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B-Cell mass expansion is one mechanism by which obese animals compensate for insulin resistance and
prevent diabetes. FoxM1 is a transcription factor that can regulate the expression of multiple cell cycle
genes and is necessary for the maintenance of adult B-cell mass, B-cell proliferation, and glucose
homeostasis. We hypothesized that FoxM1 is up-regulated by nondiabetic obesity and initiates a
transcriptional program leading to p-cell proliferation. We performed gene expression analysis on
islets from the nondiabetic C57BL/6 Leptin®?’°® mouse, the diabetic BTBR Leptin®?°® mouse, and an F2
Leptin®’°® population derived from these strains. We identified obesity-driven coordinated up-reg-
ulation of islet Foxm1 and its target genes in the nondiabetic strain, correlating with g-cell mass
expansion and proliferation. This up-regulation was absent in the diabetic strain. In the F2 Leptin®®/°?
population, increased expression of Foxm1 and its target genes segregated with higher insulin and
lower glucose levels. We next studied the effects of FOXM1b overexpression on isolated mouse and
human islets. We found that FoxM1 stimulated mouse and human B-cell proliferation by activating
many cell cycle phases. We asked whether FOXMT1 expression is also responsive to obesity in human
islets by collecting RNA from human islet donors (body mass index range: 24-51). We found that the
expression of FOXM1 and its target genes is positively correlated with body mass index. Our data
suggest that B-cell proliferation occurs in adult obese humans in an attempt to expand B-cell mass to
compensate for insulin resistance, and that the FoxM1 transcriptional program plays a key role in this
process. (Molecular Endocrinology 24: 1822-1834, 2010)

oth type 1 and type 2 diabetes result from reduced func-
Btional pancreatic B-cell mass. In type 1 diabetes, B-cell
mass is lost due to autoimmune destruction. In type 2 dia-
betes, there is an increased requirement for B-cells due to
peripheral insulin resistance, and this demand cannot be
met. Patients with type 2 diabetes, or even impaired fasting
glucose, have reduced B-cell mass compared with nondia-
betic controls (1, 2). In nondiabetics, there is a compensa-
tory increase in -cell mass with obesity (1, 3, 4). This re-
sponse is even more robust in rodents, in which B-cell
replication is important for increasing B-cell mass (5, 6).
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However, obesity-driven human B-cell proliferation is con-
troversial in nondiabetic patients (1, 3). Understanding the
mechanisms of B-cell proliferation in response to obesity
may enable us to harness these physiological pathways to
expand B-cell mass in the setting of diabetes.

We have previously shown that numerous cell cycle genes
are coordinately up-regulated in pancreatic islets in response
to obesity in nondiabetic C57BL/6 (B6) Leptin®?*® mice (7).
Among these genes is Foxm1, a transcription factor that
regulates cell cycle progression through transactivation of
many critical cell cycle genes (reviewed in Ref. 8).

Abbreviations: B6, C57BL/6; BMI, body mass index; BrdU, 5-bromo-2'-deoxyuridine; cdk,
cyclin-dependent kinase; CMV, cytomegalovirus; CPC, chromosome passenger complex;
Ct, cycle threshold.
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FIG. 1. FoxmT and its target genes are up-regulated in obese nondiabetic mouse islets but not
obese diabetic islets. Quantitative RT-PCR analysis of lean (solid bars) and obese (open bars), C57BL/6
(B6) (nondiabetic) and BTBR (diabetic), 10 wk-old islets. Cycle threshold (Ct) values were normalized to
B-actin to yield Delta Ct (ACt) values. B6 lean ACt values were averaged for each gene, and fold changes
were calculated vs. average B6 lean ACt values. Comparisons were made by one-way ANOVA followed
by Bonferroni-corrected t tests. *, P < 0.05; **, P < 0.01; ***, P < 0.001 (n = 5-7 for each group).

FoxM1 appears to be a key transcriptional regulator of
cell cycle progression in the B-cell. Using a pancreas-spe-
cific knockout of Foxm1, Gannon and colleagues (9) pre-
viously demonstrated that FoxM1 is necessary for adult
B-cell proliferation to maintain B-cell mass and to in-
crease B-cell mass in response to partial pancreatectomy
(10) and during pregnancy (11).

FoxM1 regulates all phases of the cell cycle. FoxM1
can regulate the G,/S transition by activating the cyclin-
dependent kinases, Cdk4, Cdké, and Cdk2, by several
mechanisms. FoxM1 can stimulate transcriptional up-
regulation of Cyclin D (12, 13), which binds to and acti-
vates Cdk4 and Cdké6. FoxM1 can trigger transcription of
Cyclin A (14, 15) and Cyclin E (16), which bind to and
activate Cdk2. Cdc25a is another FoxM1 target gene,
which dephosphorylates and activates Cdk2 (17).

FoxM1 also activates the G,/M transition through effects
on Cdk1, the gatekeeper for M-phase entry. It directly in-
duces the expression of Cdk1 (13, 14) and its binding part-
ner, Cyclin B (14, 18, 19). In addition, Cdk1 is activated by
the phosphatases Cdc25b (14, 15, 17) and Cdc25¢ (13),
which are also FoxM1 target genes.

FoxM!1 is also necessary for proper mitotic progression.
Loss of FoxM1 expression leads to mitotic spindle defects,
chromosome missegregation, mitotic delay, and failure of
cytokinesis (15, 18). FoxM1 stimulates the transcription of
many mitotic genes to ensure proper mitosis, including cen-
tromere proteins A (Cenpa) (17), B (Cenpb) (17), and F
(Cenpf) (18), and the chromosome passenger complex
(CPC) genes Survivin (BircS) (17), Aurora Kinase B (Aurkb)
(17), and Polo-like kinase 1 (PIk1) (18, 20). Finally, Cdc20,
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D Cakt a key component of the anaphase-
Sq x w promoting complex, is FoxM1 depen-
4 dent (14) and necessary to degrade
3 proteins like Cyclin B to promote mi-
2 totic exit.

. We set out to investigate the tran-
0 scriptional regulation of islet prolifera-
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tion in response to obesity. Our pre

H' centromere Protein A vious microarray results identified

5 . .

— Foxm1 as a transcription factor that
) was coordinately regulated with obesity
° and B-cell proliferation in a mouse
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model (7). Additionally, Gannon and
1 colleagues (9-11) demonstrated that
L—. . FoxM1 is necessary for B-cell prolifera-

tion in response to other physiological
stimuli. We first asked: does Foxm1 ex-
pression segregate with diabetes pheno-
types in a genetically diverse Leptin®”
population? Then, we determined whe-
ther overexpression of FOXM1b is suf-
ficient to drive B-cell replication in
mouse and human islets. Finally, we asked whether FOXM1
and its target genes are up-regulated in human islets in response
to obesity.

Results

FoxMH1 is induced by obesity in diabetes-resistant mice

We previously reported the clinical and gene expression
phenotype of the B6 and the BTBR mouse strains as a func-
tion of strain, age, and leptin-deficient obesity (via introduc-
tion of the Leptin®® mutation) (7). Leptin deficiency in the
B6 mouse evokes a robust B-cell proliferative response, lead-
ing to very high plasma insulin concentrations and protec-
tion from diabetes. In contrast, B-cell proliferation is unre-
sponsive to obesity in the BTBR Leptin°”°® mouse, leading
to the rapid onset of diabetes (7). In islets, we identified a
gene set consisting of 217 highly correlated mRNA tran-
scripts that enriched for cell cycle function. The expression
of the islet cell cycle module correlated with islet cell prolif-
eration and showed the same strain-specific response to obe-
sity as direct measurements of islet cell proliferation: increas-
ing in obese B6, but not in obese BTBR mice. Embedded
within this module were Foxm1 and many of its transcrip-
tional targets (7).

To confirm these microarray results, we performed
quantitative RT-PCR analysis in islets from 10-wk-old
lean and obese B6 and BTBR mice. Foxm1 mRNA in-
creased 2.6-fold in response to obesity in B6, but not in
BTBR mice (Fig. 1A). Additionally, Foxm1 mRNA was
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FIG. 2. The expression of Foxm1 and its target genes can predict metabolic phenotypes in F2

mice based upon the transcript
levels of Foxm1 and its target genes. Red indicates increased transcript levels, and blue indicates
decreased mRNA levels. Four groups were identified from /eft to right. High expressers, low
expressers, medium-high expressers, and medium-low expressers. Plasma glucose (panel B), plasma
insulin (panel C), and plasma C-peptide levels (panel D) of the four identified groups at 10 wk of age
after a 4-h fast. E, Total number of islets isolated at 10 wk of age. Comparisons were made by one-
way ANOVA followed by Bonferroni-corrected t tests. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Leptin mice. A, Unsupervised clustering of 499 F2 Leptin

oblob islets than in

3.0-fold more abundant in B6 Leptin
BTBR Leptin®®° islets (Fig. 1A).

The FoxM1 transcriptional targets, Cyclin A2 (14, 15),
Cyclin B1 (14, 19), Cdk1 (14), and Nek2 (15, 18, 21), dem-
onstrated a strain-specific response to obesity. All four
mRNAs increased more than 2.6-fold in islets from B6
Leptin®®°? vs. islets from lean mice (Fig. 1, B-E), but failed
to be induced by obesity in the BTBR strain. Similarly, the
FoxM1 target gene Survivin (BircS) (17) displayed an iden-
tical expression pattern in the same cohort of mice (22).

Three additional FoxM1 transcriptional targets, Plk1,
Aurkb, and Cenpa, showed a similar, but not identical,
response to obesity (17). These three genes increased in B6
Leptin®®®? vs. B6 lean islets, respectively (Fig. 1, F-H),
but in the BTBR islets, the up-regulation in response to
obesity was blunted by 25-35%. All three mRNAs were
expressed at more than 2.0-fold higher levels in islets from
nondiabetic B6 Leptin®”°? vs. islets from diabetic BTBR
Leptin®®°? mice (Fig. 1, F-H).

To investigate the relationship between islet Foxml
expression and plasma glucose and insulin, we surveyed a
population of 499 F2 B6:BTBR Leptin®”°? mice (at 10
wk of age). Islet gene expression in these animals was
examined using microarray. These mice represent a ge-
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tially, we are shuffling the two ge-
nomes and asking whether the rela-
tionship between Foxm1 expression
and diabetes-related traits remain
correlated across this population.
We performed hierarchical unsuper-
vised clustering of the 499 F2 ani-
mals based upon the islet expression
of Foxml, its known target genes,
and several additional cell cycle
transcripts, the expression of which
is highly correlated with that of Foxm1.
We identified four groups of mice with
tightly correlated expression of Foxm1
and its targets (Fig. 2A). The animals
were categorized into four groups based
on their Foxm1 transcript expression
level: high (n = 62), medium high (n =
112), medium low (n = 59), and low
(n = 44). The remaining 222 mice
demonstrated an intermediate expres-
sion of Foxml and its target genes.
There was an average 2.78-fold
difference in expression levels be-
tween the high and low expression
groups for all genes. Raw expres-

Low High

sion data are available as Supple-
mental Data published on The Endocrine Society’s
Journals web site at http://mend.endojournals.org. We
compared the clinical

phenotypes of the F2 mice that were clustered accord-

next

ing to Foxm1 expression.

The high Foxm1 expression groups demonstrated an im-
proved metabolic phenotype when compared with the low ex-
pression groups (Fig. 2, B-D). The expression of Foxm1
across the groups was negatively correlated with fasting
plasma glucose levels; the high and low Foxmi1 expression
groups differed in fasting plasma glucose by 73 mg/dl
(Fig. 2B). Fasting plasma insulin was positively correlated
with Foxm1 across the groups. The low and high expres-
sion groups had a nearly 3-fold difference in fasting
plasma insulin (Fig. 2C). Similarly, fasting plasma C-pep-
tide measurements were more than 1.5-fold higher in the
high Foxm1 expression groups than in the low expression
groups (Fig. 2D). Because all islets were used for gene
expression analysis, we were unable to directly measure
B-cell mass and instead used the number of islets isolated
from each individual as a rough estimate of islet mass. The
low Foxm1 expression groups each yielded an average of
174 islets per mouse, whereas the medium high and high
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5 251 [*H]thymidine incorporation into
i j . N DNA. In BTBR islets, AdCMV-
p-cells a-cells FOXM1b increased [*H]thymidine
F G H Human Islets incorporation into islet DNA 2.0-fold
FOXM1b Rt I vs. AdCMV-B-gal control islets (Fig.
§ 1251 M B-gal 3A). In human islets, FOXM1b over-
i« : o0l L Foxur expression triggered a 1.8-fold in-
é 076 crease in [*H]thymidine incorpora-

2 tion into islet cell DNA (Fig. 3B).
I g 0.50 To determine which cell types were
5 25 induced to divide by FOXM1b overex-
N — o pression, we measured 5-bromo-2’-de-
pecells a-cells oxyuridine (BrdU) incorporation into

FIG. 3. Overexpression of FOXM1b in mouse and human islets predominantly stimulates
B-cell proliferation. [*H]thymidine incorporation assays in mouse (panel A, n = 12) and
human (panel B, n = 10) islets. NT, No treatment. Comparisons were made by repeated-
measures ANOVA followed by Bonferroni-corrected paired t tests. C—H, BrdU incorporation
assays in mouse (C—E) and human (F-H) islets. Representative images of AdCMV-B-gal (solid
bars) and AACMV-FOXM1b (open bars) treated mouse (C and D) and human (F and G) islets
are shown. A close up image of other representative BrdU-positive cells is shown within the
white box in D and G. Insulin is blue, glucagon is red, and BrdU is green. Quantitation of
BrdU positive B-cells and a-cells in mouse (panel E, n = 5) and human (panel H, n = 4) islets.
Comparisons were made by repeated-measures ANOVA followed by Bonferroni-corrected
paired t tests. *, P < 0.05; **, P < 0.01; ***, P < 0.001. White arrows indicate BrdU-

positive B-cells.

Foxm1 expression groups yielded 255 and 261 islets, re-
spectively (Fig. 2E). These groups of mice demonstrated
an intermediate diabetogenic phenotype compared with
the parental strains (complete data available in Ref. 7),
which is expected for a segregating F2 population. Over-
all, the expression level of Foxm1 and its target genes
segregated with improved glucose levels, increased insulin
production, and increased islet number in our F2 Lepti-

7°P° mice.

FoxM1 is sufficient to stimulate B-cell proliferation
in isolated mouse and human islets

Because Foxm1 expression is only up-regulated in islets
from the relatively diabetes-resistant B6 obese mice and is

a- and B-cell nuclei. Overexpression of
FOXMT1b in isolated mouse and hu-
man islets elicited a 4.7-fold increase in
BrdU incorporation into DNA in
mouse B-cells (Fig. 3E) and 16.3-fold in-
crease in human B-cells (Fig. 3H). De-
spite the high expression levels driven by
the CMV promoter and the high pro-
portion of a-cells present in human is-
lets, AACMV-FOXM1b did not in-
crease BrdU incorporation into mouse or human a-cell DNA
(Fig. 3, E and H). In short, FOXM1b overexpression in mouse
and human islets predominantly stimulates B-cell replication.

FoxM1-stimulated B-cell proliferation does not
diminish insulin secretion

Stimulation of B-cell proliferation in culture tends to di-
minish B-cell function (23). We tested whether FoxM1-stim-
ulated B-cell proliferation affects B-cell function by measur-
ing glucose-stimulated insulin secretion. In mouse islets,
FOXM1b overexpression had no effect on insulin secretion
in response to low or high glucose concentrations when
compared with AACMV-B-gal-treated islets (Supplemental
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Fig. 2, A and B). Both adenoviral treatments, however, re-
duced stimulated insulin secretion when compared with un-
treated islets (Supplemental Fig. 2B, P < 0.05).

As in mouse islets, the insulin secretion in response to
glucose was equal between AdCMV-B-gal and AdCMV-
FOXM1b-treated human islets (Supplemental Fig. 2D).
However, any adenoviral treatment led to diminished total
insulin secretion at both basal and stimulated glucose con-
ditions (Supplemental Fig. 2C). In summary, no significant
differences were detected in any parameter of glucose-stim-
ulated insulin secretion when comparing FoxM1 to B-gal
overexpression.

ps7
142

Cyclin  Cyclin Cyclin  Cyclin
D3
FIG. 4. Overexpression of FOXM1b stimulates all phases of the cell cycle in mouse islets.
Quantitative RT-PCR analysis of Cyclin, Cdk, and other cell cycle molecule mRNA abundance. Ct
values were normalized to B-actin to yield ACt values. Fold changes for each mouse experiment were
determined and averaged (n = 4). Gray shading indicates nonsignificant changes. Colored shading
indicates at least P < 0.05. Fold changes are given beneath the gene name. Mean st and exact P
values can be found in Supplemental Table 5. B and C, Western blot analyis for G,/S proteins in
mouse islets. B, Representative Western blots. C, Quantitation of Western blots. Densitometry values
were normalized to B-tubulin or Gapdh. Fold changes were determined for each experiment and
averaged (n = 4—6). Comparisons were made by Student’s paired t tests. *, P < 0.05; **, P < 0.01;
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FoxM1 activates multiple

phases of the cell cycle
Overexpression of FoxM1 activates

the G,/S transition of the cell cycle. De-

spite the many studies demonstrating a

218 074 role

Czkfu;? for Cyclin D in B-cell proliferation (re-
P viewed in Ref. 24), the mRNA and
13 protein expression of D-type Cyc-
lins were not induced by FOXM1b
overexpression in mouse or human

<5 islets (Fig. 4 and Fig. 5).
: ::du Instead, FoxM1 stimulated the
- Fod G,/S transition by activating Cdk2.
H 1|0 FOXM1b overexpression increased

the mRNA abundance of Cyclin E by
more than 5-fold in mouse (Fig. 4A)
and 2-fold in human islets (Fig. SA).
At the protein level, we confirmed a
more than 2-fold up-regulation of Cy-
. clin E in mouse (Fig. 4C) and human
islets (Fig. 5C) by Western blot analy-
sis. FOXM1b overexpression also in-
creased Cyclin A mRNA 7.4-fold in
mouse islets (Fig. 4A) and more than
2-fold in human islets (Fig. 5A). Sim-
* ilarly, we detected a more than 10-
fold and 1.5-fold increase in Cyclin A
protein in mouse and human islets, re-
spectively (Figs. 4C and 5C). Cdk2
mRNA abundance was also eleva-
ted in mouse and human islets (Figs. 4A
and SA). Additionally, we found in-
creased mRNA expression of CDC25A
in human islets (Fig. 4A). Therefore,
in islets, FoxM1 up-regulates Cdk2,
its binding partners Cyclin E and Cy-
clin A, and its activator Cdc25a to
progress through the G,/S transition

p27  Cyclin
E A

of the cell cycle.

FOXM1b overexpression also activates the G,/M
transition. Overexpression of FOXM1b triggers up-reg-
ulation of Cyclin B mRNA in mouse and human islets
(Figs. 4A and 5A). AACMV-FOXM1b treatment addi-
tionally increased Cdk1 mRNA abundance (Figs. 4A and

A). FOXM1b overexpression also up-regulated the
mRNA levels of the Cdk1 phosphatases CDC25B (hu-
man islets only, Fig. 5§A) and Cdc25¢ more than 15-fold in
mouse and human islets (Figs. 4A and 5A). Therefore,
similar to the G,/S transition, FOXM1b overexpression
activated the G,/M transition by increasing Cdk1 expres-
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FIG. 5. Overexpression of FOXM1b stimulates many phases of the cell cycle in human islets.
Quantitative RT-PCR analysis of CYCLIN, CDK, and other cell cycle molecule mRNA abundance.
Ct values were normalized to B-actin to yield ACt values. Fold changes for each human
preparation were determined and averaged (n = 4-5). Gray shading indicates nonsignificant
changes. Colored shading indicates at least P < 0.05. Fold changes are given under the gene
name. Mean st and exact P values can be found in Supplemental Table 6. B and C, Western blot
analyis for G,/S proteins in human islets. B, Representative western blots. C, Quantitation of
Western blots. Densitometry values were normalized to B-tubulin or Gapdh. Fold changes were
determined for each experiment and averaged (n = 6—11). Comparisons were made by

Student’s paired t-tests. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

sion, the expression of its Cyclin-binding partners, and its
Cdc25 activators.

AdCMV-FOXM1b stimulated the expression of many
transcripts encoding the mitotic machinery. This includes
the chromosome passenger complex (CPC), which is neces-
sary for proper centrosome function in mitosis and contains
many known FoxM1 target genes. FOXM1b overexpres-
sion increased the mRNA abundance of CPC genes Survivin
(Birc5), Aurkb, PIk1, and Cdca8 in mouse and human islets
(Figs. 4A and SA). Taken together, our results demonstrate
that FoxM1 stimulates S-phase entry (independent of Cyclin
D/Cdk4/Cdké complex up-regulation), transition through

increase in FOXM1 mRNA expres-
sion. We also detected an average
3.8-fold (P
KI67 expression in the obese donors
(Fig. 6G), suggesting increased B-cell
replication.

The expression of islet Foxml
and its target genes show coordinate

0.028) increase in

regulation in response to obesity in

mice (Figs. 1 and 2). We therefore
performed quantitative RT-PCR for FoxM1 transcrip-
tional targets in our human islet panel. We analyzed the
data using a multiple regression model as before but ad-
ditionally tested for associations with FOXMT itself. We
found that G,/S transition regulators CYCLIN A2, CY-
CLIN E2, and CKS1B were positively correlated with
FOXM1 mRNA levels (Fig. 6, B and H; P < 0.05 for all).
The G,/M phase regulators CYCLIN B2 (P < 0.001) and
CDK1 (P < 0.05) also showed a positive correlation with
FOXM1 mRNA abundance (Fig. 6C). Multiple members
of the mitotic machinery were positively correlated with
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FIG. 6. FOXMT and its target genes are up-regulated in obese nondiabetic human islets. Quantitative RT-PCR analysis of 19 human islet
preparations over a range of BMI (24-51), age (27-60 yr), and sex (eight male, 11 female). A, Correlation between BMI and FOXM1 mRNA
expression (P = 0.01). B-E, Correlation between FOXM1 and various target genes at various cell cycle stages (P < 0.05 for all). F, Correlation of
CYCLIN AT and NEK2 to BMI (P < 0.05). G, KI67 mRNA expression (P = 0.028). Associations were tested using a multiple regression model with
BMI, FOXM1, age, and sex as covariate adjustments. P values for all comparisons can be found in Supplemental Table 1. H, Model for the
regulation of islet cell cycle genes by BMI. Genes in blue are correlated to BMI or significantly induced by BMI. Genes in red are correlated to
FOXMT1. Genes in purple are correlated to both BMI and FOXM1. Genes in gray were not correlated to BMI or FOXM1 expression.

FOXM1 expression in human islets. For example, centro-
mere protein mRNAs CENPA (P < 0.001), CENPB (P <
0.05), CENPE (P = 0.01), and CENPF (P < 0.001) dis-
played positive correlations with FOXMI1 transcript lev-
els (Fig. 6, D and H). Interestingly, CENPA (P = 0.01)
and PLK1 (P < 0.05) also demonstrated significant cor-
relations with BMI, even after adjusting for FOXM1 lev-
els (Fig. 6H), suggesting multiple layers of transcriptional

regulation for these genes. Very few of the genes we ex-
amined showed a significant correlation with age or sex
(Supplemental Table 1).

A couple of known FOXMI target genes were positively
correlated with BMI but not with FOXMT1 in human islets.
The S-phase regulator CYCLIN A1 (P < 0.01) and the mi-
totic kinase NEK2 (P < 0.05) displayed positive correlations
with BMI, independent of FOXM1 (Fig. 6F).
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We found that the majority of cell cycle regulators that
correlated with BMI did so through their correlation with
FOXMT1 (colored red in Fig. 6H). Because we used a
multiple regression model with BMI and FOXMI1 as co-
variates, a statistical correlation with FOXM1 and not
BMI suggests a model wherein obesity increases FOXM1,
and FoxM1, in turn, stimulates expression of the down-
stream gene. In contrast, if a gene correlates with BMI
independently of FOXM1 (like CYCLIN AT; colored
blue in Fig. 6H), then we infer that obesity regulates
CYCLIN A1 through a different mechanism than via in-
duction of FOXM1 expression.

Based on these data, we propose the following model of
islet cell cycle gene expression in human pancreatic islets
(Fig. 6H). Obesity, as an external stimulus, leads to the up-
regulation of FOXM1 and multiple cell cycle transcripts,
including KI67. Increased FoxM1 then increases the abun-
dance of G,/S (CKS1B, CYCLIN A2, CYCLIN E2), G,/M
(CYCLIN B2, CDK1), and M-phase transcripts (Centro-
mere proteins, CDC20, CDCA2, and PLK1). Ultimately,
the end result is cell division.

Our results in Figs. 3 and 5 demonstrate that overex-
pression of FOXM1b triggers human B-cell proliferation
by activating multiple phases of the cell cycle. Our data in
Fig. 6 demonstrate that FOXM1 expression correlates
with obesity. Furthermore, its cadre of target genes from
many phases of the cell cycle correlate with obesity
through FOXM1. We propose that obesity may stimulate
B-cell replication by activating the FoxM1 transcriptional
response in human islets as it does in mouse islets.

Discussion

Insufficient insulin production and B-cell mass are key
contributors to type 1 and type 2 diabetes (25-27). Ex-
pansion of B-cell mass is one way that an obese individual
may generate an adequate insulin supply to meet the de-
mands imposed by insulin resistance. We now identify
FoxM1 as a transcriptional regulator of adaptive prolif-
eration in response to obesity in the mouse. We further
demonstrate that overexpression of FOXM1b in isolated
islets stimulates mouse and human B-cell proliferation by
activating multiple stages of the cell cycle. Lastly, we
show, in nondiabetic human pancreatic islets, that obesity
induces the expression of FOXM1 and its cell cycle-reg-
ulated targets. Harnessing these mechanisms and stimu-
lating B-cell replication, either ex vivo before transplan-
tation or i vivo to compensate for insulin resistance, may
provide therapeutic interventions to treat patients with
either form of diabetes (23).

The discovery of mitogenic transcriptional regulators
in human B-cells has been difficult because the B-cell mi-
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togens and pathways that are effective in rodent islets are
often ineffective in human islets. In fact, only three tran-
scription factors have been shown to stimulate human
B-cell replication to date. Adenoviral overexpression
studies show that hamster Nkx6.1 (28), mouse Pax4 (29),
and human p8 (30) are sufficient to drive human islet cell
replication in vitro. FoxM1 can now be added to this
short list. We show that FOXM1b overexpression in-
creases f-cell proliferation (Fig. 3) by stimulating multi-
ple cell-cycle phases (Fig. 5), suggesting complete cell di-
vision rather than DNA damage repair. We also show a
preferential effect for B-cells without diminishing insulin-
secretory function (Fig. 3 and Supplemental Fig. 2).

FoxM1 overexpression triggers p-cell proliferation
by activating multiple phases of the cell cycle

FoxM1 activates islet G, progression independently of
Cyclin D and Cdk4/6 activity. Previous reports on the G,
phase in the B-cell demonstrate that D-type Cyclins and
their activation of Cdk4 and Cdké6 are critical for G, exit
and stimulation of B-cell replication. This occurs by
Cdk4- and/or Cdké6-dependent phosphorylation of the
pocket proteins (Retinoblastoma protein, p107, p130)
and derepression of E2F transcription factors (reviewed
in Ref. 24). Recent work demonstrates that Cyclin D1 and
Cdké are sufficient to drive human g-cell proliferation in
vitro (31). FoxM1 can increase Cyclin D1 and D2 mRNA
expression in liver and in endothelial cells, respectively
(12, 13). In islets, however, FOXM1b overexpression has
no effect upon Cyclin D, Cdk4, or Cdké expression (Figs.
4 and 35). Similarly, Gannon and colleagues (10) found no
changes in Cyclin D2 mRNA levels in islets after partial
pancreatectomy, a model wherein FoxM1 stimulates -cell
proliferation. These data suggest a tissue specificity to the
transcriptional program activated by FoxM1 with respect to
D-type Cyclins and a lack of reliance for FoxM1 upon in-
creased Cdk4 or Cdké activity for islet cell cycle progression.

Instead, FoxM1 activates G, progression and S-phase
entry by increasing Cdk2 activity. Classically, Cdk2 hy-
perphosphorylates pocket proteins to further prevent
them from inhibiting the E2F transcription factors (re-
viewed in Ref. 24). In the B-cell, it has been previously
shown that activation of Cdk2, via overexpression of Cy-
clin E (28) or Cyclin A (32), is sufficient to drive B-cell
proliferation. In our studies, FoxM1 increased Cdk2 ac-
tivity by up-regulating Cyclin A, Cyclin E, Cdk2, and
Cdc25a expression (Figs. 4 and 5). Therefore, FoxM1
activates Cdk2, which is sufficient to phosphorylate the
pocket proteins and activate E2F transcription factors to
trigger B-cell proliferation in the absence of increased
Cdk4 or Cdké6 activity.

FoxM1 stimulates the G,/M transition and mitosis via
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similar mechanisms as other cell types. FOXM1b overex-
pression stimulated M-phase entry by enhancing Cdk1
activity via increased expression of Cyclin B, Cdk1, and
Cdc25 phosphatases (Figs. 4 and 5). FoxM1 also stimu-
lated proper mitotic progression by up-regulating
M-phase machinery like the CPC (Figs. 4 and 5). All of
these genes are well documented to be regulated by
FoxM1, as previously discussed (8).

In addition to confirming many known FoxM1 tran-
scriptional targets, we have discovered new FoxM1-reg-
ulated genes. In the G,/S transition, we found up-regula-
tion of Cdk2 gene expression in islets overexpressing
FOXM1b. In the G,/M transition, we found increased
expression of Cks2, which was recently reported to be
important for Cdk1 activity (33). Finally, we found that
Cdca8 (Borealin, part of the CPC), Cenpe, and Cdca2 (an
anaphase factor) were up-regulated by FOXM1b to en-
sure proper mitotic progression (Figs. 4 and 5). Addi-
tional evidence for FoxM1 regulation of these transcripts
came from our mouse and human iz vivo studies. All five
of these genes were found to correlate very highly with
Foxm1 expression in islets from lean and obese B6 and
BTBR mice (data not shown). Cks2, Cdca8, Cenpe, and
Cdca2 were also highly correlated with Foxm1 expres-
sion in islets from our F2 sample (Fig. 2). In addition,
CENPE and CDCA2 gene expression positively corre-
lated with FOXM1 expression in islets from obese non-
diabetic human subjects (Fig. 6G). Therefore, we propose
these five genes as new FoxM1-regulated transcripts.

A role for FoxM1 in islet cell proliferation in vivo

Whereas the role of FoxM1 and other transcription
factors has been elucidated in various models of B-cell
proliferation, little is known about the transcriptional
regulation of obesity-driven islet cell proliferation (9, 10,
34, 35). Our data suggest that FoxM1 is a key regulator of
this process. In diabetes-resistant B6 Leptin®"°"
Foxm1 and its targets are up-regulated (Fig. 1) and cor-
relate with B-cell proliferation and mass (7). Islet Foxm1
expression fails to increase with obesity in the BTBR
strain (Fig. 1), in which there is reduced B-cell mass, pro-
liferation, and diabetes (7).

There are many genetic and phenotypic differences be-
tween any two mouse strains. One way to test for a causal
relationship between particular phenotypes is to generate
a segregating population from two founder strains and
ask whether particular phenotypes cosegregate. When
they do, it is often because they share a common cause. To
determine whether Foxm1 expression might be causally
associated with diabetes-related traits, we screened an F2
sample derived from B6 and BTBR Leptin®®’°® mice. This
sample has a 10- and 50-fold range of glucose and insulin

mice,
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levels, respectively, giving us a large amount of pheno-
typic variance within which to test our hypothesis. In this
sample, we found that the mRNA abundance of Foxm1
and many of its classic target genes positively correlated
with fasting plasma insulin, C-peptide, crude islet mass,
and improved fasting plasma glucose (Fig. 2). These data
suggest that obesity-stimulated expression of Foxm1 is a
protective measure to expand B-cell mass and prevent
metabolic decompensation.

To determine whether this obesity-driven FoxM1 ex-
pression could independently stimulate B-cell prolifera-
tion, we overexpressed FOXM1b in isolated islets. We
found that FoxM1 is sufficient to increase 3-cell replica-
tion (Fig. 3). We even found this effect in BTBR islets,
which fail to up-regulate Foxm1 and proliferate i vivo in
response to obesity, suggesting that these islets are not
inherently resistant to proliferative stimuli. Our data
complement those of Gannon and colleagues (9), who
demonstrate that increased Foxm1 expression is neces-
sary for adult B-cell proliferation and stimulated B-cell
proliferation secondary to partial pancreatectomy (10)
and pregnancy (11). We add that increased expression
of Foxml and its transcriptional program correlate
with B-cell proliferation in response to obesity in mice.
In contrast, a transgenic mouse ubiquitously overex-
pressing human FOXM1b did not show a statistically
significant increase in B-cell mass in response to partial
pancreatectomy, although a trend was apparent, pro-
liferation was not directly measured, and few animals
were examined (10).

The role of B-cell proliferation is not as clearly defined
in humans as it is in the mouse. Replication of B-cells has
been observed in human islets in the setting of new-onset
type 1 diabetes and in islets with close proximity to gas-
trinoma tumors (36, 37). Additionally, genome-wide as-
sociation studies in type 2 diabetes identify single nucle-
otide polymorphisms near multiple cell cycle-related
genes (38-41), suggesting the importance of B-cell pro-
liferation in type 2 diabetes pathogenesis. Butler and col-
leagues (1) initially examined the mechanisms of B-cell
mass regulation in autopsy specimens derived from lean
and obese type 2 diabetics. They presented, as controls,
data from lean and obese nondiabetic subjects, in whom
no significant difference in Ki67 staining of B-cell nuclei
was observed (1). On the basis of these data, it has been
widely inferred that in humans, unlike rodents, B-cells do
not replicate in response to obesity. Recently, Rosen-
berg and colleagues (3) performed a similar autopsy
study emphasizing new-onset diabetes in their cohort.
Increased obesity-driven B-cell proliferation was de-
tected in nondiabetic donors, but not diabetic donors
(3). This study not only detects obesity-stimulated hu-
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man B-cell proliferation, but suggests that lack of pro-
liferation could be causal for reduced B-cell mass and
diabetes pathogenesis.

Here, we demonstrate that human islets show in-
creased expression of FOXM1 with obesity (Fig. 6A; P =
0.01). The expression of many FoxM1 target genes is
positively correlated with BMI through FOXM1 expres-
sion (Fig. 6, B-F). These target genes act at multiple
phases of the cell cycle and have been shown to be tran-
scriptionally up-regulated in proliferating cells (42). Ac-
cordingly, the proliferative marker KI67 is up-regulated
3.8-fold by obesity in human islets (Fig. 6G). We also
demonstrate that FoxM1 is sufficient to preferentially
stimulate B-cell proliferation (Fig. 3) and up-regulates
these same target genes in isolated human islets (Fig. 4).
Our data suggest that the FoxM1 transcriptional pro-
gram participates in human B-cell proliferation in re-
sponse to obesity in vivo.

Our study and the previously published work on hu-
man B-cell proliferation in response to obesity used dif-
ferent methodologies. We used gene expression analysis
from organ donors whereas the studies of Butler and
Rosenberg used Ki67 and PCNA immunohistochemistry,
respectively, on autopsy pancreata (1, 3). Quantitative
RT-PCR, which has a greater sensitivity and dynamic
range than immunohistochemistry, could explain our
ability to detect significant changes, where these were not
always detectable with protein staining. Unfortunately,
we did not collect islet protein or fix islets for immuno-
staining from this panel, so a direct mRNA to protein
comparison is not possible. Furthermore, we measured
many cell cycle transcripts as markers for proliferation
rather than relying on a single marker. Unfortunately, no
direct measurement of human B-cell proliferation in vivo
is yet available. However, our data are consistent with
increased B-cell replication in response to obesity.

Although the focus of our analysis was directed to
human islet gene expression changes in response to obe-
sity, we also examined the effects of age as a covariate. We
did not find a significant negative correlation of prolifer-
ative gene expression with age (Supplemental Table 1).
Previous work has found reduced basal proliferative rates
in organ donor islets with increasing age when measured
with immunohistochemistry (43). We think our data dif-
fers because our islet donor population was almost en-
tirely between the ages of 40 and 60 yr, causing an age
analysis to be underpowered.

Understanding the adaptive response to obesity in hu-
man islets leading to expansion of B-cell mass may allow
us to utilize these processes to increase regulated insulin
production in patients with prediabetes or diabetes. Even
in the setting of increased apoptosis and declining B-cell
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mass in type 2 diabetes, we may be able to restore eugly-
cemia by expanding B-cell mass. By identifying key tran-
scriptional regulators like FoxM1, we can now hope to
work to identify mitogens upstream of FoxM1 to develop
new type 2 diabetes therapeutics.

Materials and Methods

Animals

Lean and obese B6 and BTBR mice were derived from the
same cohort of 10-wk-old male mice described in our previous
publication (7). F2 mice were generated by crossing female BT-
BR.Leptin®®" and male B6-Leptin®”* mice to generate F1-
Leptin®®°? animals. F1-Leptin®”’°? mice were fat transplanted
as previously described (44) to restore fertility and were in-
tercrossed to generate F2-Leptin®®°® animals. F2-
Leptin®?°® animals were killed at 10 wk of age, as previously
described (7). For adenoviral studies, lean BTBR male and
female mice aged 8-14 wk were used. Mouse procedures
were approved by the Association for Assessment and Ac-
creditation of Laboratory Animal Care to meet acceptable
standards of humane animal care.

Plasma measurements

Animals were fasted for 4 h (0530-0930 h), and retroorbital
blood samples were taken before animals were euthanized by
CO, asphyxiation. Glucose was measured by the glucose oxi-
dase method (Sigma-Aldrich, St. Louis, MO). Insulin was mea-
sured by an ELISA developed in our laboratory using a pair of
antiinsulin/proinsulin antibodies (clones D6C4 and D3E7-BT;
Research Diagnostics,), as previously described (7).

Islet isolation

Intact pancreatic islets were isolated from mice using a col-
lagenase digestion procedure, as previously described (45), and
hand picked under a stereo microscope to remove contaminat-
ing acinar tissue. Islets were then either washed in PBS and
stored in RLT buffer (QIAGEN, Chatsworth, CA) at —80 C for
RNA isolation or used in adenoviral experiments.

Microarray analysis

Gene expression profiling in pancreatic islets was carried out
as described previously (7). Briefly, whole-islet RNA was puri-
fied from approximately 500 mice using QTAGEN RNeasy Mini
Kits according to the manufacturer’s instructions. Total RNA
was reverse transcribed (c(RNA) and labeled with Cy3. For each
mouse, Cy3-labeled cRNA was hybridized against a reference
pool of Cy5-labeled cRNA that was constructed from equal
aliquots of RNA from 180 randomly selected mice. Gene ex-
pression measurements were made using custom-printed mi-
croarrays consisting of approximately 40,000 60-mer oligonu-
cleotides (Agilent Technologies, Palo Alto, CA). Expression
values are reported as log;, of the ratio of Cy3-cRNA/CyS5-
cRNA reference (mlratio) for each mouse. Mice were parti-
tioned into distinct subgroups by unsupervised hierarchical
clustering of the normal scores of the expression of FoxM1 and
the other genes listed in Fig. 2. This order-preserving procedure
forces the expression values to follow a normal distribution,
reducing influence of outlier expression values on the clustering
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algorithm. Mlratio data for all 499 mice for the genes listed in
Fig. 2 are included in Supplemental Data.

Adenovirus construction

AdCMV-FOXM1b adenovirus was constructed using hu-
man FOXM1b cDNA, as previously described (14) at Univer-
sity of Illinois-Chicago in Dr. Robert Costa’s laboratory. The
adenovirus was a generous gift from Dr. Pradip Raychaudhuri
(University of Illinois-Chicago). The AACMV-B-gal virus was a
gift from Dr. Chris Newgard (Duke University, Durham, NC)
and has been previously described (28). We checked for the
contaminant E1A, an adenoviral oncogene, that could confound
proliferation results (46). We detected no E1A DNA in Ad-
CMV-FOXM1b adenoviral stocks or E1A mRNA in AACMV-
FOXM1b-treated islets (data not shown). E1A testing was done
by quantitative PCR using the following primers: forward,
TATGCCAAACCTTGTACCGGAGGT and reverse, CCGGG-
GTGCTCCACATAATCT.

Islet culture

After handpicking, mouse islets were washed twice in islet
media (RPMI 1640 with 8 mm glucose, 10% fetal bovine serum,
1% penicillin/streptomycin) and separated into groups. Islets
were then treated with AACMV-FOXM1b or AACMV-B-gal
with an multiplicity of infection of approximately 120-240
(4.7 X 107 plaque-forming untits/200—-400 islets) for 18-20 h.

Human islets were obtained from participating Islet Cell Re-
source Centers, including the Center at University of Wisconsin.
An exemption was granted for all protocols by the Institutional
Review Board at the University of Wisconsin-Madison. Islets
were treated with AACMV-FOXM1b or AACMV-B-gal with a
multiplicity of infection of approximately 50-100 (1.26 X 108
plaque-forming units/1000-2000 islet equivalent units) for
18-20 h in CMRL 1066 with 2.5% human serum albumin.
After this point, mouse and human islets were treated identi-
cally. Islets were then cultured for an additional approximately
54 h with fresh islet media added daily.

[*H]thymidine incorporation into DNA

After 54 h of incubation, an overnight approximately 18-h
incubation was performed in the presence of [*H]thymidine (1
mCi/ml, Amersham TRK758). Islets were washed three times
with ice-cold PBS. DNA and protein were precipitated by addi-
tion of 10% trichloroacetic acid. The precipitate was solubilized
in 0.3 N NaOH, and the radioactivity was measured using a
liquid scintillation counter. A fraction of the solubilized product
was kept to measure total protein by the Bradford assay (47).
Sample counts were individually normalized to protein, and an
average for each treatment group was determined.

Immunofluorescent staining

After 54 h of incubation, islets were incubated for 18 h with
10 mm BrdU (Sigma B5002). Islets were washed three times with
1 ml of PBS. Islets were fixed in Bouin’s solution for 2 h and
maintained in 10% neutral-buffered formalin. After formalin
removal, 50 ml of Affi-Gel blue bead slurry (Bio-Rad Labora-
tories, Hercules, CA) was added to the islets to aid in visualiza-
tion during sectioning. The islet and bead slurry was embedded
in paraffin. (5 wm) Serial sections on glass slides were deparaf-
finized with xylene and rehydrated in a graded series of ethanol.
For mouse islets, BrdU (Calbiochem, La Jolla, CA; NA61 Ab-3,
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1:250), glucagon (Santa Cruz Biotechnology, Inc., Santa Cruz,
CAj; sc-13091, 1:50), and insulin (Sigma; 18510, 1:500) were
immunostained. For human islets, slides were boiled for 13 min
in Vector H-3300 antigen retrieval solution (Vector Laborato-
ries, Inc., Burlingame, CA) after rehydration. BrdU (Invitrogen,
Carlsbad, CA; A21301MP, 1:100), glucagon, and insulin were
immunostained. Islet sections were imaged at X40 via confocal
microscopy. Analysis of the photomicrographs was performed
in a blinded fashion and scored for BrdU-positive nuclei within
cells staining positively for insulin or glucagon. We required the
nuclear area containing the BrdU staining to be entirely sur-
rounded by either insulin or glucagon staining to be counted;
any poorly stained cells or cells that could not be clearly desig-
nated were not counted.

Glucose-stimulated insulin secretion

Three to five islets were washed in Krebs-Ringer bicarbonate
secretion buffer (0.5% BSA, 118.41 mm NaCl, 4.69 mm KCI,
1.18 mm MgSO,, 1.18 mm KH,PO,, 25 mm NaHCO;, § mm
HEPES, and 2.52 mMm CaCl,) with 1.67 mm glucose for 45 min.
Islets were then either incubated in Krebs-Ringer bicarbonate
secretion buffer with 1.67 mMm glucose or 16.7 mMm glucose for 45
min. Insulin concentrations were measured by our in-house
ELISA (mouse insulin) or RIA (human insulin, RI-13K; Linco
Research, Inc., St Charles, MO) and normalized to total insulin
content.

Quantitative RT-PCR

RNA was isolated with the RNeasy kit (QIAGEN) and
c¢DNA was prepared with the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA).
mRNA measurements were performed by SYBR quantitative
RT-PCR, and all values were normalized to B-actin. Primer
sequences can be found in Supplemental Tables 2 and 3. For
adenoviral studies, changes relative to treatment with a control
adenovirus (AdCMV-B-gal) were determined for each indepen-
dent mouse or human islet preparation and averaged.

Western blotting

Islets were washed in PBS and lysed in 20 mm Tris HCI, 10
mM EDTA, and 1% Triton X-100 containing 10 ug/ml leupep-
tin, 5 pg/ml aprotinin, 5 pg/ml pepstatin A, 100 mm pefablock,
and 1 mMm sodium orthovanadate. Whole islet lysate (20-50 ug)
was separated on 4-15% Tris HCI gradient gels (Bio-Rad) and
transferred to polyvinylidene difluoride membranes. Mem-
branes were blocked in 5% milk Tris-buffered saline with
0.25% Tween 20. Primary antibodies and dilutions can be
found in Supplemental Table 4. Blots were quantitated by den-
sitometry with the QuantTL program. Relative changes were
determined for each individual mouse or human and averaged.

Statistical methods

Quantitative RT-PCR comparisons were made by one-way
ANOVA followed by Bonferroni-corrected ¢ tests (Fig. 1) or
Student’s paired ¢ test (Figs. 4 and 5 and Supplemental Tables 5
and 6). Paired analysis was performed because islets from a
single mouse or human were separated into two treatment
groups. Human islet obesity RT-PCR data were analyzed by
both binned obese (BMI > 30) vs. lean (BMI < 30) unpaired
Student’s # tests or a multiple regression model using FOXM1,
BMI, age, and sex as covariate adjustments (Fig. 6 and Supple-
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mental Table 1). Interactions between BMI, age, and sex were
nonsignificant and not reported. F2 islet microarray expression
data were clustered with an unsupervised hierarchical approach
in R (48). Clinical phenotype comparisons of F2 mice (Fig. 2)
were made by one-way ANOVA followed by Bonferroni-cor-
rected ¢ tests. For data derived from measuring [*H]|thymidine
incorporation into DNA (Fig. 3), comparisons were made by
repeated-measures ANOVA followed by Bonferroni-corrected
paired t-tests. For the detection of BrdU incorporation into
DNA (Fig. 3), comparisons were made by repeated-measures
ANOVA followed by Bonferroni-corrected paired ¢ tests. For
experiments that measured insulin secretion (Supplemental Fig.
2), comparisons were made by repeated-measures ANOVA fol-
lowed by Bonferroni-corrected paired ¢ test. Western blot com-
parisons (Figs. 4 and 5) were made by Student’s paired ¢ tests.
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