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Cholecystokinin Is Up-Regulated in Obese Islets and
Expands �-Cell Mass by Increasing �-Cell Survival

Jeremy A. Lavine,* Philipp W. Raess,* Donald S. Stapleton, Mary E. Rabaglia,
Joshua I. Suhonen, Kathryn L. Schueler, James E. Koltes, John A. Dawson,
Brian S. Yandell, Linda C. Samuelson, Margery C. Beinfeld, Dawn Belt Davis,
Marc K. Hellerstein, Mark P. Keller, and Alan D. Attie

Departments of Biochemistry (J.A.L., P.W.R., D.S.S., M.E.R., J.I.S., K.L.S., J.E.K., D.B.D., M.P.K., A.D.A.),
Statistics (J.A.D., B.S.Y.), and Medicine, Section of Endocrinology (D.B.D.), University of Wisconsin,
Madison, Wisconsin 53706; Department of Molecular and Integrative Physiology (L.C.S.), University of
Michigan, Ann Arbor, Michigan 48109; Department of Pharmacology and Experimental Therapeutics
(M.C.B.), Tufts University, Boston, Massachusetts 02111; and Department of Nutritional Sciences and
Toxicology (M.K.H.), University of California, Berkeley, Berkeley, California 94720

An absolute or functional deficit in �-cell mass is a key factor in the pathogenesis of diabetes. We
model obesity-driven �-cell mass expansion by studying the diabetes-resistant C57BL/6-Leptinob/ob

mouse. We previously reported that cholecystokinin (Cck) was the most up-regulated gene in obese
pancreatic islets. We now show that islet cholecystokinin (CCK) is up-regulated 500-fold by obesity
and expressed in both �- and �-cells. We bred a null Cck allele into the C57BL/6-Leptinob/ob back-
ground and investigated �-cell mass and metabolic parameters of Cck-deficient obese mice. Loss
of CCK resulted in decreased islet size and reduced �-cell mass through increased �-cell death. CCK
deficiency and decreased �-cell mass exacerbated fasting hyperglycemia and reduced hyperinsu-
linemia. We further investigated whether CCK can directly affect �-cell death in cell culture and
isolated islets. CCK was able to directly reduce cytokine- and endoplasmic reticulum stress-induced
cell death. In summary, CCK is up-regulated by islet cells during obesity and functions as a paracrine
or autocrine factor to increase �-cell survival and expand �-cell mass to compensate for obesity-
induced insulin resistance. (Endocrinology 151: 0000–0000, 2010)

Type 1 and type 2 diabetes result from an absolute or
relative deficiency in �-cell mass. In type 1 diabetes,

autoimmune destruction of pancreatic �-cells results in a
complete loss of �-cell mass and insulin production. In
type 2 diabetes, �-cells cannot respond to the increased
insulin requirement caused by insulin resistance, leading
to a relative deficiency in �-cell mass and insulin produc-
tion. Although obesity is a major risk factor for type 2
diabetes, most obese patients compensate for insulin re-
sistance by expanding their �-cell mass (1, 2). Thus, pa-
tients with impaired fasting glucose or type 2 diabetes have
reduced �-cell mass compared with weight-matched con-
trols (1, 3). Patients with type 2 diabetes have diminished
�-cell mass due to increased �-cell death (1). In fact, a

�-cellmass threshold exists,wherein reductionsbelowthis
level cause hyperglycemia (3). These observations have led
to the investigation of mechanisms to expand �-cell mass
by preventing �-cell death to treat diabetes.

We model �-cell mass expansion using obese mice. The
C57BL/6 mouse strain (B6), when made severely obese by
the Leptinob mutation (ob/ob), is severely insulin resistant
but not diabetic (4). The B6-ob/ob mouse avoids diabetes
by increasing plasma insulin and expanding �-cell mass (5,
6). We previously performed microarray analyses of islets
from B6-lean and B6-ob/ob mice to identify transcripts
correlated with �-cell mass expansion. We found that cho-
lecystokinin (Cck) was the most up-regulated gene in the
pancreatic islets of B6-ob/ob mice (7).

ISSN Print 0013-7227 ISSN Online 1945-7170
Printed in U.S.A.
Copyright © 2010 by The Endocrine Society
doi: 10.1210/en.2010-0233 Received March 3, 2010. Accepted May 6, 2010.
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Abbreviations: B6, C57BL/6 mouse strain; CCK, cholecystokinin; CCKAR, CCK-A receptor;
ER, endoplasmic reticulum; GFP, green fluorescent protein; GIP, glucose-dependent insu-
linotropic polypeptide; GLP-1, glucagon-like peptide 1; GTT, glucose tolerance test; ITT,
insulin tolerance test; PCNA, proliferating cell nuclear antigen; si, small interfering; TUNEL,
terminal deoxynucleotidyl-mediated dUPT nick end labeling; X-gal, X-galactosidase.
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Cholecystokinin (CCK) has been extensively studied as
a gastrointestinal hormone and a neuropeptide (8). In the
gastrointestinal tract, CCK is secreted by duodenal I-cells
to stimulate gallbladder contraction and pancreatic exo-
crine secretion through the CCK-A receptor (CCKAR). In
the central nervous system, CCK modulates many behav-
ioral functions including satiety, anxiety, and memory via
the CCK-B receptor (CCKBR) (8).

CCK is known to play a role in glucose homeostasis. In
rodents, CCK can stimulate insulin secretion in vivo or in
pancreatic perfusions (9, 10). In humans, CCK doses
slightly above the physiological level stimulate insulin se-
cretion (11). Because the source of plasma CCK is the
duodenum and CCK is secreted in response to nutrients, it
has been proposed as an incretin hormone, like glucagon-
like peptide 1 (GLP-1) and glucose-dependent insulino-
tropic polypeptide (GIP). However, CCK receptor block-
ade does not diminish insulin secretion directly after a
meal (12). These results led to the conclusion that CCK can
stimulate insulin secretion but is not required for post-
prandial insulin secretion in humans. Two studies have
also implicated CCK in �-cell mass regulation. CCK treat-
ment reduces hyperglycemia and stimulates �-cell prolif-
eration after pancreatic injury in rats (13, 14).

We hypothesized that islet-derived CCK can protect
an obese insulin-resistant mouse from developing hy-
perglycemia by aiding in �-cell mass expansion. We first
confirmed the up-regulation of Cck expression by quan-
titative RT-PCR and determined which islet cell types
express CCK. We next asked whether whole-body CCK
deficiency causes a deficit in �-cell mass or disrupts
glucose homeostasis. Finally, we determined whether
CCK directly affected �-cell mass regulation in vitro
and ex vivo.

Materials and Methods

Animals
CcklacZ mice (15) were back-crossed onto the C57BL/6 back-

ground for a minimum of 10 generations and bred with C57BL/
6-Leptinob/� mice to generate CcklacZ-ob/ob mice. Cck-eGFP
transgenic mice were constructed using a bacterial artificial chro-
mosome transgene that inserted eGFP into the endogenous Cck
locus and contained 50–100 kb of 5� and 3� flanking intergenic
DNA (16). C57BL/6-Ay/a (lethal yellow agouti) mice were fed a
chow diet for 16 wk. For the diet-induced obesity study, BTBR
mice were fed a high-fat diet (Research Diets, Inc.; no.
D00071501, 20% protein, 60% hydrogenated coconut oil, and
20% carbohydrate) or a semipurified control diet (Research Di-
ets; no. D12450B, 20% protein, 10% fat, and 70% carbohy-
drate) at weaning for 33 wk. All procedures were approved by
University of Wisconsin Animal Care and Use Committee.

Reagents
Sulfated CCK-8 was purchased from Sigma (C2175; St.

Louis, MO). Small interfering (si)-Scr and si-Cck oligonucleo-
tides were purchased from Ambion (Austin, TX).

mRNA measurements
Pancreatic islets were isolated using collagenase digestion and

hand-pickedaspreviouslydescribed (17).RNAwasextracted from
islet, brain, and intestinal tissues with the RNeasy kit (QIAGEN,
Valencia, CA) and synthesized into cDNA (Superscript III;
Invitrogen, Carlsbad, CA). Quantitative RT-PCR with TaqMan
probes (Applied Biosystems, Foster City, CA) was used to
determine Cck, Cckar, and Cckbr mRNA levels, which were
normalized to �-actin.

Protein measurements
CCK protein levels were measured by RIA (Alpco Diagnos-

tics, Salem, NH). HPLC was carried out with a Waters Alliance
HPLC system using a 4.6 � 250 Symmetry Shield RP 18 column
to assay the forms of CCK. Islet cell extracts were sonicated in
cold 0.1 N HCL, and protein concentration was determined by
Bradford assay (Sigma). After loading, the column was eluted
with a 60-min gradient of 27–30% acetonitrile in 0.1% trif-
luoroacetic acid at 1 ml/min. One-minute fractions were col-
lected and dried before CCK RIA, which was performed as
described (18). Antibodies against amidated sulfated CCK-8,
glycine-extended CCK-8, and nonsulfated CCK-8 were used.
Sulfated CCK-12, -22, and -33 standards were synthesized as
described (19).

Histology
Pancreata used for immunofluorescence staining were

fixed, sectioned, and stained as previously described (20). For
localization of CCK expression using Cck-eGFP transgenic
mice, pancreata from three lean and three ob/ob mice were
studied. Pancreata were stained with antiinsulin antibody (20)
and endogenous green fluorescent protein (GFP) was visual-
ized. A representative image from each animal is displayed.
For dual X-galactosidase (X-gal)/immunofluorescence stain-
ing of CcklacZ-ob/ob mice, sections were incubated with an-
tiinsulin and antiglucagon antibodies as previously described
(20). Immunofluorescence images were generated, and then
X-gal staining was performed overnight. After X-gal staining,
immunofluorescence images were generated again and over-
laid with light micrographs generated at the same time. Pan-
creata from two CckLacZ/�-ob/ob mice were studied; a repre-
sentative islet image from each is shown.

For quantitation of 10-wk islet size and mass, four male mice
from each genotype were examined. Every islet was imaged in
randomly selected pancreatic sections until a minimum of 100
islets per animal were measured. Islet size was quantitated by
counting �-cell nuclei. For quantitation of 14-wk islet size and
islet mass, five male CckWT-ob/ob and four male CcklacZ-ob/ob
pancreata were analyzed. Every islet was imaged in four pan-
creatic sections per animal. Individual islet areas (14 wk only)
and the total pancreatic section area (10 and 14 wk) were mea-
sured with Metamorph (Molecular Devices, Sunnyvale, CA).
Clusters of �-cells smaller than 2000 �m2 or seven nuclei
(�0.4% of total �-cell area) were analyzed separately.

Pancreata used for proliferating cell nuclear antigen (PCNA)
and terminal deoxynucleotidyl-mediated dUPT nick end labeling
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(TUNEL) staining were identical to the 10-wk islet size and mass
panel. TUNEL staining was performed using the DeadEnd Flu-
orometric TUNEL system (Promega, Madison, WI). Every islet
from two to four pancreatic sections per animal was imaged for
TUNEL analysis and normalized to total �-cell area. For PCNA
staining (Calbiochem, La Jolla, CA; no. NA03), every islet was
imaged in randomly selected pancreatic sections until a mini-
mum of 100 islets per animal were measured; the total number
of PCNA-positive �-cells was normalized to total number of
�-cells.

Plasma measurements
Plasma for all measurements was collected by retroorbital

sinus bleeds on nonanesthetized mice after a 4-h fast. Glucose
and insulin were measured as previously described (4). Glucagon
was measured by RIA (Millipore, Bedford, MA).

Glucose tolerance test (GTT) and insulin tolerance
test (ITT)

For GTT, 10-wk-old male mice were fasted overnight before
an ip injection of 2 g/kg dextrose in sterile saline. For ITT, non-
fasting 14-wk-old male and female mice were given an ip injec-
tion of 20 U/kg Humulin (Eli Lilly & Co., Indianapolis, IN) in
sterile saline. Glucose and insulin were measured as described
above.

In vitro insulin secretion
Insulin secretion studies were performed on islets isolated

from four CckWT-ob/ob and five CckLacZ-ob/ob 14-wk-old fe-
male mice as previously described (17). Briefly, intact islets were
hand-picked, and three islets were used per static incubation
condition. Secretion measurements were performed in triplicate
per animal. Secreted insulin was measured as described above
and normalized to insulin content.

In vivo islet proliferation measurement
The proliferation rate of islet cells was measured using the

2H2O labeling technique that has been applied to a wide range
of cell types, including pancreatic islets (4, 13, 21). Briefly, the
incorporation of 2H from 2H2O into the deoxyribose moiety of
deoxyribonucleotides in replicating cells was measured by gas
chromatography/mass spectrometry. To rapidly attain a stable
2H2O body water enrichment, mice were given an ip injection of
0.015 ml/g 2H2O at 3 or 8 wk of age. Mice were then given 8%
2H2O as drinking water until they were killed 2 wk later.

Propidium iodide staining
Islets were isolated from 14-wk-old mice and placed in Krebs-

Ringer bicarbonate buffer with 0.5 �g/ml calcein AM (Molec-
ular Probes, Eugene, OR; C-3100) and 2.5 �g/ml propidium
iodide for 15 min at 37 C. Islets were visualized by epifluores-
cence microscopy; the number of dead cells was quantified by
counting propidium iodide-positive nuclei and normalized to
total islet area (calcein AM staining).

Cytotoxicity experiments
Mouse (MIN6-B1) insulinoma cells were a generous gift from

Dr. Philippe A. Halban and were cultured as previously de-
scribed (22). MIN6-B1 cells were transfected with si-Scr or si-
Cck (Ambion) oligonucleotides overnight using Lipofectamine

2000 (Invitrogen). Cells were then allowed to incubate for 48 h
before a cytokine cocktail was added for 24 h. The cytokine
cocktail contained 10 ng/ml IL1-� (Roche Molecular Biochemi-
cals, Indianapolis, IN; no. 1457 756) and 50 ng/ml TNF-� (R&D
Systems, Minneapolis, MN; no. 510-RT). Islets from CckWT-
ob/ob and CcklacZ-ob/ob mice were isolated from 10-wk-old
male and female mice, immediately dispersed by cell dissociation
solution (Sigma C-5789) and cultured for 24 h in RPMI 1640
medium with 1% fetal bovine serum and 1% antibiotic-antimy-
cotic. The percentage of dead cells was measured by the Cyto-
Tox-Glo cytotoxicity assay (Promega).

Statistical analysis
Comparisons between genotypes were made by Student’s un-

paired t tests unless otherwise noted. Islet size distribution com-
parisons were made by Kolmogorov-Smirnov tests to identify
differences in histogram shape and ANOVA followed by Bon-
ferroni-corrected Student’s t tests to look at islet size contribu-
tion to total islet area. All plasma glucose and insulin measure-
ments were made using log10 transformed values to create
normal Gaussian distributions. Plasma glucose and insulin com-
parisons were made on a log scale by ANOVA adjusting for sex,
genotype and time nested within sample, and their interactions
(see Fig. 4, A and B). GTT and ITT data were analyzed on a log
scale using a linear mixed-effects model on subjects over time.
Effects for genotype, time, and genotype by time were tested by
adjusted (type 3) analysis. Sex-specific effects were included in
experiments with males and females. Analyses were adjusted for
initial levels as a covariate (Fig. 4). ITT data were also analyzed
by the standard trapezoidal area-under-the-curve method.
Briefly, each mouse was normalized to its initial starting glucose
value, and then a trapezoidal area under the curve was deter-
mined for each mouse. Comparisons were made by Student’s t
test on both combined and separated sexes. Comparisons in the
�-cell line and islet cytotoxicity experiments were made by re-
peated-measures ANOVA followed by Bonferroni-corrected
Student’s paired t tests (see Fig. 6, A and B). Sulfated CCK-8
rescue on islet cytotoxicity comparisons were made by
ANOVA blocking on sample. This analysis was followed by
a second ANOVA using the vehicle as a covariate to test for
a CCK dose-dependent log-linear trend (Fig. 6C).

Results

Pancreatic islets up-regulate CCK in response to
obesity

We previously identified Cck as the most up-regulated
gene in ob/ob pancreatic islets (7). We measured islet Cck
mRNA levels by quantitative RT-PCR in lean and ob/ob
mice at various ages to understand the kinetics of Cck
expression. Cck mRNA is present and equal in islets from
lean and ob/ob mice at 18 d of age (Fig. 1A). At 4 wk, islet
Cck abundance decreased in islets from lean mice and
increased in islets from ob/ob mice, causing a 60-fold in-
crease in Cck expression (Fig. 1A). By 14 wk, 500-fold
more Cck mRNA was detected in islets from ob/ob mice
(Fig. 1A). We measured total CCK protein abundance in
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islet samples by RIA. Islets from ob/ob mice contained
approximately 15–20 pmol CCK/g total protein, whereas
CCK was undetectable in islets from lean mice (Fig. 1B).
We next measured CCK peptides by HPLC fractionation
and subsequent RIA analysis with amidated and sulfated
CCK standards to confirm that islets from ob/ob mice can
process CCK into its bioactive forms. The two most abun-
dant species detected were amidated and sulfated CCK-12
and CCK-8 (Fig. 1C). CCK-8 is known as the most bio-
active peptide (23). Nonamidated, glycine-extended, or
nonsulfated CCK intermediates were undetectable.

We measured CCK receptor mRNA
expression to determine whether a rel-
evant CCK pathway exists in islets from
ob/ob mice. We found that the CCKAR
is present in islets from both lean and
ob/ob mice but down-regulated by obe-
sity (Fig. 1D). The CCKBR was present
as very low abundance in islets from
lean and ob/ob mice.

To determine whether obesity-de-
pendent CCK up-regulation is ubiqui-
tous to all CCK-expressing tissues, we
assayed CCK mRNA expression in
brain and intestine. CCK expression
was not significantly different between
lean and ob/ob mice in brain or intesti-
nal tissue (Fig. 1E), suggesting that the
obesity-induced increase of Cck expres-
sion is unique to islets.

We tested two other models of obe-
sity and insulin resistance for up-regu-
lation of islet Cck: agouti yellow mice
and diet-induced obesity. Agouti yel-
low mice demonstrated hyperinsulin-
emia and 8-fold increased islet Cck ex-
pression by 16 wk of age (Fig. 1, F and
G). We also measured islet Cck mRNA
abundance in mice fed a high-fat diet for
33 wk. These mice had increased body
weight, hyperinsulinemia, and 16-fold
increased islet Cck mRNA expression
(Supplemental Fig. 1, published on The
Endocrine Society’s Journals Online
web site at http://endo.endojournals.
org). These data demonstrate that obe-
sity and/or insulin resistance, and not
solely leptin deficiency, stimulate islet
Cck expression.

We used confocal immunofluores-
cence imaging to determine which islet
cell types express CCK. Initial experi-
ments using indirect immunofluores-

cent techniques, with antibodies raised against CCK,
yielded inconclusive results due to high background or
signal in CCK-deficient tissues. We, therefore, bred the
ob/ob gene into transgenic mice that express eGFP driven
by the endogenous Cck promoter to overcome this limi-
tation (16). In islets from lean transgenic mice, very few
cells expressing eGFP were detected (Fig. 2, A–C). In islets
from ob/ob transgenic mice, eGFP expression increased
dramatically and commonly costained with insulin (Fig. 2,
D–L, yellow arrows). Interestingly, not all insulin-positive
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FIG. 1. CCK is up-regulated in pancreatic islets of ob/ob mice. A, Cck mRNA abundance in
18-d-, 4-wk-, and 14-wk-old islets (n � 3–5). Comparisons were made by ANOVA followed
by Bonferroni-corrected Student’s unpaired t tests. B and C, CCK protein was measured by
RIA analysis; B, total CCK levels were measured in 14-wk islets from lean and ob/ob islets
(n � 4); C, islets from ob/ob mice were fractionated by HPLC, and RIA was performed on
each fraction to determine CCK species. Antibodies for amidated and sulfated CCK are
shown. Sulfated and amidated standards were used and labeled to help identify the different
species. Nonamidated and nonsulfated antibodies were used, and no immunoreactivity was
detected. D, Cckar and Cckbr mRNA abundance in 14-wk-old islets (n � 5 for each). E, Cck
mRNA abundance in brain and intestinal tissue from 14-wk-old mice (n � 4–5 for each). F
and G, Plasma insulin (F) and Cck mRNA (G) abundance in 16-wk-old agouti mice (n � 3). For
all quantitative RT-PCR, TaqMan cycle threshold (Ct) values were normalized to �-actin levels
to generate �Ct values. Plasma insulin comparisons were made using log10-transformed
values. All comparison were made by Student’s unpaired t test unless otherwise stated.
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cells expressed GFP (Fig. 2, D–F, white arrows), and not
all GFP-positive cells expressed insulin (Fig. 2, J–L, white
arrowheads). To confirm and expand this result, we bred
the ob/ob gene into the CckLacZ mouse (15), which is null
for Cck because the LacZ gene is inserted into the Cck tra-
nslational start site. These mice are whole-body CCK
knockouts and express �-galactosidase in place of CCK.
Because the X-gal precipitate blocks immunofluorescence
signals, we first stained for insulin and glucagon (Supple-
mental Fig. 2, A and C). We then stained the same sections
for X-gal, insulin, and glucagon the following day (Sup-

plemental Fig. 2, B and D). We found
the X-gal stain in both glucagon-posi-
tive (white arrows) and insulin-positive
(yellow arrows) cells. CCK is therefore
up-regulated by obesity and expressed
in �-cells and �-cells of islets from ob/
ob mice.

CCK deficiency causes reduced
islet size and �-cell mass

We measured islet size, fractional islet
area, and fractional �-cell area by quan-
titative morphometry to assess the role of
CCK in �-cell mass regulation, compar-
ing CckWT-ob/ob to CckLacZ-ob/ob
mice. At 10 wk, islets from CckLacZ-
ob/ob mice were 25% smaller than con-
trols (Fig. 3A). The islet size distribution
demonstrated a greater number of large
islets in CckWT-ob/ob pancreata (P �
0.07). We further analyzed the contribu-
tion of total islet area for differing islet
sizes. This parameter was altered so that
CckLacZ-ob/ob pancreata contained
12% more total area in their small islets
and 12% less total area in their large
islets (Fig. 3B). Decreased islet size in
CckLacZ-ob/ob pancreata led to a 65%
reduction in fractional �-cell area (Fig.
3C). By 14 wk, these phenotypes became
more severe. Average islet size decreased
by 50% in CckLacZ-ob/ob pancreata
(Fig. 3D), and the largest islets com-
prised less than 7% of the total islet
area in CckLacZ-ob/ob pancreata vs.
30% in CckWT-ob/ob pancreata (Fig.
3E). Fractional islet area decreased 67%
in CckLacZ-ob/ob pancreata vs. CckWT-
ob/ob controls (Fig. 3F). The total num-
ber of islets per pancreatic area, the aver-
age number of small �-cell clusters, the
average �-cell size, and the average pan-

creatic wet weight were not different between groups (data
not shown). Because fractional �-cell area was reduced and
pancreatic weight was unchanged, these data suggest that
CCK deficiency causes reduced �-cell mass.

Loss of CCK results in a diabetogenic phenotype
We measured fasting plasma glucose and insulin to de-

termine whether CCK deficiency affects the metabolic
phenotype of CcklacZ-ob/ob mice. CcklacZ-ob/ob mice had
increased fasting plasma glucose at 6, 10, and 14 wk (Fig.
4A). This increase in fasting glucose was accompanied by
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FIG. 2. CCK is up-regulated and expressed in �- and �-cells of ob/ob pancreatic islets.
Immunofluorescence images of lean (A–C) and ob/ob (D–L) islets from Cck-eGFP transgenic
mice. Insulin is stained red, nuclei are blue using 4�,6-diamidino-2-phenylindole (DAPI) stain,
and GFP is green by autofluorescence. Each picture of a lean islet (A–C) is representative of
an individual mouse (n � 3). Each ob/ob islet is separated into its insulin and DAPI (D, G, and
J), GFP and DAPI (E, H, and K), and merged layers (F, I, and L) and is representative of an
individual mouse (n � 3). Examples of �-cells costaining with GFP are indicated by yellow
arrows. Examples of �-cells not costaining for GFP are indicated by white arrows. Examples of
non-�-cells staining for GFP are indicated by white arrowheads.
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a reduction in fasting plasma insulin (Fig. 4B). No inter-
actions between genotype and sex were observed. Because
CCK is expressed in �-cells, we also measured fasting
plasma glucagon levels at 10 wk. No differences in fasting
plasma glucagon were detected (data not shown). Because
CCK stimulates insulin secretion in mice (9), we measured
the insulin secretory capacity of CcklacZ-ob/ob mice. We
performed ip GTT at 10 wk (Supplemental Fig. 3, A and
B) to assess the contribution of islet-derived CCK in vivo
and avoid effects of CCK on gastric emptying (24) and as
an incretin. We also measured in vitro glucose-stimulated
insulin secretion in isolated islets at 14 wk (Supplemental
Fig. 3C). CcklacZ-ob/ob mice had no deficit in glucose tol-
erance or insulin secretion after ip GTT in vivo (Supple-
mental Fig. 3, A and B) or glucose-stimulated insulin se-
cretion in vitro (Supplemental Fig. 3C). We additionally
measured the glucagon and insulin content of islets from
CcklacZ-ob/ob and CckWT-ob/ob mice. We detected a 52%
reduction in the insulin content of CcklacZ-ob/ob islets
(P � 0.05) but no difference in islet glucagon (data not
shown), reflecting reduced islet size and �-cell numbers
without changes in �-cells. We also measured insulin sen-

sitivity by ITT at 14 wk (Supplemental
Fig. 3D). Because CcklacZ-ob/ob and
CckWT-ob/ob mice differed in their ini-
tial fed glucose values, we analyzed the
shape of their glucose disposal curves
using each group’s starting values as co-
variate adjustments. No difference in
the shape of the glucose disposal curve
was detected between CcklacZ-ob/ob and
CckWT-ob/ob mice (Supplemental Fig.
3D). This analysis agreed with the trape-
zoidal area-under-the-curve method,
normalizing each mouse to its initial time
zero glucose value. These data suggest
that reduced �-cell mass, and not insulin
secretory capacity or insulin sensitivity,
causes impaired glucose homeostasis in
CcklacZ-ob/ob mice.

CCK deficiency causes increased
�-cell death in vivo

We measured the rates of �-cell pro-
liferation and death to determine the
cause of reduced �-cell mass in CcklacZ-
ob/ob mice. We supplemented the
drinking water with 8% 2H2O and
treated CcklacZ-ob/ob and CckWT-
ob/ob mice from 8–10 wk of age. We
measured the enrichment of 2H in the
deoxyribose moiety of deoxyribonucleo-
sides isolated from islet DNA as an in

vivo measure of islet cell proliferation (4, 13, 21). We
found no difference in islet cell proliferation between
CcklacZ-ob/ob and CckWT-ob/ob mice (Fig. 5A). We also
measured �-cell proliferation by insulin and PCNA
costaining in 10-wk-old mice. No change in �-cell prolif-
eration was detected (Fig. 5B). Because Cck expression is
induced between 18 d and 4 wk of age, we repeated our
2H2O-labeling study in mice from 3–5 wk of age. Again,
no change in islet cell proliferation was detected (data not
shown). These data suggest no �-cell proliferative differ-
ence between CcklacZ-ob/ob and CckWT-ob/ob mice,
which, in the face of reduced �-cell mass, implies a differ-
ence in the �-cell death rate.

We assessed �-cell death by TUNEL staining of pan-
creatic sections and propidium iodide staining of freshly
isolated islets. In pancreatic sections of 10-wk-old mice,
we found a 2-fold increase in the percentage of TUNEL-
positive �-cells of CcklacZ-ob/ob mice (Fig. 5C). In freshly
isolated islets of 14-wk-old mice, loss of CCK caused a
2-fold increase in the percentage of propidium iodide-pos-
itive islet cells (Fig. 5D). These data suggest that CCK
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Kolmogorov-Smirnov test and found to be marginally different (P � 0.07). B and E, Total islet
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deficiency causes reduced �-cell mass through increased
�-cell death.

CCK protects �-cells from death in vitro and ex
vivo

We next measured the direct effects of altering Cck
expression on �-cell death in a mouse �-cell line exposed
to cytokines. We chose cytokine-induced cell death be-
cause cytokines are increased by obesity and are an im-
portant regulator of �-cell survival in type 1 and type 2
diabetes (reviewed in Refs. 25 and 26). We used siRNAs
to down-regulate Cck expression by 66% in Min6 cells,
where Cck is highly expressed. Reduced Cck expression
resulted in a 38% increase in cytokine-induced cell death
(Fig. 6A).

We expanded these results by investigating the suscep-
tibility of isolated islets from CcklacZ-ob/ob and CckWT-
ob/ob mice to cytotoxic agents. Cytokine treatment stim-
ulated very small increases in islet cell death from either
genotype (data not shown). Thus, we studied thapsigar-
gin, an endoplasmic reticulum (ER) stress-inducing agent,
commonly studied in �-cell survival (reviewed in Refs. 27
and 28). We investigated thapsigargin because cytokine-
induced �-cell death occurs through the ER stress pathway
(29), and well-documented evidence exists for ER stress in
diabetes pathogenesis (reviewed in Refs. 27 and 28).
Treatment of isolated CckWT-ob/ob islets with thapsigar-
gin caused a 30% induction of cell death (Fig. 6B). How-
ever, CcklacZ-ob/ob islets were highly sensitive to ER
stress, causing nearly 100% cell death. We next asked
whether we could rescue CcklacZ-ob/ob islets through
acute treatment with sulfated CCK-8 peptide. We found a
significant reduction in islet cell death dependent upon
CCK-8 peptide concentration. This caused a 39% reduc-
tion in islet cell death at 100 nM CCK-8 (Fig. 6C). These
data demonstrate that CCK directly prevents �-cell death
in vitro and ex vivo.

Discussion

Regulation of �-cell mass is a key factor
in the pathogenesis of type 2 diabetes. In
human studies, �-cell mass increases in
obese patients without diabetes (1, 2)
but fails to increase to similar levels in
patients with type 2 diabetes due to in-
creased �-cell death (1). We model non-
diabetic obesity and expansion of �-cell
mass with the B6-ob/ob mouse. Here,
we report that the ob/ob mouse uses in-
creased islet CCK expression as an
adaptive mechanism that may prevent
diabetes by expanding �-cell mass and
increasing �-cell survival.

The existence of CCK and its recep-
tors in islets has been previously documented. Rat pan-
creatic islets express CCK (30). Our data confirm a minor
amount of Cck mRNA expression in lean mouse pancre-
atic islets. We further demonstrate an obesity-dependent
up-regulation of CCK mRNA and protein expression in �-
and �-cells (Figs. 1 and 2 and Supplemental Figs. 1 and 2).
Our results agree with a recent report demonstrating in-
creased Cck expression in the New Zealand mouse model
of diet-induced obesity (31). Furthermore, we demon-
strate that islets can posttranslationally process CCK into
its most bioactive form, amidated and sulfated CCK-8
(Fig. 1C). This agrees with microarray data demonstrating
that islets express the pro-hormone convertases, car-
boxypeptidase E, protein-tyrosine sulfotransferases, and
peptidylglycine �-amidating monooxygenase (4), which
posttranslationally process CCK into its active species (23,
32). We also detected lesser amounts of intermediately
processed CCK species, like CCK-22 and CCK-33 (Fig.
1C). These intermediate CCK molecules were likely gen-
erated by �-cells, which express pro-hormone convertase
2 only (33) and therefore could not fully process CCK.
Previous immunofluorescence studies demonstrated that
the CCKAR exists on both �- and �-cells (34–36),
whereas the CCKBR is localized to �- and �-cells (35, 37,
38). Our mRNA analysis for CCK receptors is consistent
with this observation, demonstrating greater amounts of
Cckar than Cckbr in islets (Fig. 1D).

Despite the presence of CCK and its receptors in the
islet, genetic knockout studies define few pancreatic phe-
notypes for CCK, gastrin, or CCK receptor-deficient mice.
Lean CcklacZ mice demonstrate normal pancreatic histol-
ogy, but insulin secretory capacity and glucose homeosta-
sis were not reported (15). Similarly, gastrin and CCK
receptor knockout mice have normal pancreatic histology
(39–41). These studies demonstrate that CCK, gastrin,
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and their receptors are not necessary for the development
or maintenance of �-cell mass during unstressed condi-
tions. We therefore studied obese CCK-deficient mice to
test the role of increased islet CCK expression in adaptive
�-cell mass expansion.

We propose a model wherein obese mice increase islet
CCK expression, thereby expanding their �-cell mass by
preventing �-cell death, likely through CCKAR signaling
on the �-cell. CcklacZ-ob/ob mice have reduced �-cell mass
(Fig. 3) and increased �-cell death (Fig. 5). We recognize
that these observations occurred in a whole-body knock-
out animal and do not demonstrate a direct effect for CCK
on �-cells. However, CCK protects cultured �-cells from
cytokine-induced cell death (Fig. 6). Furthermore, isolated
CcklacZ-ob/ob islets are highly sensitive to ER stress-in-
duced cell death and are rescued by direct administration
of sulfated CCK-8 (Fig. 6). These data demonstrate a di-
rect prosurvival effect of CCK on the �-cell. These exper-
iments do not conclusively identify the source of relevant
CCK. It is possible that other cell types, like the duode-
num, produce CCK to increase �-cell survival. The islet is
the most likely source for CCK production because para-
crine/autocrine mechanisms achieve greater CCK concen-
trations. Because �-cells express the CCKAR and not the
CCKBR, these data suggest that signaling occurs through

the CCKAR. This conclusion is supported by other stud-
ies. The OLETF rat is null for the Cckar and develops
obesity-induced diabetes (42). Like CcklacZ-ob/ob mice,
the OLETF rat cannot appropriately expand its �-cell
mass to compensate for insulin resistance due to increased
�-cell death (43, 44), linking �-cell CCKAR signaling to
�-cell survival. CCKBR signaling, on the other hand, reg-
ulates �-cell mass by acting on non-�-cells. Gastrin with
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ob/ob (n � 4) islets. Comparisons were made by Student’s unpaired t
tests.
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FIG. 6. CCK promotes �-cell survival. A, MIN-6 cells were reverse
transfected with si-Scr negative control or si-Cck oligonucleotides (n �
3). MIN-6 were then incubated for 48 h before being treated for 24 h
with IL-1� and TNF-� cytokine cocktail and cell death measured.
Comparisons were made by repeated-measures ANOVA followed by
Bonferroni-corrected Student’s paired t test. B, Isolated islets from
CckWT-ob/ob (n � 9) and CcklacZ-ob/ob (n � 17) mice were dispersed
and treated with 10 �M thapsigargin. Islet cells were incubated for
24 h and cell death measured. Comparisons were made by repeated-
measures ANOVA followed by Bonferroni-corrected Student’s paired t
test. C, Islets from CcklacZ-ob/ob (n � 8–11) mice were isolated,
dispersed, and treated with 10 �M thapsigargin in the presence of
increasing doses of sulfated CCK-8 peptide or vehicle control. Data
were analyzed by ANOVA blocking on sample (P � 0.005). Using the
vehicle as a covariate, CCK dose followed a log-linear trend to reduce
islet cell death (P � 0.05).
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other factors increases �-cell mass by stimulating islet neo-
genesis (45–48). Additionally, gastrin-deficient mice dem-
onstrate hypoglycemia and defective glucagon secretion
(39), confirming the role of the CCKBR on non-�-cells. In
summary, three lines of evidence suggest the CCKAR as
the mediator of the prosurvival effect of CCK in vivo: 1)
CCK can directly promote �-cell survival, 2) �-cells ex-
press only the CCKAR, and 3) the OLETF rat fails to
expand its �-cell mass because of increased �-cell death
due to a Cckar-null mutation.

A prosurvival effect for CCK through the CCKAR ex-
ists in nonislet tissues. Exogenous CCK treatment stimu-
lates exocrine pancreatic growth and survival (49). Simi-
larly, CCKAR antagonism reduces pancreatic weight (50).
Outside the pancreas, CCK is overexpressed in Ewing
bone tumors, and reduced CCK expression decreases tu-
mor cell growth (51). CCKAR antagonism induces Ewing
cell death and inhibits growth (52). Our data expand the
prosurvival role for CCK and the CCKAR to include the
�-cell.

The growth and survival effects of CCK on islet cells
appear to be species specific. CCK treatment reduces hy-
perglycemia and stimulates �-cell proliferation after strep-
tozotocin treatment or partial pancreatectomy in rats (13,
14), demonstrating a role for CCK in rat �-cell prolifer-
ation. Similarly, OLETF rats demonstrate reduced �-cell
proliferation after 70% partial pancreatectomy (53). Our
data in mice demonstrate a role for CCK as an islet pro-
survival factor with no effect on proliferation (Figs. 5 and
6). We previously studied the effects of adenoviral-depen-
dent CCK overexpression on isolated islets from rats,
mice, and humans (54). We found that CCK is sufficient
to stimulate �-cell proliferation only in rat islets. There-
fore, CCK enhances survival in rat (43, 44) and mouse
(Fig. 5 and 6) islets but is mitogenic only in rats (54).

The diabetogenic phenotype of CcklacZ-ob/ob mice
could emanate from several sources. We observed that
CcklacZ-ob/ob mice had a greater than 65% reduction in
fractional �-cell area (Fig. 3). CcklacZ-ob/ob mice also
demonstrated fasting hyperglycemia and reduced hyper-
insulinemia (Fig. 4, A and B) without changes in insulin
sensitivity or insulin secretion (Supplemental Fig. 3). This
suggests that reduced �-cell mass causes the diabetogenic
phenotype (Fig. 4). In agreement, human studies demon-
strate that a �-cell mass threshold exists, below which
fasting plasma glucose increases (3). We recognize that
insulin tolerance tests are insensitive and insulin-sensing
changes could still contribute to the diabetogenic pheno-
type. An additional regulator of glucose homeostasis is
glucagon. CCK is also up-regulated in �-cells by obesity
(Fig. 2 and Supplemental Fig 2). However, fasting plasma
glucagon was unchanged (data not shown), suggesting

that increased glucagon does not contribute to hypergly-
cemia. Similarly, islet glucagon content was equal,
whereas islet insulin content was reduced in CcklacZ-ob/ob
mice (data not shown), reflecting the reduction of �-cell
numbers per islet and reduced �-cell mass. Another po-
tential contributor to the diabetogenic phenotype of the
CcklacZ-ob/ob mice is duodenal CCK, which was recently
demonstrated to lower glucose production independently
of insulin through a gut-brain-liver axis via the CCKAR in
rats (55). Intestinal-neural networks cannot be excluded
from our interpretation because of the whole-body nature
of our CCK-deficient animal model. Because CcklacZ-
ob/ob mice also demonstrate reduced hyperinsulinemia, a
reduction in �-cell mass likely accounts for the fasting
hyperglycemia.

The intestinal site of CCK production and its actions to
stimulate insulin secretion and expand �-cell mass make
it comparable to GLP-1 and GIP. Both hormones are
incretins, and loss of their function results in reduced
insulin secretion to oral glucose challenge (56, 57).
GLP-1 and GIP also prevent �-cell death induced by
multiple cytotoxic agents including cytokines and thap-
sigargin in vitro (58 – 62).

The role of GIP during obesity-induced �-cell mass ex-
pansion is not clear. Lean GIP receptor knockout animals
do not show a deficit in �-cell mass (56). GIP receptor
knockout mice on a high-fat diet or in the ob/ob back-
ground are protected from obesity due to the effects of GIP
on adipocytes (63). GIP receptor antagonism in ob/ob
mice leads to improved glucose homeostasis and insulin
sensitivity, accompanied by a reduction in �-cell mass due
to reduced numbers of large islets (64), similar to CcklacZ-
ob/ob pancreata (Fig. 3). However, this study does not
discriminate between GIP receptor antagonism at the adi-
pocyte, leading to improved insulin sensitivity, and GIP
receptor antagonism at the �-cell, leading to reduced �-cell
mass. These data demonstrate that GIP could be playing a
role in obesity-driven �-cell mass expansion, but future
studies on tissue-specific receptor knockouts may clarify
this point.

The role of GLP-1 in the islet response to obesity is less
important than that of GIP. Lean GLP-1 receptor-deficient
mice demonstrate no change in overall �-cell mass but do
demonstrate a reduction in the largest-sized islets (65).
This is similar to CcklacZ-ob/ob mice (Fig. 3), demonstrat-
ing a role for both GLP-1 and CCK in the development of
large islets. When the GLP-1 receptor knockout mouse
was crossed into the ob/ob background, no phenotype was
observed in islet mass or glucose homeostasis (66). The
lack of an observed phenotype is likely because leptin stim-
ulates GLP-1 secretion, and GLP-1 levels are therefore
reduced in leptin-resistant and leptin-deficient models of

balt3/zee-end/zee-end/zee00810/zee5485-10z xppws S�1 5/18/10 6:07 4/Color Figure(s): F2 Art: EN-10-0233 Input-lc

Endocrinology, August 2010, 151(8):0000–0000 endo.endojournals.org 9



obesity (67). These data imply that CCK is more important
than GLP-1 in the physiological islet response to obesity-
induced insulin resistance. Therefore, increased islet CCK
expression could be an adaptive paracrine or autocrine
mechanism in obese islets to compensate for the loss of
endocrine GLP-1.

The mechanisms by which incretin hormones prevent
�-cell death demonstrate significant overlap with CCK
receptor-coupled pathways. Both GLP-1 and GIP recep-
tors, like CCK receptors, are G protein-coupled receptors
with similar downstream pathways like cAMP/protein ki-
nase A, phosphatidylinositol 3-kinase/Akt, and stress-ac-
tivated protein kinases (8, 68). Future studies to determine
which signaling pathways CCK activates, whether CCK
can directly influence ER stress pathways, and whether
CCK has overlapping, additive, or synergistic potential
with other incretin hormones could lead to the develop-
ment of new �-cell mass restorative therapeutics.
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Please check throughout for consistency in the use of italics (e.g. to distinguish gene from
protein names).

C—Please confirm or correct expansion of ER in the abstract.

D—If eGFP is meant as a gene name, please italicize (here and throughout). Otherwise, provide a
definition (here in text as well as in abbreviations footnote).

E—Please confirm or correct expansion of BAC.

F—Please provide location (city and state or country) for cited supplier Research Diets, Inc.

G—Please confirm or correct added locations for cited suppliers in Materials and Methods.

H—Please confirm or correct definition (in text as well as in abbreviations footnote) of si.

I—Please provide location (city and state or country) for cited supplier Waters Alliance.

J—Please confirm or correct definition (in text as well as in abbreviations footnote) of GFP.

K—Please confirm or correct definition (in text as well as in abbreviations footnote) of X-gal.

L—Should this be CcklacZ/� here? Please check throughout for consistency in the use of upper- and
lowercase letters.

M—Please confirm or correct definition (in text as well as in abbreviations footnote) of PCNA and
TUNEL.

N—Do you mean deoxyribonucleotides here (as it appears elsewhere in text).

O—Please confirm or correct definition (in text as well as in abbreviations footnote) of ER.

P—Please confirm or correct expansion of PKA and PI3K.

Q—Please confirm or correct expansion of NHGRI, NIA, NLM, NIGMS, NIDDK, UW, and JDRF in
Acknowledgments.

R—Please confirm or correct expansion of Ct in Fig. 1.
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S—Throughout all figure legends, please verify that all symbols and previously undefined
abbreviations (except standard abbreviations) used in the figures have been defined in the
legends.

T—Please confirm or correct expansion of DAPI in Fig. 2.
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