.000 {Q1, Q2}
Y2 | Y1 0.000 0.999 0.000 0.000 0.000 0.424 0.000 0.000 {Q2}
Y2 | Y3 0.375 0.986 0.000 0.000 0.001 0.390 0.000 0.000 {Q1, Q2}
Y2 | Y4 0.498 0.968 0.096 0.000 0.001 0.392 0.000 0.000 {Q1, Q2, Q4}
Y2 | Y5 0.500 0.850 0.192 0.232 0.001 0.360 0.000 0.000 {Q1, Q2, Q4, Q5}
Y2 | Y1, Y3 0.000 0.999 0.000 0.000 0.000 0.424 0.000 0.000 {Q2}
Y2 | Y1, Y4 0.000 0.999 0.000 0.000 0.000 0.426 0.000 0.000 {Q2}
Y2 | Y1, Y5 0.000 0.995 0.134 0.206 0.000 0.405 0.000 0.003 {Q2, Q4, Q5}
Y2 | Y3, Y4 0.144 0.994 0.115 0.000 0.001 0.397 0.000 0.000 {Q1, Q2, Q4}
Y2 | Y3, Y5 0.223 0.910 0.347 0.427 0.002 0.364 0.000 0.003 {Q1, Q2, Q4, Q5}
Y2 | Y4, Y5 0.253 0.826 0.180 0.686 0.001 0.357 0.000 0.003 {Q1, Q2, Q4, Q5}
Y2 | Y1, Y3, Y4 0.000 0.999 0.000 0.000 0.000 0.426 0.000 0.000 {Q2}
Y2 | Y1, Y3, Y5 0.000 0.991 0.336 0.421 0.000 0.404 0.000 0.004 {Q2, Q4, Q5}
Y2 | Y1, Y4, Y5 0.000 0.988 0.035 0.698 0.000 0.405 0.000 0.004 {Q2, Q4, Q5}
Y2 | Y3, Y4, Y5 0.020 0.827 0.027 0.963 0.002 0.361 0.000 0.006 {Q1, Q2, Q4, Q5}
Y2 | Y1, Y3, Y4, Y5 0.000 0.969 0.000 0.937 0.000 0.402 0.000 0.007 {Q2, Q5}

Table S 2: Frequencies of QTL detection for all possible conditional mapping analysis of Y2.
Results based on 1,000 simulated data sets described in the text. The expected architecture
is the set of d-connected QTLs for the phenotype conditioning with respect to the network
in Figure 1.
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strong signal weak signal
Phenotypes Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Expected architecture
Y3 0.941 0.000 0.000 0.000 0.003 0.000 0.000 0.000 {Q1}
Y3 | Y1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ∅
Y3 | Y2 0.525 0.503 0.000 0.000 0.003 0.000 0.000 0.000 {Q1, Q2}
Y3 | Y4 0.478 0.000 0.688 0.000 0.005 0.000 0.003 0.000 {Q1, Q4}
Y3 | Y5 0.546 0.212 0.228 0.258 0.003 0.000 0.000 0.001 {Q1, Q2, Q4, Q5}
Y3 | Y1, Y2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ∅
Y3 | Y1, Y4 0.000 0.000 0.916 0.000 0.000 0.000 0.001 0.000 {Q4}
Y3 | Y1, Y5 0.000 0.199 0.214 0.218 0.000 0.000 0.000 0.001 {Q2, Q4, Q5}
Y3 | Y2, Y4 0.318 0.315 0.747 0.000 0.003 0.000 0.003 0.000 {Q1, Q2, Q4}
Y3 | Y2, Y5 0.290 0.275 0.379 0.421 0.003 0.000 0.000 0.001 {Q1, Q2, Q4, Q5}
Y3 | Y4, Y5 0.309 0.228 0.631 0.283 0.002 0.000 0.002 0.001 {Q1, Q2, Q4, Q5}
Y3 | Y1, Y2, Y4 0.000 0.000 0.914 0.000 0.000 0.000 0.001 0.000 {Q4}
Y3 | Y1, Y2, Y5 0.000 0.000 0.377 0.413 0.000 0.000 0.000 0.001 {Q4, Q5}
Y3 | Y1, Y4, Y5 0.000 0.135 0.840 0.217 0.000 0.000 0.001 0.002 {Q2, Q4, Q5}
Y3 | Y2, Y4, Y5 0.156 0.157 0.568 0.857 0.001 0.000 0.002 0.002 {Q1, Q2, Q4, Q5}
Y3 | Y1, Y2, Y4, Y5 0.000 0.000 0.764 0.762 0.000 0.000 0.001 0.002 {Q4, Q5}

Table S 3: Frequencies of QTL detection for all possible conditional mapping analysis of Y3.
Results based on 1,000 simulated data sets described in the text. The expected architecture
is the set of d-connected QTLs for the phenotype conditioning with respect to the network
in Figure 1.

strong signal weak signal
Phenotypes Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Expected architecture
Y4 0.603 0.000 0.690 0.000 0.003 0.000 0.370 0.000 {Q1, Q4}
Y4 | Y1 0.000 0.000 0.960 0.000 0.000 0.000 0.392 0.000 {Q4}
Y4 | Y2 0.373 0.383 0.808 0.000 0.000 0.000 0.373 0.000 {Q1, Q2, Q4}
Y4 | Y3 0.372 0.000 0.979 0.000 0.002 0.000 0.401 0.000 {Q1, Q4}
Y4 | Y5 0.383 0.330 0.607 0.385 0.002 0.000 0.348 0.005 {Q1, Q2, Q4, Q5}
Y4 | Y1, Y2 0.000 0.000 0.960 0.000 0.000 0.000 0.392 0.000 {Q4}
Y4 | Y1, Y3 0.000 0.000 0.999 0.000 0.000 0.000 0.422 0.000 {Q4}
Y4 | Y1, Y5 0.000 0.357 0.827 0.411 0.000 0.000 0.374 0.003 {Q2, Q4, Q5}
Y4 | Y2, Y3 0.125 0.114 0.988 0.000 0.001 0.000 0.402 0.000 {Q1, Q2, Q4}
Y4 | Y2, Y5 0.174 0.153 0.626 0.672 0.000 0.000 0.352 0.007 {Q1, Q2, Q4, Q5}
Y4 | Y3, Y5 0.205 0.357 0.905 0.450 0.001 0.000 0.376 0.001 {Q1, Q2, Q4, Q5}
Y4 | Y1, Y2, Y3 0.000 0.000 0.999 0.000 0.000 0.000 0.420 0.000 {Q4}
Y4 | Y1, Y2, Y5 0.000 0.000 0.759 0.728 0.000 0.000 0.373 0.004 {Q4, Q5}
Y4 | Y1, Y3, Y5 0.000 0.359 0.987 0.456 0.000 0.000 0.402 0.001 {Q2, Q4, Q5}
Y4 | Y2, Y3, Y5 0.013 0.017 0.836 0.973 0.000 0.000 0.377 0.003 {Q1, Q2, Q4, Q5}
Y4 | Y1, Y2, Y3, Y5 0.000 0.000 0.971 0.950 0.000 0.000 0.401 0.002 {Q4, Q5}

Table S 4: Frequencies of QTL detection for all possible conditional mapping analysis of Y4.
Results based on 1,000 simulated data sets described in the text. The expected architecture
is the set of d-connected QTLs for the phenotype conditioning with respect to the network
in Figure 1.
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strong signal weak signal
Phenotypes Q1 Q2 Q4 Q5 Q1 Q2 Q4 Q5 Expected architecture
Y5 0.637 0.321 0.320 0.340 0.000 0.000 0.001 0.336 {Q1, Q2, Q4, Q5}
Y5 | Y1 0.000 0.540 0.524 0.582 0.000 0.000 0.001 0.338 {Q2, Q4, Q5}
Y5 | Y2 0.296 0.272 0.546 0.566 0.000 0.000 0.001 0.350 {Q1, Q2, Q4, Q5}
Y5 | Y3 0.242 0.584 0.598 0.652 0.000 0.000 0.001 0.362 {Q1, Q2, Q4, Q5}
Y5 | Y4 0.280 0.669 0.221 0.744 0.000 0.001 0.000 0.377 {Q1, Q2, Q4, Q5}
Y5 | Y1, Y2 0.000 0.000 0.657 0.708 0.000 0.000 0.001 0.357 {Q4, Q5}
Y5 | Y1, Y3 0.000 0.701 0.708 0.809 0.000 0.000 0.001 0.367 {Q2, Q4, Q5}
Y5 | Y1, Y4 0.000 0.793 0.130 0.893 0.000 0.001 0.000 0.369 {Q2, Q4, Q5}
Y5 | Y2, Y3 0.045 0.033 0.853 0.874 0.000 0.000 0.001 0.389 {Q1, Q2, Q4, Q5}
Y5 | Y2, Y4 0.118 0.093 0.283 0.968 0.000 0.000 0.000 0.395 {Q1, Q2, Q4, Q5}
Y5 | Y3, Y4 0.051 0.846 0.026 0.892 0.000 0.001 0.000 0.392 {Q1, Q2, Q4, Q5}
Y5 | Y1, Y2, Y3 0.000 0.001 0.894 0.928 0.000 0.000 0.001 0.392 {Q4, Q5}
Y5 | Y1, Y2, Y4 0.000 0.000 0.271 0.988 0.000 0.000 0.000 0.394 {Q4, Q5}
Y5 | Y1, Y3, Y4 0.000 0.893 0.000 0.936 0.000 0.001 0.000 0.392 {Q2, Q5}
Y5 | Y2, Y3, Y4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.415 {Q5}
Y5 | Y1, Y2, Y3, Y4 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.417 {Q5}

Table S 5: Frequencies of QTL detection for all possible conditional mapping analysis of Y5.
Results based on 1,000 simulated data sets described in the text. The expected architecture
is the set of d-connected QTLs for the phenotype conditioning with respect to the network
in Figure 1.

Apbb. Clec2 Trpv2 D13E. Pscd. Frzb Myo1f Il10. Unc5a Aif1 Riken Stat4 Il16 Tnfs.
Apbb. 1 0.881 0.854 0.776 0.815 0.604 0.754 0.718 0.789 0.750 0.698 0.657 0.649 0.486
Clec2 0.860 1 0.852 0.739 0.704 0.642 0.736 0.776 0.708 0.651 0.735 0.604 0.614 0.442
Trpv2 0.827 0.825 1 0.782 0.709 0.597 0.783 0.750 0.807 0.693 0.687 0.587 0.587 0.536
D13E. 0.732 0.691 0.739 1 0.764 0.751 0.734 0.663 0.741 0.619 0.678 0.650 0.728 0.571
Pscd. 0.777 0.644 0.645 0.708 1 0.594 0.781 0.595 0.664 0.699 0.591 0.619 0.648 0.554
Frzb 0.519 0.570 0.510 0.693 0.484 1 0.601 0.631 0.500 0.371 0.700 0.462 0.545 0.442
Myo1f 0.705 0.686 0.740 0.676 0.727 0.506 1 0.673 0.764 0.747 0.702 0.566 0.545 0.585
Il10. 0.666 0.737 0.704 0.597 0.506 0.552 0.608 1 0.689 0.587 0.694 0.481 0.670 0.402
Unc5a 0.749 0.656 0.770 0.688 0.588 0.389 0.715 0.630 1 0.732 0.681 0.580 0.567 0.567
Aif1 0.698 0.582 0.629 0.532 0.620 0.212 0.688 0.501 0.675 1 0.528 0.621 0.586 0.636
Riken 0.637 0.685 0.624 0.607 0.488 0.627 0.636 0.633 0.614 0.417 1 0.490 0.525 0.471
Stat4 0.594 0.534 0.512 0.581 0.535 0.346 0.479 0.386 0.501 0.542 0.387 1 0.559 0.624
Il16 0.581 0.543 0.507 0.672 0.566 0.442 0.449 0.607 0.481 0.494 0.423 0.474 1 0.509
Tnfs. 0.377 0.330 0.438 0.473 0.437 0.301 0.489 0.276 0.473 0.547 0.346 0.546 0.401 1

Table S 6: Correlations between phenotypes. The upper triangle gives the pairwise correla-
tions between phenotypes. The lower triangle shows the pairwise correlations between the
residuals of the phenotypes after adjustment for the common QTL to which all phenotypes
map in the unconditional analysis.
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pheno pheno → ← 6→, 6← pheno pheno → ← 6→, 6←
Apbb. Clec2 1.000 0.000 0.000 Pscd. Frzb 0.000 0.302 0.698
Apbb. Trpv2 0.581 0.000 0.419 Pscd. Myo1f 0.969 0.031 0.000
Apbb. D13E. 0.186 0.005 0.809 Pscd. Il10. 0.186 0.083 0.731
Apbb. Pscd. 1.000 0.000 0.000 Pscd. Unc5a 0.058 0.071 0.871
Apbb. Frzb 0.000 0.998 0.002 Pscd. Aif1 0.17 0.162 0.668
Apbb. Myo1f 0.259 0.000 0.741 Pscd. Riken 0.075 0.048 0.877
Apbb. Il10. 0.748 0.000 0.252 Pscd. Stat4 0.067 0.057 0.876
Apbb. Unc5a 0.998 0.000 0.002 Pscd. Il16 0.005 0.488 0.507
Apbb. Aif1 1.000 0.000 0.000 Pscd. Tnfs. 0.324 0.409 0.267
Apbb. Riken 0.250 0.000 0.750 Frzb Myo1f 0.284 0.000 0.716
Apbb. Stat4 0.908 0.077 0.015 Frzb Il10. 0.548 0.000 0.452
Apbb. Il16 0.006 0.983 0.011 Frzb Unc5a 0.074 0.000 0.926
Apbb. Tnfs. 0.144 0.038 0.818 Frzb Aif1 0.932 0.000 0.068
Clec2 Trpv2 0.874 0.123 0.003 Frzb Riken 1.000 0.000 0.000
Clec2 D13E. 0.201 0.013 0.786 Frzb Stat4 0.066 0.000 0.934
Clec2 Pscd. 0.087 0.094 0.819 Frzb Il16 0.005 0.984 0.011
Clec2 Frzb 0.000 0.718 0.282 Frzb Tnfs. 0.199 0.066 0.735
Clec2 Myo1f 0.122 0.022 0.856 Myo1f Il10. 0.089 0.570 0.341
Clec2 Il10. 0.838 0.093 0.069 Myo1f Unc5a 0.086 0.540 0.374
Clec2 Unc5a 0.083 0.113 0.804 Myo1f Aif1 0.006 0.152 0.842
Clec2 Aif1 0.089 0.035 0.876 Myo1f Riken 0.117 0.568 0.315
Clec2 Riken 0.810 0.170 0.020 Myo1f Stat4 0.028 0.166 0.806
Clec2 Stat4 0.065 0.044 0.891 Myo1f Il16 0.001 0.511 0.488
Clec2 Il16 0.000 0.051 0.949 Myo1f Tnfs. 0.054 0.442 0.504
Clec2 Tnfs. 0.048 0.054 0.898 Il10. Unc5a 0.034 0.552 0.414
Trpv2 D13E. 0.954 0.033 0.013 Il10. Aif1 0.442 0.127 0.431
Trpv2 Pscd. 0.076 0.114 0.810 Il10. Riken 0.075 0.475 0.450
Trpv2 Frzb 0.000 0.117 0.883 Il10. Stat4 0.048 0.132 0.820
Trpv2 Myo1f 0.968 0.015 0.017 Il10. Il16 0.002 0.998 0.000
Trpv2 Il10. 0.966 0.011 0.023 Il10. Tnfs. 0.011 0.294 0.695
Trpv2 Unc5a 0.059 0.916 0.025 Unc5a Aif1 0.214 0.310 0.476
Trpv2 Aif1 0.116 0.054 0.830 Unc5a Riken 0.789 0.173 0.038
Trpv2 Riken 0.109 0.08 0.811 Unc5a Stat4 0.044 0.058 0.898
Trpv2 Stat4 0.065 0.089 0.846 Unc5a Il16 0.001 0.059 0.94
Trpv2 Il16 0.002 0.059 0.939 Unc5a Tnfs. 0.005 0.931 0.064
Trpv2 Tnfs. 0.026 0.222 0.752 Aif1 Riken 0.101 0.143 0.756
D13E. Pscd. 0.081 0.893 0.026 Aif1 Stat4 0.042 0.074 0.884
D13E. Frzb 0.000 1.000 0.000 Aif1 Il16 0.004 0.123 0.873
D13E. Myo1f 0.275 0.212 0.513 Aif1 Tnfs. 0.074 0.926 0.000
D13E. Il10. 0.132 0.750 0.118 Riken Stat4 0.037 0.109 0.854
D13E. Unc5a 0.005 0.367 0.628 Riken Il16 0.001 0.097 0.902
D13E. Aif1 0.096 0.211 0.693 Riken Tnfs. 0.040 0.099 0.861
D13E. Riken 0.077 0.182 0.741 Stat4 Il16 0.031 0.210 0.759
D13E. Stat4 0.010 0.959 0.031 Stat4 Tnfs. 0.239 0.761 0.000
D13E. Il16 0.007 0.993 0.000 Il16 Tnfs. 0.430 0.192 0.378
D13E. Tnfs. 0.009 0.144 0.847

Table S 7: Posterior probabilities for causal relationships computed via Bayesian model
averaging.
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Figure S 2: Trace plots for the Markov chain. The y-axis shows the BIC for each sampled
network. The upper plot displays the Markov chain for the 9,000 samples structures. The
middle and lower plots show windows of size 1,000 and 200, respectively.
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Proof of Result 1
Result 1. The set of structural equations

yti = µ?
ti +

∑

v∈pa(yt)

βtv yvi + εti, εti ∼ N(0, σ2
t )

with i = 1, . . . , n, t = 1, . . . , T and εti independent error terms has distribution

yi | µ?
i , β, σ2 ∼ NT

(
Ω−1 γi , Ω−1

)

where µ?
i = (µ?

1i, . . . , µ
?
T i)

′, β = {βtv : v ∈ pa(yt), t = 1, . . . , T}, σ2 = (σ2
1, . . . , σ

2
T )′, Ω is the

concentration matrix with entries given by

ωtv =



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1

σ2
t

+
∑

s

β2
st

σ2
s
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−βvt

σ2
v

11{t→v} − βtv

σ2
t
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∑

s

βsv βst

σ2
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γi is a vector with entries
µ?

ti

σ2
t

−
∑

s 6=t

βst µ
?
si

σ2
s

11{t→s}

and 11{t→s} is the indicator function that trait t affects trait s.

We start proving some algebraic equalities needed in the proof of Result 1.

Result 5. Let 11{j → k} represent the indicator function that yj ∈ pa(yk) or, conversely,
that yk ∈ ch(yj). Then

(a)
T∑

t=1

λt µ
?
t


yt −

∑

k : yk ∈ pa(yt)

βtk yk


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?
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λs βst µ
?
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)
yt

(b)
T∑

t=1
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k : yk ∈ pa(yt)

β2
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(c)
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
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=
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∑
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)
yv yt
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The proof is strait-forward, we only need to perform a rearrangement of the terms in the
summations. Nonetheless, we present it here for the reader’s sake.

Proof. (a) Assume without loss of generality that T = 3.

3∑
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(b) Assume without loss of generality that T = 3.
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13 y2

3 11{3→1}
)

+ λ2

(
y2

2 + β2
21 y2

1 11{1→2} + β2
23 y2

3 11{3→2}
)

+ λ3

(
y2

3 + β2
31 y2

1 11{1→3} + β2
32 y2

2 11{2→3}
)

=
(
λ1 + λ2 β2

21 11{1→2} + λ3 β2
31 11{1→3}

)
y2

1

+
(
λ2 + λ1 β2

12 11{2→1} + λ3β
2
32 11{2→3}

)
y2

2 +
(
λ3 + λ1 β2

13 11{3→1} + λ2β
2
32 11{3→2}

)
y2

3

=
3∑

t=1

(
λt +

∑

s6=t

λs β2
st 11{t→s}

)
y2

t

(c) Assume without loss of generality that T = 4.

T∑
t=1

λt


−

∑

k : yk ∈ pa(yt)

βtk yt yk +
∑

(k,j) : yk , yj ∈ pa(yt)

βtk βtj yk yj


 =

=
4∑

t=1

λt

(
−

∑

k 6=t

βtk 11{k→t} yt yk +
∑

k<j , k 6=t , j 6=t

βtk βtj 11{k→t , j→t} yk yj

)
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= −λ1 β12 11{2→1} y1 y2 − λ1 β13 11{3→1} y1 y3 − λ1 β14 11{4→1} y1 y4

+λ1 β12 β1311{2→1 , 3→1} y2 y3 + λ1 β12 β1411{2→1 , 4→1} y2 y4 + λ1 β13 β1411{3→1 , 4→1} y3 y4

−λ2 β21 11{1→2} y2 y1 − λ2 β23 11{3→2} y2 y3 − λ2 β24 11{4→2} y2 y4

+λ2 β21 β2311{1→2 , 3→2} y1 y3 + λ2 β21 β2411{1→2 , 3→2} y1 y4 + λ2 β23 β2411{3→2 , 4→2} y3 y4

−λ3 β31 11{1→3} y3 y1 − λ3 β32 11{2→3} y3 y2 − λ3 β34 11{4→3} y3 y4

+λ3 β31 β3211{1→3 , 2→3} y1 y2 + λ3 β31 β3411{1→3 , 4→3} y1 y4 + λ3 β32 β3411{2→3 , 4→3} y2 y4

−λ4 β41 11{1→4} y4 y1 − λ4 β42 11{2→4} y4 y2 − λ4 β43 11{3→4} y4 y3

+λ4 β41 β4211{1→4 , 2→4} y1 y2 + λ4 β41 β4311{1→4 , 3→4} y1 y3 + λ4 β42 β4311{2→4 , 3→4} y2 y3

=
(−λ1 β12 11{2→1} − λ2 β21 11{1→2} + λ3 β31 β3211{1→3 , 2→3} + λ4 β41 β4211{1→4 , 2→4}

)
y1 y2

+
(−λ1 β13 11{3→1} − λ3 β31 11{1→3} + λ2 β21 β2311{1→2 , 3→2} + λ4 β41 β4311{1→4 , 3→4}

)
y1 y3

+
(−λ1 β14 11{4→1} − λ4 β41 11{1→4} + λ3 β31 β3411{1→3 , 4→3} + λ3 β31 β3411{1→3 , 4→3}

)
y1 y4

+
(−λ2 β23 11{3→2} − λ3 β31 11{2→3} + λ1 β12 β1311{2→1 , 3→1} + λ4 β42 β4311{2→4 , 3→4}

)
y2 y3

+
(−λ2 β24 11{4→2} − λ4 β42 11{2→4} + λ1 β12 β1411{2→1 , 4→1} + λ3 β32 β3411{2→3 , 4→3}

)
y2 y4

+
(−λ3 β34 11{4→3} − λ4 β43 11{3→4} + λ1 β13 β1411{3→1 , 4→1} + λ2 β23 β2411{3→2 , 4→2}

)
y3 y4

=
∑
v < t

(
−λv βvt 11{t→v} − λt βtv 11{v→t} +

∑

s6=v , s6=t

λs βsv βst 11{v→s , t→s}

)
yv yt

Proof. (Result 1)
A set of discrete (q) and continuous (y) variables follow a conditional Gaussian distri-

bution (Lauritzen 1996) if the joint distribution of the vectors of discrete and continuous
variables have a density f such that

log f(q , y) = g(q) + h′(q)y − y′K(q)y/2 (15)

where g(q) is a scalar, h(q) is a vector and K(q) is a positive definite matrix. The above
statement is equivalent to

P (q) > 0 and (y | q) ∼ N
(
K(q)−1h(q) , K(q)−1

)
. (16)

In the following we will rewrite log p(y , q | m) (note we dropped the index i from the
notation) in the formate of (15) and we will obtain the explicit forms of g(q), h(q) and K(q).
Let ε = (ε1, . . . , εT )′ be the vector of independent normal error terms and y = (y1, . . . , yT )′

the traits. Denote the Jacobian element for the transformation from ε → y by Jε→y. Then
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the joint density of the phenotype traits conditional on the respective genetic architectures
is given by

p(y | q) =
T∏

t=1

p
(
yt | qt , pa(yt)

)

=
|Jε→y|

(2π)T/2
∏T

t=1 σt

exp



−

T∑
t=1

1

2σ2
t


yt − µ?

t −
∑

yk ∈ pa(yt)

βtk yk




2


where

yt − µ?

t −
∑

yk ∈ pa(yt)

βtk yk




2

=


µ? 2

t − 2 µ?
t yt + 2 µ?

t

∑

yk ∈ pa(yt)

βtk yk


 +

+


y2

t +
∑

yk ∈ pa(yt)

β2
tk y2

k − 2
∑

yk ∈ pa(yt)

βtk yt yk + 2
∑

k < j

βtk βtj yk yj


 .

Let λt =
∏

j 6=t σ
2
j . Then

log p(y , q | m) = log p(q | m) + log

{
|Jε→y|

(2π)T/2
∏T

t=1 σt

}
+ (I) + (II)

where

(I) = − 1

2
∏T

t=1 σ2
t

T∑
t=1

λt


µ? 2

t − 2 µ?
t yt + 2 µ?

t

∑

yk ∈ pa(yt)

βtk yk




= − 1

2
∏T

t=1 σ2
t




T∑
t=1

λt µ
? 2
t − 2

T∑
t=1

λt µ
?
t


yt −

∑

yk ∈ pa(yt)

βtk yk







= − 1

2
∏T

t=1 σ2
t

[
T∑

t=1

λt µ
? 2
t − 2

T∑
t=1

yt

(
λt µ

?
t −

∑

s6=t

λs βst µ
?
s 11{t→s}

)]

= − 1

2

T∑
t=1

µ? 2
t

σ2
t

+
T∑

t=1

(
µ?

t

σ2
t

−
∑

s6=t

βst µ
?
s

σ2
s

11{t→s}

)
yt

= − 1

2

T∑
t=1

µ? 2
t

σ2
t

+ γ ′ y

where the third equality follows from Result 5 (a) and γ ′ = (
µ?

1

σ2
1
−∑

s 6=1
βs1 µ?

s

σ2
s

11{1→s}, . . . ,
µ?

T

σ2
T
−
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∑
s6=T

βsT µ?
s

σ2
s

11{T→s}).

(II) = − 1

2
∏T

t=1 σ2
t

T∑
t=1

λt


y2

t +
∑

yk ∈ pa(yt)

β2
tk y2

k − 2
∑

yk ∈ pa(yt)

βtk yt yk + 2
∑

k < j

βtk βtj yk yj




= − 1

2
∏T

t=1 σ2
t




T∑
t=1

λt


y2

t +
∑

yk ∈ pa(yt)

β2
tk y2

k


 +

+ 2
T∑

t=1

λt


−

∑

yk ∈ pa(yt)

βtk yt yk +
∑

k < j

βtk βtj yk yj







= − 1

2
∏T

t=1 σ2
t

[
T∑

t=1

(
λt +

∑

s6=t

λs β2
st 11{t→s}

)
y2

t +

+ 2
∑
v < t

(
−λv βvt 11{t→v} − λt βtv 11{v→t} +

∑

s6=v , s 6=t

λs βsv βst 11{v→s , t→s}

)
yv yt

]

= −1

2

[
T∑

t=1

(
1

σ2
t

+
∑

s6=t

β2
st

σ2
s

11{t→s}

)
y2

t +

+ 2
∑
v < t

(
−βvt

σ2
v

11{t→v} − βtv

σ2
t

11{v→t} +
∑

s

βsv βst

σ2
v

11{v→s , t→s}

)
yv yt

]

= − 1

2
y′Ωy

where the third equality follows from Result 5 (b) and (c) and Ω is a concentration matrix
with entries

ωtv =





1

σ2
t

+
∑

s

β2
st

σ2
s

11{t→s}, for t = v

−βvt

σ2
v

11{t→v} − βtv

σ2
t

11{v→t} +
∑

s

βsv βst

σ2
v

11{v→s , t→s}, for t 6= v

Therefore,
log p(q , y | m) = g(q) + h′(q)y − y′K(q)y/2

with K(q) = Ω, h(q) = γ and g(q) = log p(q | m)− 1
2
(T log 2π− log det(Ω) +

∑T
t=1 µ? 2

t /σ2
t ).

Note that since Ω is not a function of q our model is in the homogeneous conditional Gaussian
parametric family (Lauritzen 1996). Finally, it follows from equation (16) that

y | q ∼ NT

(
Ω−1 γ , Ω−1

)
.
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Proof of Result 2
Result 2. Consider a class of Markov equivalent DAGs G. Let Y1 and Y2 be any two adjacent
nodes in the graphs in G. Assume that for each such pair there exists at least one variable,
Q, directly affecting Y1 but not Y2. Let GE represent the class of extended graphs. Then the
graphs in GE are not Markov equivalent.

Proof. Consider first subgraphs composed by Y1, Y2 and Q. Since Q is a cause of Y1 but not
of Y2, the three variables can only be represented by two causal subgraphs: Q → Y1 ← Y2

and Q → Y1 → Y2. Since both subgraphs have the same skeleton, Q− Y1− Y2, but different
sets of v-structures (Q → Y1 ← Y2 for the first and no v-structure for the second) it follows
from Theorem 1 that they are not Markov equivalent. Since by assumption this is true for
any pair of adjacent nodes, Y1 and Y2, in any graph in G, it follows that all graphs in GE will
have different sets of v-structures, and the result follows.

Proof of Result 3
Result 3. For the HCGR parametric family, two DAGs are distribution equivalent if and
only if they are Markov equivalent.

Distribution equivalence imply Markov equivalence, but the converse is not generally
true. For the linear regression with Gaussian errors parametric family, Markov equivalence
does imply distribution equivalence (Heckerman and Geiger 1995). The proof for the HCGR
model is a slightly modification of the proof for the Gaussian regression model. We therefore
present the proof for later first. It is based on the following two results.

Theorem 2. Two DAGs are Markov equivalent if and only if there exists a set of covered
arrow reversals that transform one structure into the other (Chickering, 1995).

An arrow reversal is a transformation from one DAG to the other where a single arrow
between two nodes is reversed. An arrow between two nodes is said to be covered if the two
nodes have the same parents when the arrow is removed. For example, the arrow from Y1 to
Y2 is covered in graphs (a) and (b) but not in (c).

(a) Y3

²² %%LLLLLLL (b) Y3

²² %%LLLLLLL Y4

²²yysss
sss

ss
(c) Y3

²²

Y4

²²
Y1

// Y2 Y1
// Y2 Y1

// Y2

Theorem 3. Consider the Gaussian linear regression model with local likelihoods

yt | ypa(yt) ∼ N


µt +

∑

k∈pa(yt)

βtk(yk − µk) , σ2
t


 .

Given that node j ∈ pa(yt) and no other directed path exists from j to t,

33



E(yt | yK) = µt +
∑

k∈K

(βtk + βjk βtj)(yk − µk), and

V ar(yt | yK) = σ2
t + β2

tj σ2
j ,

where K = (pa(yt) ∪ pa(yj)) \ {yj}. If neither σ2
j or σ2

t are zero, then

E(yj | yt,yK) = µj +
∑

k∈K

(βjk − (βtk + βjk βtj) β∗jt)(xk − µk) + β∗jt(xt − µt),

V ar(yj | yt,yK) =
σ2

j σ2
t

σ2
t + β2

tj σ2
j

, β∗jt =
βtj σ2

j

σ2
t + β2

tj σ2
j

.

with asterisk denoting the coefficients revised during the arrow reversal (Shachter and Kenley
1989, page 533).

The above Theorem shows that for the Gaussian linear regression parametric family a
single covered arrow reversal is equivalent to a re-parametrization of the model. Consider
for example graph (a). The joint distribution factors as f(y3)f(y1 | y3)f(y2 | y1, y3) where

(y3) ∼ N
(
µ3, σ

2
3

)
,

(y1 | y3) ∼ N
(
µ1 + β13(y3 − µ3), σ

2
1

)
,

(y2 | y1, y3) ∼ N
(
µ2 + β21(y1 − µ1) + β23(y3 − µ3), σ

2
2).

Now let’s consider the arrow reversal Y1 ← Y2. From Theorem 3 we have K = y3 and
the components of re-parameterized model f(y3)f(y2 | y3)f(y1 | y2, y3) normally distributed
with expectations and variances

E(y3) = µ3, V ar(y3) = σ2
3,

E(y2 | y3) = µ2 + (β23 + β13β21)(y3 − µ3), V ar(y2 | y3) = σ2
2 + β2

21σ
2
1,

E(y1 | y2, y3) = µ1 +

(
β13 − (β23 + β13β21)

β21σ
2
1

σ2
2 + β2

21σ
2
1

)
(y3 − µ3) +

β21σ
2
1

σ2
2 + β2

21σ
2
1

(y2 − µ2),

V ar(y1 | y2, y3) =
σ2

1σ
2
2

σ2
2 + β2

21σ
2
1

.

We now present the proof, given by Heckerman and Geiger (1995), for the linear regression
model with Gaussian errors.

Proof. We want to show that for the Gaussian linear regression parametric family two models
are distribution equivalent if and only if they are Markov equivalent. The direction, distribu-
tion equivalence implies Markov equivalence is a simple consequence that if two models are
distribution equivalent than one is re-parametrization of the other, and the set of conditional
independence/dependence relations entailed by them must be the same.

34



To get the direction, Markov equivalence implies distribution equivalence note that by
Theorem 2, if two structures are Markov equivalent, then there exists a set of covered arrow
reversals that transform one structure into the other. Theorem 3, by its turn, implies that
two structures differing by a set of covered arrow reversals are distribution equivalent.

We now present the proof for the HCGR model.

Proof. (Result 3) Since we only allow arrow reversals between phenotypes (but not between
QTLs and phenotypes), and the QTLs enter the HCGR model through the mean, the result
follows by replacing µt by µ?

t = µt + Xt θt in Theorem 3. (Note we are dropping the i
subscript from the notation in µ?

ti and Xti).

Proof of Result 4
Result 4. For the HCGR parametric family, two DAGs are distribution equivalent if and
only if they have the same skeletons and same sets of v-structures.

Proof. Follows directly from Theorem 1 and Result 3.

35


