
Bayesian causal phenotype network incorporating
genetic variation and biological knowledge

Jee Young Moon1, Elias Chaibub Neto2, Xinwei Deng3 and Brian S. Yandell4

1 Department of Statistics, University of Wisconsin, Madison, Wisconsin, USA
jymoon@wisc.edu

2 Network Biology Department
Sage Bionetworks, Non-profit biomedical research organization, Seattle, Washington,

USA
elias.chaibub.neto@sagebase.org

http://www.sagebase.org
3 Department of Statistics, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia, USA
xdeng@vt.edu

http://www.stat.vt.edu/facstaff/xdeng/
4 Departments of Statistics and Horticulture, University of Wisconsin, Madison,

Wisconsin, USA
byandell@wisc.edu

http://www.stat.wisc.edu/ ∼yandell/

Abstract A Bayesian network has often been modeled to infer a gene
regulatory network from expression data. Genotypes along with gene
expression can further reveal the regulatory relations and genetic ar-
chitectures. Biological knowledge can also be incorporated to im-
prove the reconstruction of a gene network. In this work, we propose
a Bayesian framework to jointly infer a gene network and weights
of prior knowledge by integrating expression data, genetic variations,
and prior biological knowledge. The proposed method encodes bi-
ological knowledge such as transcription factor and DNA binding,
gene ontology annotation, and protein-protein interaction into a prior
distribution of the network structures. A simulation study shows
that the incorporation of genetic variation information and biologi-
cal knowledge improves the reconstruction of gene network as long
as biological knowledge is consistent with expression data.

1 Introduction

A key interest in molecular biology is to understand how DNA, RNA, proteins
and metabolic products regulate each other. In this regard, people have consid-
ered to construct the regulatory networks from microarray expression data with
time-series measurements or transcriptional perturbations [1,2]. A regulatory net-
work can also be constructed with genetic variation in segregating populations that



perturbs the gene expression, protein and metabolite levels. Genetic variation in-
formation can decipher genetic effects on traits and discover causal regulatory rela-
tionships between phenotypes. In addition, knowledge of regulatory relationships
is available in various biological databases, which can improve the reconstruction
of causal networks. This paper focuses on combining genetic variations in a seg-
regating population and biological knowledge to improve the inference of causal
phenotype networks.

Genetic variation information in a segregating population has been used to
reconstruct causal phenotype networks [3,4,5] and to infer causal relationships
among pairs of phenotypes [6,7,8,9,10]. Approaches based on structural equa-
tion models [11,12,13] and causal discovery algorithms [14,15] have also been
proposed. A common feature of the above methods is that quantitative trait loci
(QTL) mapping and phenotype network reconstruction are conducted separately.
The QTL mapping without consideration of a phenotype network may generate a
genetic architecture (the locations and effects of detectable QTLs) with QTLs of
indirect effects. As pointed out by [16], poorly estimated genetic architectures may
compromise the inference of causal relationships among phenotypes. To address
this issue, several researchers [16,17] proposed to jointly infer causal phenotype
networks and genetic architectures.

Various sources of biological knowledge have been incorporated with gene ex-
pression in the reconstruction of phenotype networks because it is difficult to de-
cide the direction of gene regulation using expression data only. Transcription fac-
tors binding site information was leveraged by [18], whereas Nariaiet al. [19] used
protein-protein interaction knowledge to construct phenotype networks. Methods
integrating multiple sorts of biological knowledge were proposed by [20], [21],
and [22].

In this paper, we propose a Bayesian approach to jointly infer a causal pheno-
type network and genetic architectures with a prior distribution on network struc-
tures adjusted by biological knowledge. The joint network of causal phenotype
relationships and genetic architectures is modeled as a Bayesian network adopted
from [16], QTLnet. We extend the framework of QTLnet by incorporating biologi-
cal knowledge into the prior distribution on network structures. This extension can
enhance the predictive power of the network by capturing several fundamentals
of biological knowledge [4]. The prior probability on network structures is based
on the Markov random field to integrate and weight several sources of biological
information allowing for flexible tuning of the analyst’s confidence in different
types of biological information [21]. The consideration of reliability of biological
knowledge is necessary since biological knowledge can be incomplete and inaccu-
rate. While Zhuet al. [4] proposed a method to incorporate genetic variation and
biological knowledge to phenotype networks, their method does not consider the
reliability of biological knowledge. Our proposed approach (QTLnet-prior) can
integrate gene expression, genetic variation, and biological knowledge (protein-
protein interaction, gene ontology annotation, and transcription factor and DNA



binding information) by weighting its reliability in the network reconstruction al-
gorithm.

The details of our integrated framework for the joint inference of causal net-
work and genetic architecture of correlated phenotypes are organized as follows.
Section 2 describes the QTLnet method for the joint inference of causal network
and genetic architecture. Section 3 presents the proposed QTLnet-prior, which is
to incorporate biological knowledge into prior probability distributions over the
space of network structures. A simulation study is conducted in Section 4 to com-
pare the proposed method with several existing approaches. Finally, in Section 5
we discuss the strengths and caveats of our approach and point out future research
directions.

2 Joint inference of causal network and genetic architecture

In this section we first present a standard Bayesian network for modeling expres-
sion data. Next we present an extended model, based on the homogeneous condi-
tional Gaussian regression model, that incorporates QTL nodes into phenotype net-
works. We point out that, even though the directed edges in the standard Bayesian
networks are often interpreted as causal relationships, in reality, they only repre-
sent conditional dependencies. Only by extending the phenotype networks with
genotype nodes can we actually justify causal interpretations. Finally, we present
a rationale for the joint inference of the causal phenotype network and genetic ar-
chitecture, and give an overview of our joint approach for phenotype network and
genetic architecture inference.

2.1 Standard Bayesian network model

A standard Bayesian network is a probabilistic graphical model whose conditional
independence is represented by a directed acyclic graph (DAG). A nodet in a DAG
G corresponds to a random variableYt in the Bayesian network. A directed edge
from nodeu to nodev can supposedly represent thatYv is causally dependent on
Yu, though an edge truly represents the conditional dependency. The local directed
Markov property of Bayesian network states that each variable is independent of
its non-descendant variables conditional on its parent variables,

Yt⊥YV \de(t)|Ypa(t) for all t ∈ V

wherede(t) is the set of descendants oft, pa(t) is the set of parents oft, V is the
set of all nodes in a DAGG, andYpa(t) = {Yi : i ∈ pa(t)}. Assume the node
index is ordered such that the index of descendants is always bigger than the index



of their parents. The joint distribution can be written to be

P (Y1, . . . , YT ) =
T∏

t=1

P (Yt|Yt−1, . . . , Y1)

=
T∏

t=1

P (Yt|Ypa(t)) (1)

where the first equality is satisfied by the chain rule and the second equality is
satisfied by the local directed Markov property. Since nodest − 1, . . . , 1 are
non-descendants of nodet and pa(t) ∈ {t − 1, . . . , 1}, Yt is independent of
Y{t−1,...,1}\pa(t) conditional onYpa(t), P (Yt|Yt−1, . . . , Y1) = P (Yt|Ypa(t)).

2.2 HCGR model

The parametric family of a Bayesian network that jointly models phenotypes and
QTL genotypes corresponds to a homogeneous conditional Gaussian regression
(HCGR) model. Conditional on the QTL genotypes and covariates, the phenotypes
are distributed according to a multivariate normal distribution, where QTLs and
covariates enter the model via the mean, and the correlation structure among the
phenotypes is explicitly modeled according to the DAG representing the phenotype
network structure [16].

The HCGR model is derived from a series of linear regression equations. Ex-
plicitly, let i = 1, . . . , n andt = 1, . . . , T index individuals and phenotype traits,
respectively. LetYt = (Yt1, . . . , Yti, . . . , Ytn)′ be expression levels of phenotypet
for all individuals, and letεt = (εt1, . . . , εtn)′ represent the associated independent
normal error terms. We assume that the expression level for individuali and traitt
follows the following phenotype model:

Yti = µ∗ti +
∑

v∈pa(t)

βtv Yvi + εti, εti ∼ N(0, σ2
t )

whereβtv is the partial regression coefficients relating phenotypet with phenotype
v, andµ∗ti = µt + XiΓtθt with Γt = diag(γt), whereµt is the overall mean for a
trait t, θt is a column vector of all genetic effects,Xi is a row vector for individual
i from the design matrixX parametrized according to Cockerham’s model [23] for
genotypes, andγt is a binary vector that represents the genetic architecture of trait
t with γt = 1 as the effect being included in the genetic architecture. It was shown
by [16] that these linear regression equations set a HCGR model for phenotypes
and QTL genotypes.

2.3 Systems genetics and causal inference

Systems genetics aims to understand the complex interrelations between genetic
variations and phenotypes from large scale genotype and phenotype data [24].



Here we explain how the systems genetics approach allows us to infer causal net-
works. While causal relations between QTLs and phenotypes are justified by the
randomization of alleles during meiosis and the unidirectional influence of the
genotype on phenotype, causal relations among phenotypes are induced from con-
ditional independence. The systems genetics idea is that by incorporating QTL
nodes into phenotype networks we create new sets of conditional independence
relationships that allow us to distinguish network structures that would, otherwise,
belong to the same equivalence class.

We start with causal relations between QTLs and phenotypes. In general the
genotype influences the phenotype but not the other way around. Furthermore, the
genotype is randomized by the recombination of parent genetic material during the
mating process. These special characteristics enable us to infer causal effects of
QTLs on phenotypes since, by analogy with a randomized experiment, we have
that: (1) the treatment to an experimental unit (genotype) precedes the measured
outcome (phenotype), and (2) random allocation of treatments to experimental
units guarantees that other common causes get averaged out. This random alloca-
tion is explicit in an experimental cross such as a backcross or intercross. While
this idea can be extended to natural populations, special attention must be paid to
admixture, kinship and other forms of relatedness.

Causal inference among phenotypes, on the other hand, requires the concept of
conditional independence organized in DAGs composed of phenotypes and QTL
nodes. In the next three paragraphs we present some definitions and results that
allow us to infer phenotype-to-phenotype causal relationships.

We start with the definitions. In graph theory, apath is defined as any unbro-
ken, non-intersecting sequence of edges in a graph, which may go along or against
the direction of arrows. We say that a pathp is d-separated[25,26] by a set of
nodesZ if and only if: (1) p contains a chaini → m → j or a fork i ← m → j
such that the middle node is inZ, or (2)p contains a collideri→ m← j such that
the middle nodem is not inZ and such that no descendant ofm is in Z. We say
thatZ d-separatesX from Y if and only if Z blocks every path from a node inX
to a node inY . Theskeletonof a DAG is the undirected graph obtained by replac-
ing its arrows by undirected edges. Av-structureis composed by two converging
arrows whose tails are not connected by an arrow.

Equivalence concepts play a key role in learning the structure of networks from
the data. Here we present three important equivalence relations for graphs or its
statistical models. Two graphs areMarkov equivalentif they have the same set of
d-separation relations [27]. Two structuresm1 andm2 for Y aredistribution equiv-
alentwith respect to the familyF if they represent the same joint distributions for
Y , that is, for everyθ1, there exists aθ2 such thatp(Y | θ1,m1) = p(Y | θ2, m2)
[28]. In other words,m1 andm2 are distribution equivalent if the parametersθ1

andθ2 are simple re-parametrizations of each other. Ifm1 andm2 are distribution
equivalent, then the invariance principle of maximum likelihood estimates guaran-



tees thatp(Y | θ̂1,m1) = p(Y | θ̂2,m2), andm1 andm2 cannot be distinguished
using the data. In this case we say thatm1 andm2 are likelihood equivalent. In
a Bayesian setting we define likelihood equivalence using the prior predictive dis-
tribution, that is, an integral of the likelihood function with respect to the prior
distribution. Hence, if modelsm1 andm2 are distribution equivalent, it is often
reasonable to expect thatp(Y | m1) = p(Y | m2) with a proper prior onθ, and
that we cannot distinguishm1 andm2 for any data setY [28].

Now we state four important results regarding causal inference in systems ge-
netics: (1) Two DAGs are Markov equivalent if and only if they have the same
skeletons and the same set of v-structures [29]. (2) Distribution equivalence im-
plies Markov equivalence, but the converse is not necessarily true [27]. (3) For a
Gaussian regression model, Markov equivalence implies distribution equivalence
[30]. (4) For the homogeneous conditional Gaussian regression model, Markov
equivalence implies distribution equivalence [16].

Therefore, for the HCGR parametric family, two DAGs are distribution and
likelihood equivalent if and only if they are Markov equivalent. This implies that
we can simply check out if any two DAGs have the same skeleton and the same
set of v-structures in order to determine if they are likelihood equivalent and hence
cannot be distinguished using the data.

Getting back to the idea of causal inference among phenotypes, letGY rep-
resent a standard Gaussian regression Bayesian network of gene expression phe-
notypes,Y . Expression data alone can distinguish some network structures by
its likelihood but there are some network structures that are not distinguishable.
For example, consider the three network structures in Table1. ModelsG1

Y and
G3

Y have the same skeleton (Y1 − Y2 − Y3) and the same set of v-structures (no v-
structure) and, thus, are distribution/likelihood equivalent. ModelG2

Y , on the other
hand, has the same skeleton but a different set of v-structures and, hence, is not
distribution/likelihood equivalent to modelsG1

Y andG3
Y . Therefore, expression

data alone can identifyG2
Y but cannot distinguishG1

Y andG3
Y .

DAG structures skeletons v-structures
G1

Y = Y1 → Y2 → Y3 Y1 − Y2 − Y3 ∅
G2

Y = Y1 → Y2 ← Y3 Y1 − Y2 − Y3 Y1 → Y2 ← Y3

G3
Y = Y1 ← Y2 → Y3 Y1 − Y2 − Y3 ∅

Table 1: ModelsG1
Y andG3

Y are distribution/likelihood equivalent.

Adding causal QTL nodes to a phenotype network allows the inference of
causal relationships between phenotypes that could not be distinguishable using
expression data alone. For example, if we add a causal QTLQ1 to Y1 in pheno-



type networksG1
Y andG3

Y in the above example, then the corresponding extended
network structuresG1 andG3 have different v-structures as shown in Table2.

Extended DAG structures skeletons v-structures
G1 = Q1 → Y1 → Y2 → Y3 Q− Y1 − Y2 − Y3 ∅
G3 = Q1 → Y1 ← Y2 → Y3 Q− Y1 − Y2 − Y3 Q→ Y1 ← Y2

Table 2: Extended modelsG1 andG3 are no longer distribution/likelihood equiv-
alent.

2.4 QTL mapping conditional on phenotype network structure

Single trait QTL mapping analysis may detect QTLs that directly affect the pheno-
type under investigation, as well as QTLs with indirect effects [16]. For example,
we consider a causal phenotype network in Figure1. Then the expected results of
single trait analysis are given as in Figure2.
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Figure 1: Example network with five phenotypes and four QTLs.
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Figure 2: Output of a single trait QTL mapping analysis for the phenotypes in
Figure1. Dashed and pointed arrows represent direct and indirect QTL/phenotype
causal relationships, respectively.

Now, consider QTL mapping analysis tailored to the phenotype network struc-
ture and assume, for a moment, that the phenotype network structure is known.



In this situation we can avoid detecting indirect QTLs by simply performing map-
ping analysis of the phenotypes conditional on their parents. For instance, in Fig-
ure 1, if we perform QTL mapping ofY5 conditional onY2, Y3 andY4 we do
not detectQ1, Q2 andQ4 becauseY5⊥Q1 | Y2, Y3, Y4, Y5⊥Q2 | Y2, Y3, Y4 and
Y5⊥Q4 | Y2, Y3, Y4. We only detectQ5 sinceY5 6⊥Q5 | Y2, Y3, Y4.

In practice, however, the structure of the phenotype network is unknown, and
performing QTL mapping conditional on a misspecified phenotype network struc-
ture can result in the inference of misspecified genetic architectures as shown in
Figure3. The mapping analysis of a phenotype conditional on downstream pheno-
types in the true network, induces dependencies between the phenotype and QTLs
affecting downstream phenotypes. This leads to the erroneous inference that the
phenotype includes downstream QTLs as its QTLs. However, a model with mis-
specified phenotype and genetic architectures will generally have a lower marginal
likelihood score than the model with the correct causal order for the phenotypes
and correct genetic architecture. Since in practice QTLnet adopts a model selec-
tion procedure to traverse the space of network structures, it tends to prefer models
closer to the true data generating process. Simulation studies presented in [16]
corroborate this point.
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Figure 3: QTL mapping tailored to the network structure. Dashed, pointed
and wiggled arrows represent, respectively, direct, indirect and incorrect
QTL/phenotype causal relationships. (a) Mapping analysis ofY5 conditional on
Y3 andY4 still detectsQ1 andQ2 as QTLs forY5, since failing to condition onY2

leaves the pathsQ1 → Y1 → Y2 → Y5 andQ2 → Y2 → Y5 in Figure 1 open. In
other words,Q1 andQ2 are d-connected toY5 conditional on (Y3, Y4) in the true
causal graph. (b) Mapping analysis ofY4 conditional onY1, Y3 andY5 incorrectly
detectsQ5 as a QTL forY4 because in the true network the pathsY4 → Y5 ← Q5

andY4 ← Y3 → Y5 ← Q5 in Figure 1 are open when we condition onY5.

On a technical note in [16], it was shown that the conditional LOD score (log-
arithm of the odds favoring linkage), used for detecting QTLs according to the
phenotype network structure, can be adopted as a formal measure of conditional
independence between phenotypes and QTLs. Even though we restrict our atten-
tion to HCGR models, conditional LOD profiling is a general framework for the
detection of conditional independencies between continuous and discrete random



variables and does not depend on the particular parametric family adopted in the
modeling. Contrary to partial correlations, the conditional LOD score does not
require the assumption of multi-normality of the data in order to formally test for
independence and it can handle interactive covariates.

2.5 Joint inference of phenotype network and genetic architecture

As before, letG be a Bayesian network structure of phenotypes and QTLs. LetGY

represent a standard Bayesian network of phenotypes,Y , and letGQ→Y represent
a graph composed of QTL nodes, phenotypes nodes and directed edges from QTL
node to the phenotype node. Note thatGY andGQ→Y are subgraphs of the ex-
tended network structureG. Genetic architectures for all traits can be represented
in two ways:γ = {γt}Tt=1 andGQ→Y , with γt defined as before. The likelihood
of a Bayesian network of phenotypes and causal QTLs can be written as

P (Y |G,X, θG) = P (Y |GY , GQ→Y , X, θG) = P (Y |GY , γ,X, θG),

where

P (Y |GY , γ,X, θG) =
T∏

t=1

n∏

i=1

N


µ?

ti +
∑

yk∈pa(yt)

βtk yki , σ2
t


 .

The marginal likelihood of phenotypesP (Y |G,X) is calculated by integrating
parametersθG out in the Bayesian network

P (Y |G,X) =
∫

P (Y |G,X, θG)P (θG|G)dθG,

and can be asymptotically approximated as a function of the BIC score of network
G. The posterior probability ofG conditional on the data is given by

P (G|Y,X) =
P (Y |G,X)P (G)∑
G P (Y |G,X)P (G)

whereP (G) represents the prior probability of the network structureG. In the
next section we devote our attention to the specification ofP (G) using integrated
biological knowledge.

Following [16], we adopt the QTLnet framework that jointly infers the pheno-
type network structure and genetic architecture. Most of the current literature in
genetical network reconstruction has treated the problems of QTL inference and
phenotype network reconstruction separately, generally performing genetic archi-
tecture inference first, and then using QTLs to help in the determination of the
phenotype network structure [4,14]. As indicated in Section2.4, such strategy can
incorporate QTLs with indirect effects into the genetic architectures of phenotypes.



3 Causal network incorporating biological knowledge

Besides the causal QTLs, biological knowledge is another useful and important
information resource to enhance the construction of a network. Such knowledge
can be integrated on the top of the causal network to provide a more comprehensive
picture of how genes are regulated. This integrated network could generate a new
hypothesis of gene regulation, along being consistent with biological knowledge
in overall.

In this section, we propose a network inference method, QTLnet-prior, from
expression data with genetic variations, integrating biological knowledge. The
QTLnet-prior extends the framework of QTLnet. It specifies the prior probability
on network structures to integrate multiple sources of biological knowledge with
flexible tuning parameters on confidence of knowledge [21]. The weighted integra-
tion of biological knowledge could produce a more predictive Bayesian network.
The details of our extended framework, QTLnet-prior, are presented in Section
3.1. In Section3.2, we sketch a Metropolis-Hastings (M-H) MCMC scheme for
QTLnet-prior implementation that integrates the sampling of network structures
[31,32], the QTL mapping, and the sampling of biological knowledge weights. In
Section3.3, we present how to encode biological knowledge into prior distribu-
tions over network structures.

3.1 Model

Extended model Denote byG a Bayesian network structure of phenotypes
and QTLs.G consists of a phenotype network (GY ) and genetic architectures for
phenotypes (GQ→Y ). Let Y be expression data,X be genetic variations, andW
represent weights of biological knowledge. The QTLnet framework presented in
Section2 assumes intrinsically a uniform prior over network structures. Here, bio-
logical knowledge determines a prior probability on phenotype network structures,
GY . Additionally, we specify a prior distribution on the weights of biological
knowledge in order to control the consistency between expression data and knowl-
edge. Because the prior information can be inaccurate or incompatible with the
expression data, it is important to quantify its uncertainty. We write the extended
model as follows.

P (G,W |Y, X,B) ∝ P (Y |G,W,X, B)P (G,W |X, B)
= P (Y |G,X)P (G,W |X,B)
= P (Y |G,X)P (GY ,W |X, B)P (GQ→Y |X,B)
= P (Y |G,X)P (GY ,W |B)P (GQ→Y |X)
= P (Y |G,X)P (GY |B, W )P (W |B)P (GQ→Y |X) (2)

whereP (Y |G,W,X,B) is the marginal likelihood of the traits given the network
structureG and can be simplified to beP (Y |G,W ), andP (G, W |X, B) is a prior



probability of a network and weights given marker information and biological
knowledge. In the second equality relation, the prior probabilityP (G,W |X, B)
can be decomposed intoP (GY ,W |X,B) andP (GQ→Y |X, B) by assuming the
joint independence between a phenotype networkGY along with the weightsW
and genetic architecturesGQ→Y given marker informationX and biological knowl-
edgeB. The third equality is provided by the fact thatP (GY ,W |X,B) = P (GY ,W |B)
because the genetic markers are not included in the structure of phenotype network
GY , andP (GQ→Y |X,B) = P (GQ→Y |X) because the biological structureB is
about the phenotype network structure. The extended model in (2) shows that prior
distributions on phenotype network structureP (GY |B,W ), biological knowledge
weightsP (W |B), and genetic architecturesP (GQ→Y |X) are needed to be spec-
ified. We will describe how to setP (GY |B, W ), P (W |B), P (GQ→Y |X) in the
following.

Prior on phenotype network structures P (GY |B, W ) Incorporation of
a priori biological knowledge into a prior on network structures can lead to dis-
criminate Bayesian networks of the same likelihood [21,33]. If G1 andG2 have
the same likelihood (P (Y |G1) = P (Y |G2)) but have different prior probabilities
(P (G1) 6= P (G2)), the posterior probabilities would become different (P (G1|Y ) 6=
P (G2|Y ) ∝ P (Y |G2)P (G2)). For example, if it is knowna priori that t → v is
more likely thant← v, the posterior prefersp(t→ v|Y ) ∝ p(Y |t→ v)p(t→ v)
overp(t← v|Y ) ∝ p(Y |t← v)p(t← v).

Various types of information can supplement the learning of a network of gene
expression. We can encode this supplementary information into unequal priors on
network structures. A transcription factor binding location can be used to prefer the
direction from a transcription factor to the target gene [34]. Pathway information
can also guide to infer directions among phenotypes [21]. Regulation inference
[35,36,37] from knock-out data and protein-protein interaction [38] can be used
as a prior for network structure. We will describe how to encode this information
in Section3.3. Since QTLnet is a Bayesian approach, we can flexibly incorporate
various sources of biological knowledge through constructing meaningful priors
for the network structures.

Now, it remains to set the prior distribution on phenotype network structure
GY with respect to biological knowledgeB. It is known that a graphical model
(Markov random field) for an undirected graph has a Gibbs distribution and vice
versa [39,40]. As a Markov random field’s distribution is factored by its cliques∏

C:cliques φ(YC), a Bayesian network’s distribution is factored by its parent-child
relations

∏
t P (Yt|Ypa(t)). Hence, it is natural to assume the Gibbs distribution

for the prior on DAG structures [20]. Imoto et al. [20] and Werhli and Husmeier
[21] used the Gibbs distribution as the prior distribution over network structures
to integrate biological knowledge. We adapted the prior formulation over network
structures in [21] as follows. First, theenergyof a phenotype networkGY relative



to the biological knowledgeB is defined to be

E(GY ) =
T∑

i,j=1

|B(i, j)−GY (i, j)| (3)

whereB is an encoding to describe biological knowledge ranging from 0 to 1,GY

is represented by an adjacency matrix of network structure,GY (i, j) = 1 means
the presence of the directed edge from nodei to j andGY (i, j) = 0 means the
absence of the directed edge fromi to j.

The energyE(GY ) acts as a distance measure between biological knowledge
and a network structureGY . For a fixed biological knowledge matrixB, there
are network structures close to the biological knowledgeB which agree with the
knowledge well and hence have small energy, while there are network structures
distant fromB which disagree with the knowledge and hence have large energy.
Therefore, the prior distribution on network structures can be constructed in terms
of energyE(GY ) to be adjusted by biological knowledgeB.

P (GY |B, W ) =
exp(−WE(GY ))

Z(W )
, GY ∈ DAG.

For a fixedW , network structures with small energy will have higher prior prob-
abilities than network structures with large energy.W , the weight of biological
knowledgeB, is introduced to tune the confidence of biological information since
biological information can be inaccurate or incompatible with expression data. As
W → 0, the influence ofa priori knowledge gets negligible and the prior distri-
bution of network structure is assumed to be almost uniform. On the contrary, as
W →∞, the prior on network structure peaks at the biological knowledge.Z(W )
denotes the normalizing constant

∑
GY ∈DAG exp(−WE(GY )).

Multiple sources of biological knowledge can be integrated into a prior on
network structures with different weights.

P (GY |B,W ) =
exp(−∑

k WkEk(GY ))
Z(W )

, GY ∈ DAG

whereBk is an encoding matrix of biological knowledge from sourcek, Wk indi-
cates a weight ofBk relative to the data,W = (W1, . . . , Wk), andZ(W ) is the
summation of the numerator over all DAGs.

Prior on biological knowledge weights P (W |B) We specify the prior
probability distribution on each biological knowledge weightW to be an expo-
nential distribution,W ∝ exp(−λW ), with the rate parameterλ = 1. The expo-
nential distribution is chosen to control the case when biological knowledge dis-
agrees with expression data, so that it can easily reduce the contribution of negative
biological knowledge.



Prior on genetic architectures P (GQ→Y |X) We assume a prior on genetic
architectures to be a uniform distribution. Several alternative specifications can be
found in Bayesian QTL mapping such as [41] and [42].

3.2 Sketch of MCMC

A main challenge in the reconstruction of networks is that the graph space grows
super-exponentially with the number of nodes. An exhaustive search approach
over all network structures is impractical even for small networks. Hence, heuris-
tic approaches are needed to efficiently traverse the graph space. We adopt a
Metropolis-Hastings (M-H) MCMC scheme that integrates the sampling of net-
work structures [31,43], the QTL mapping, and the sampling of biological knowl-
edge weightsW . The MCMC scheme iterates between accepting a network struc-
tureG and acceptingk weightsW1, · · · ,Wk corresponding tok types of biological
knowledge.

1. Sample a new phenotype network structureGnew
Y from a network structure

proposal distributionR(Gnew
Y |Gold

Y ).
2. Given the phenotype network structureGnew

Y , sample a new genetic architec-
tureGQ→Y from an architecture proposal distributionR(Gnew

Q→Y |Gold
Q→Y ).

3. Accept the new extended network structureGnew composed ofGnew
Y and

Gnew
Q→Y given the biological knowledge weightsW with a probability

AG = min{1,
P (Y |Gnew, X)P (Gnew

Y |B, W )P (Gnew
Q→Y |X)

P (Y |Gold, X)P (Gold
Y |B, W )P (Gold

Q→Y |X)

× R(Gold
Y |Gnew

Y )R(Gold
Q→Y |Gnew

Q→Y )

R(Gnew
Y |Gold

Y )R(Gnew
Q→Y |Gold

Q→Y )
}.

4. For each biological knowledgek,
(a) Sample a new weightWnew

k of biological knowledgek from a weight pro-
posal distributionR(Wnew

k |W old
k ).

(b) Accept the new biological weightWnew
k given the phenotype networkGY

with a probability

AWk
= min{1,

P (GY |Wnew
k ,W old

−k , B)
P (GY |W old, B)

P (Wnew
k |B)

P (W old
k |B)

R(W old
k |Wnew

k )
R(Wnew

k |W old
k )
}.

5. Iterate the steps 1-4 until the chain converges.

In step 1, a new phenotype network structure is proposed by a mixture of single
edge operations (single edge addition, single edge deletion, single edge reversal)
and edge reversal moves [32]. It has been shown that edge reversal moves signifi-
cantly improve the convergence of MCMC sampler.



In step 2, genetic architectures of phenotypes can be sampled conditional on
its phenotypic parents. One way is a Bayesian QTL mapping proposed in Yiet al.
[41] for each phenotype. Another way is the interval mapping of QTL for each
phenotype conditional on its phenotypic parents. The interval mapping of QTL is
a fast algorithm approximating the Bayesian mapping of QTL though it might fail
to satisfy the irreducibility of the Markov Chain. We use the interval mapping for
practical reasons.

In step 3, the computation of the ratio of marginal likelihoodP (Y |G,X), or
Bayes factor, can be approximated by the difference of BIC scores [44] when the
sample size is big,

P (Y |Gnew, X)
P (Y |Gold, X)

≈ exp(−1
2
(BICGnew −BICGold)).

In step 4, we need to compute

P (GY |Wnew)
P (GY |W old)

=
exp(−W newE(GY ))

Z(W new)

exp(−W oldE(GY ))
Z(W old)

whereZ(W ) =
∑

GY ∈DAG exp(−WE(GY )) is a normalizing constant. Note that
it is not feasible to compute the exactZ(W ) due to the exclusion of cyclic net-
works. We approximate the normalizing constant by the summation over directed
graphs with restriction on the number of parents, e.g., 3 as adopted by [21].

After running a MCMC chain, we need to efficiently summarize the chain for
the inference of a network structure. The choice by the highest posterior network
structure might not produce a convincing model because the graph space grows
rapidly with the number of phenotype nodes and the most probable network struc-
ture might still have a very low probability. Therefore, instead of selecting the net-
work structure with the highest posterior probability, we perform Bayesian model
averaging [45] over the causal links between phenotypes to infer an averaged net-
work. Explicitly, let ∆uv represents a causal link between phenotypesu andv,
that is,∆uv = {Yu → Yv , Yu ← Yv , Yu 6→ Yv andYu 6← Yv}. Then

P (∆uv | Y, X) =
∑

G

P (∆uv | G, Y, X) P (G | Y, X)

=
∑

G

11{∆uv ∈ G}P (G | Y,X).

The averaged network is represented by the causal links with maximum posterior
probability or with posterior probability above a predetermined threshold, e.g., 0.5.

3.3 Summary of encoding of biological knowledge

In Section3.1, we construct a prior distribution on network structures in terms of
energyE(GY ) relative to biological knowledgeB. Now we describe how to en-
code a biological knowledge matrixB from several biological information. When



there is no available knowledge, we would put every element inB as1/2. Since
every DAG has the same energy, the probability of a network structure conditional
on W is 1/K with K as the number of all DAGs. We will look at several ways
in which biological knowledge can be used to encodeB - transcription factor and
DNA binding [34], protein-protein interaction [46], and gene ontology annotations
[47].

Transcription factor and DNA binding Bernard and Hartemink [34] sug-
gested an approach to convert p-values, quantifying how well a transcription fac-
tor binds to putative target genes, into a posterior probability for the presence and
directionally of an edge in a Bayesian network. Following [34] we assume that
the p-value follows a truncated exponential distribution with meanλ when the TF
binds to DNA (G(i, j) = 1) and a uniform distribution when the TF does not bind
to DNA (G(i, j) = 0).

Pλ(Pij = p|G(i, j) = 1) =
λe−λp

1− e−λ
,

Pλ(Pij = p|G(i, j) = 0) = 1.

The presence of an edge before observing any biological data is assumed to be
P (G(i, j) = 1) = 1/2 so that without any biological data, the probability of the
presence of the edge only depends on the expression data. By the Bayes’ rule, the
probability of presence of an edge after observing a p-value is

Pλ(G(i, j) = 1|Pij = p) =
λe−λp

λe−λp + (1− e−λ)
.

Hereλ is assumed to be uniformly distributed over the interval[λL, λH ] and the
integration overλ is performed to get the probability of the presence of an edge,

P (G(i, j) = 1|Pij = p) =
1

λH − λL

∫ λH

λL

λe−λp

λe−λp + (1− e−λ)
dλ.

This can be solved numerically, i.e.λ ∈ [0, 10000] . We would get the estimate of
B(i, j) = P (G(i, j) = 1|Pij = p).

Protein-protein interaction Since protein-protein interaction does not have
the directionality, we put the same probability on both directions. If we do not
consider the diverse reliabilities of protein-protein interaction experiments, we put
B(i, j) = B(j, i) = δ > 1/2 when we find any interaction. If we consider
the diverse reliabilities and have gold and negative standards for protein-protein
interactions, we can use the Bayes classifier proposed by Jansenet al. [46] to
combine heterogeneous data. Suppose there areL data sets of protein interactions



and each data set has a different false positive rate. We can calculate the posterior
odds of an interaction from observationsf1, . . . , fL from L data sets,

Oposterior =
P (pos|f1, . . . , fL)
P (neg|f1, . . . , fL)

= Oprior × LR

=
P (pos)
P (neg)

× P (f1, . . . , fL|pos)
P (f1, . . . , fL|neg)

.

In a set of protein pairs with the same observation valuesf1, . . . , fL, we get the
relative occurrence rates of protein pairs in the positive gold standard and in the
negative gold standard. The likelihood ratio is the ratio of two relative occurrence
rates and the prior odds can be defined by an expert. The encoding ofB can be
obtained by transforming the posterior odds into posterior positive rate,

B(i, j) = B(j, i) =
Oposterior

1 + Oposterior
.

When the posterior odds is 1,B(i, j) = B(j, i) = 1/2. As the posterior odds
increases,B(i, j) = B(j, i) increases.

Gene ontology The Gene Ontology (GO) [48] is a well controlled vocabulary of
terms describing the molecular functions, biological processes, and cellular com-
ponents of a gene. A large fraction of genes are annotated with GO terms. The
distance between two genes can be defined in terms of their GO annotations. One
well defined distance is Lord’s similarity [47]. This measure takes into account the
hierarchy of GO ontology and GO term occurrences in the myriad of genes. If two
genes share a more specific GO term, in the below of the GO hierarchy, they are
more likely to be similar. However, even if the shared GO terms lie in the same
level of the hierarchy, the similarity of two genes can differ by how informative
the term is. Suppose there are one hundred genes annotated with termc1 and there
are one thousand genes annotated with termc2. Then the chance that geneg1 and
geneg2 share the termc2 is higher than the chance sharing the termc1. Therefore,
termc1 is more informative. In consideration of the GO hierarchy and frequency
of a GO term, the information contentIC(c) for a GO termc is defined to be the
negative logarithm of the number of times the term or any of its descendant terms
occurs in the myriad of genes divided by total GO term occurrences. The root of
the hierarchy will have zero information content while the leaf of the hierarchy
will have high information content. Once the information contentIC(c) for each
node in the GO ontology is set up, we can define GO term similarity and gene
similarity. The similarity between two GO terms is defined to be the maximum
information content among the shared parents of the two terms, which is

sim(c1, c2) = max
c∈(pa(c1)∩pa(c2))

IC(c).



Then, the similarity between two genes can be defined to be the average similarities
of pairs of GO terms between two genes, which is

sim(g1, g2) =

∑n
i=1

∑m
j=1 sim(c1,i, c2,j)

nm
.

This Lord’s measure can be used as an encoding ofB if it is rescaled to be in the
interval[0, 1].

4 Simulations

We performed a simulation study for comparing the proposed method (QTLnet-
prior) with three other methods - QTLnet [16], WH-prior [21], and Expression.
Table3 gives a summary of these four methods in terms of using the genetic vari-
ation information and biological knowledge. The QTLnet was implemented using
R/QTLnet, the QTLnet-prior was implemented with prior setting on R/QTLnet,
the WH-prior was programmed as in [21] with a modification of approximating
the marginal likelihood with the BIC score instead of using the BGe score [49].
The Expression was programmed by modifying R/QTLnet excluding QTL map-
ping.

Method Use Genetic Variation Information Use Biological Knowledge
QTLnet-prior YES YES

QTLnet YES NO
WH-prior NO YES
Expression NO NO

Table 3: Four methods which differ in the use of genetic variation information and
biological knowledge.

We simulated expression data anda priori knowledge matrix according to the
network topology in Figure1 for 100 times. To generate expression data based
on the network in Figure1, the genetic information was simulated first. The ge-
netic map had 5 chromosomes of length 100cM with 10 equally spaced markers
in each chromosome and the markers were simulated for 500 mice in an F2 pop-
ulation using R/qtl [50]. We assumed QTLQt is located in the middle of chro-
mosomet. Then, each expression data set of F2 population was realized with
different genetic effects and partial regression coefficients between phenotypes.
Genetic additive effects were sampled from a uniform distributionU [0, 0.5] and
dominance effects were sampled fromU [0, 0.25]. The partial regression coeffi-
cientsβuv were sampled fromU [−0.5, 0.5]. The residual phenotypic variance was
1. Biological knowledge matrixB was generated for several cases.B(t, u) was



generated from one of two[0, 1]-truncated normal distributionsN±(0.5 ± δ, 0.1)
[51]. B(t, u) of true edge was generated fromN+ and B(t, u) of false edge
was generated fromN−. The parameterδ controls the accuracy of the prior
knowledge. We examined eleven cases of different accuracies of prior knowledge,
δ = ±0.1,±0.08,±0.06,±0.04,±0.02, 0. In the extreme case whenδ = 0.5,
the prior knowledge almost correctly reflects the network structure while when
δ = −0.5, the prior knowledge reflects the network structure almost in the oppo-
site way. Whenδ = 0, the information is generated with no distinction between
true and false edges. In each simulated data, we ran a Markov chain Monte Carlo
for 30300 iterations, discarded the first 300 iterations, sampled every 10 iterations,
and generated 3000 samples.

We assessed these four methods by using receiver operator characteristic (ROC)
curves of the proportion of recovered and spurious edges. Bigger areas under the
ROC curve generally indicate better performance, as the area represents the prob-
ability that the classifier ranks true edges higher than false edges [52]. The ROC
curves are obtained from the set of proportions of recovered edges and spurious
edges for various posterior probability thresholds ranging from 0 to 1.
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First, we evaluate the effect of incorporation of genetic variation information.
The effect of QTL mapping can be tested by comparing QTLnet-prior and WH-
prior. QTLnet-prior has more power in recovering the network structure than WH-
prior in Figure4a and we can conclude that QTL mapping increases the power.
This can be explained by that QTL mapping increases the differences in likelihood
between true model and wrong model. Even when prior probability is entailed by
negative knowledge, the likelihood increase by QTL mapping can overcome the
prior probability.
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Figure 5: The distribution of median weightW of posterior sample by QTLnet-
prior inference. Each panel shows the medianW distribution when biological
knowledge is defective (δ = −0.1), noninformative (δ = 0), and informative
(δ = 0.1).

Second, we evaluate the effect of incorporation of biological knowledge. In
Figure4a, whenδ is positive, QTLnet-prior performs better than QTLnet and WH-
prior performs better than Expression, whereas whenδ is negative, QTLnet-prior
performs worse than QTLnet and WH-prior performs worse than Expression. With
a positiveδ, as the accuracy of knowledge increases, QTLnet-prior and WH-prior
benefit by the prior knowledge incorporation. However, a negativeδ, indicating
that the knowledge disagrees with the true network structure, makes QTLnet-prior
and WH-prior be harmed by prior knowledge incorporation. The decreased per-
formances in QTLnet-prior and WH-prior bring in the attention whetherW can
effectively control the influence of negative knowledge. Figure5 shows that the
median ofW in the posterior sample is close to 0 with negative knowledge. It im-
plies that the weightW effectively controls the use of negative knowledge but not
completely. In comparison with QTLnet and Expression, the reduced performance
of QTLnet-prior and WH-prior can be explained by the remaining uncontrolled ef-



fect of prior probability incorporating negative knowledge. When noninformative
knowledge is incorporated, there is no significant difference in area under ROC
curve between QTLnet and the QTLnet-prior (p-value=0.73) and between the Ex-
pression and the WH-prior (p-value=0.99) as shown in Figures4aand4b.

5 Conclusion

We have developed a network inference method (QTLnet-prior) to incorporate ge-
netic variation information and biological knowledge. Genotypes are known to
control phenotypes but not the other way and thereby can help to distinguish phe-
notype network structures. Biological knowledge can improve the clustering and
directional inference between phenotypes. The simulation study shows that the
proposed method can improve the reconstruction of network by integrating ge-
netic variation information and biological knowledge as long as knowledge agrees
with data. When knowledge does not agree with data, the weight of prior knowl-
edge controls the contribution of prior on the likelihood of data to some extent but
not completely, which results in decreased performance.

When we interpret the inferred networks, we need to be cautious. Even though,
in theory, the incorporation of causal QTLs allows us to distinguish network struc-
tures that would otherwise be likelihood equivalent, in practice some of the de-
tected expression-to-expression causal relationships might be invalid. The prob-
lem is that the inferred expression network represents a projection of real causal
relationships that might take place outside the transcriptional regulation level. For
instance, the true causal regulations could be due to transcription factor binding,
direct protein-protein interaction, phosphorylation, methylation, etc, and might not
be well reflected at the gene expression level. The incorporation of diffused biolog-
ical knowledge, mined from different levels of biological regulation, could poten-
tially improve the reconstruction of gene-expression regulatory networks. In any
case, the inference of these networks can still play an important role in generating
hypothetically possible causal relations.

There are several factors that could change the inference by QTLnet-prior. One
is the prior distribution specification. We have used the Gibbs distribution as a prior
distribution on network structures (P (GY |B, W ) = exp(−WE(GY ))/Z(W ))
with an absolute distance measure (E(GY ) =

∑T
i,j=1 |B(i, j) − GY (i, j)|) to in-

corporate biological knowledge and the exponential distribution for the weight of
biological knowledge (W ∝ exp(−λW )) with the rate parameter (λ = 1) in (2).
However, we could consider different choices of network structure distributions,
measures to incorporate information, weight distributions, and hyperparameters.
Another factor is the sample size of expression data. As the sample size increases,
the contribution of biological knowledge will be generally reduced. This puts un-
equal contribution of expression data and biological knowledge to the reconstruc-
tion of network, even though biological knowledgeB can also be obtained from
number of experiments as discussed in [21]. Finally, the encoding of biological



knowledge plays an important role. We have proposed to use the encoding for
transcription factor and its targets by [34], protein-protein interaction by [46], and
gene ontology annotations by [47]. These encodings are mainly about direct re-
lationships in separate biological regulation levels. As discussed in the previous
paragraph, this diffused biological knowledge could improve the Bayesian network
reconstruction.

There are shortcomings of QTLnet-prior framework inherited from QTLnet.
One of the assumptions of QTLnet is no latent variables. Latent variables can
make it impossible to find the marginalized model in the class of DAG as shown in
[53] and can induce erroneous relations. Suppose there are three nodesy1, y2, y3,
andy1 andy2 have a common parentc1, andy2 andy3 have a common parentc2. If
the common parentsc1 andc2 are not observed, we get the independence relations
thaty1⊥y3 andy1 6⊥y3 | y2. Then we mistakenly infer thaty1 andy3 are parents of
y2. One approach to overcome this problem is to consider the more general class
of ancestral graphs, which takes care of latent variables. Ancestral graphs open
up the possibility of latent variables while they do not explicitly include the latent
variables in the network structures [53].

A persistent challenge in Bayesian network analysis is to cope with large net-
works since the DAG space size grows super-exponentially with the number of
nodes. Approaches based on Markov blankets with and without restrictions on
the number of parent nodes have been proposed [54,55,56]. Jaakkolaet al. [57]
approximated the Bayesian network problem to a linear programming problem.
Tamadaet al. [58] developed a parallel algorithm that infers subnetworks re-
stricted on a Markov blanket and merges the subnetworks. Likewise, in phylogeny
estimation, the supertree reconstruction from small trees has been studied [59].
We think the rigorous development of super Bayesian network methodology to in-
tegrate small subnetworks is a promising direction to infer a large network since
the inference of small subnetworks is computationally inexpensive and multiple
subnetworks can be parallelized for computation. In the era of vast biological data
and knowledge in various aspects, integrating them reasonably in a large scale can
be an interesting topic for future research.
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