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Abstract A Bayesian network has often been modeled to infer a gene
regulatory network from expression data. Genotypes along with gene
expression can further reveal the regulatory relations and genetic ar-
chitectures. Biological knowledge can also be incorporated to im-
prove the reconstruction of a gene network. In this work, we propose
a Bayesian framework to jointly infer a gene network and weights
of prior knowledge by integrating expression data, genetic variations,
and prior biological knowledge. The proposed method encodes bi-
ological knowledge such as transcription factor and DNA binding,
gene ontology annotation, and protein-protein interaction into a prior
distribution of the network structures. A simulation study shows
that the incorporation of genetic variation information and biologi-
cal knowledge improves the reconstruction of gene network as long
as biological knowledge is consistent with expression data.

1 Introduction

A key interest in molecular biology is to understand how DNA, RNA, proteins
and metabolic products regulate each other. In this regard, people have consid-
ered to construct the regulatory networks from microarray expression data with
time-series measurements or transcriptional perturbatipBs A regulatory net-

work can also be constructed with genetic variation in segregating populations that



perturbs the gene expression, protein and metabolite levels. Genetic variation in-
formation can decipher genetic effects on traits and discover causal regulatory rela-
tionships between phenotypes. In addition, knowledge of regulatory relationships
is available in various biological databases, which can improve the reconstruction
of causal networks. This paper focuses on combining genetic variations in a seg-
regating population and biological knowledge to improve the inference of causal
phenotype networks.

Genetic variation information in a segregating population has been used to
reconstruct causal phenotype networBgb] and to infer causal relationships
among pairs of phenotypes$,7,8,9,10]. Approaches based on structural equa-
tion models 11,12,13] and causal discovery algorithm&4,15 have also been
proposed. A common feature of the above methods is that quantitative trait loci
(QTL) mapping and phenotype network reconstruction are conducted separately.
The QTL mapping without consideration of a phenotype network may generate a
genetic architecture (the locations and effects of detectable QTLS) with QTLs of
indirect effects. As pointed out by §], poorly estimated genetic architectures may
compromise the inference of causal relationships among phenotypes. To address
this issue, several researchet$,17] proposed to jointly infer causal phenotype
networks and genetic architectures.

Various sources of biological knowledge have been incorporated with gene ex-
pression in the reconstruction of phenotype networks because it is difficult to de-
cide the direction of gene regulation using expression data only. Transcription fac-
tors binding site information was leveraged bg], whereas Nariagt al. [19] used
protein-protein interaction knowledge to construct phenotype networks. Methods
integrating multiple sorts of biological knowledge were proposedaty, [21],
and R2].

In this paper, we propose a Bayesian approach to jointly infer a causal pheno-
type network and genetic architectures with a prior distribution on network struc-
tures adjusted by biological knowledge. The joint network of causal phenotype
relationships and genetic architectures is modeled as a Bayesian network adopted
from [16], QTLnet. We extend the framework of QTLnet by incorporating biologi-
cal knowledge into the prior distribution on network structures. This extension can
enhance the predictive power of the network by capturing several fundamentals
of biological knowledge4]. The prior probability on network structures is based
on the Markov random field to integrate and weight several sources of biological
information allowing for flexible tuning of the analyst’'s confidence in different
types of biological informationd1]. The consideration of reliability of biological
knowledge is necessary since biological knowledge can be incomplete and inaccu-
rate. While Zhuet al. [4] proposed a method to incorporate genetic variation and
biological knowledge to phenotype networks, their method does not consider the
reliability of biological knowledge. Our proposed approach (QTLnet-prior) can
integrate gene expression, genetic variation, and biological knowledge (protein-
protein interaction, gene ontology annotation, and transcription factor and DNA



binding information) by weighting its reliability in the network reconstruction al-
gorithm.

The details of our integrated framework for the joint inference of causal net-
work and genetic architecture of correlated phenotypes are organized as follows.
Section 2 describes the QTLnet method for the joint inference of causal network
and genetic architecture. Section 3 presents the proposed QTLnet-prior, which is
to incorporate biological knowledge into prior probability distributions over the
space of network structures. A simulation study is conducted in Section 4 to com-
pare the proposed method with several existing approaches. Finally, in Section 5
we discuss the strengths and caveats of our approach and point out future research
directions.

2 Joint inference of causal network and genetic architecture

In this section we first present a standard Bayesian network for modeling expres-
sion data. Next we present an extended model, based on the homogeneous condi-
tional Gaussian regression model, that incorporates QTL nodes into phenotype net-
works. We point out that, even though the directed edges in the standard Bayesian
networks are often interpreted as causal relationships, in reality, they only repre-
sent conditional dependencies. Only by extending the phenotype networks with
genotype nodes can we actually justify causal interpretations. Finally, we present
a rationale for the joint inference of the causal phenotype network and genetic ar-
chitecture, and give an overview of our joint approach for phenotype network and
genetic architecture inference.

2.1 Standard Bayesian network model

A standard Bayesian network is a probabilistic graphical model whose conditional
independence is represented by a directed acyclic graph (DAG). AtrioddDAG

G corresponds to a random variabgin the Bayesian network. A directed edge
from nodeu to nodev can supposedly represent thatis causally dependent on

Y, though an edge truly represents the conditional dependency. The local directed
Markov property of Bayesian network states that each variable is independent of
its non-descendant variables conditional on its parent variables,

}/tJ—YV\de(t)|Y;)a(t) forallt e V

wherede(t) is the set of descendants#fa(t) is the set of parents af V' is the
set of all nodes in a DAG~, andY,,;) = {Y; : i € pa(t)}. Assume the node
index is ordered such that the index of descendants is always bigger than the index



of their parents. The joint distribution can be written to be
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where the first equality is satisfied by the chain rule and the second equality is
satisfied by the local directed Markov property. Since nodesl1,...,1 are
non-descendants of nodeand pa(t) € {t — 1,...,1}, Y; is independent of
Yii—1,..13\paq) CONditional onY,,q ), P(Yy|Yi—1,..., Y1) = P(Yy[Ypa())-

2.2 HCGR model

The parametric family of a Bayesian network that jointly models phenotypes and
QTL genotypes corresponds to a homogeneous conditional Gaussian regression
(HCGR) model. Conditional on the QTL genotypes and covariates, the phenotypes
are distributed according to a multivariate normal distribution, where QTLs and
covariates enter the model via the mean, and the correlation structure among the
phenotypes is explicitly modeled according to the DAG representing the phenotype
network structure6).

The HCGR model is derived from a series of linear regression equations. Ex-
plicitly, leti = 1,...,nandt = 1,...,T index individuals and phenotype traits,
respectively. Let; = (Yu,..., Yy, ..., Y:) be expression levels of phenotype
for all individuals, and let; = (41, - . ., €)' represent the associated independent
normal error terms. We assume that the expression level for indivicural traitt
follows the following phenotype model:

Yi=pii+ Y BuwYeiteu e~ N0 07)
vepa(t)

wheref,, is the partial regression coefficients relating phenotypigth phenotype

v, andyy; = p + X116, with Iy = diag(~y:), wherey, is the overall mean for a
trait ¢, 0; is a column vector of all genetic effects, is a row vector for individual

1 from the design matriX parametrized according to Cockerham’s mo@8j for
genotypes, ang; is a binary vector that represents the genetic architecture of trait
t with v, = 1 as the effect being included in the genetic architecture. It was shown
by [16] that these linear regression equations set a HCGR model for phenotypes
and QTL genotypes.

2.3 Systems genetics and causal inference

Systems genetics aims to understand the complex interrelations between genetic
variations and phenotypes from large scale genotype and phenotype2data [



Here we explain how the systems genetics approach allows us to infer causal net-
works. While causal relations between QTLs and phenotypes are justified by the
randomization of alleles during meiosis and the unidirectional influence of the
genotype on phenotype, causal relations among phenotypes are induced from con-
ditional independence. The systems genetics idea is that by incorporating QTL
nodes into phenotype networks we create new sets of conditional independence
relationships that allow us to distinguish network structures that would, otherwise,
belong to the same equivalence class.

We start with causal relations between QTLs and phenotypes. In general the
genotype influences the phenotype but not the other way around. Furthermore, the
genotype is randomized by the recombination of parent genetic material during the
mating process. These special characteristics enable us to infer causal effects of
QTLs on phenotypes since, by analogy with a randomized experiment, we have
that: (1) the treatment to an experimental unit (genotype) precedes the measured
outcome (phenotype), and (2) random allocation of treatments to experimental
units guarantees that other common causes get averaged out. This random alloca-
tion is explicit in an experimental cross such as a backcross or intercross. While
this idea can be extended to natural populations, special attention must be paid to
admixture, kinship and other forms of relatedness.

Causal inference among phenotypes, on the other hand, requires the concept of
conditional independence organized in DAGs composed of phenotypes and QTL
nodes. In the next three paragraphs we present some definitions and results that
allow us to infer phenotype-to-phenotype causal relationships.

We start with the definitions. In graph theorypathis defined as any unbro-
ken, non-intersecting sequence of edges in a graph, which may go along or against
the direction of arrows. We say that a patlis d-separated 25,26] by a set of
nodesZ if and only if: (1) p contains a chaih — m — j or aforki <— m — j
such that the middle node is i, or (2) p contains a collidei — m « j such that
the middle noden is not in Z and such that no descendantwofis in Z. We say
that Z d-separateX from Y if and only if Z blocks every path from a node ix
to a node inY". Theskeletornf a DAG is the undirected graph obtained by replac-
ing its arrows by undirected edges.vAstructureis composed by two converging
arrows whose tails are not connected by an arrow.

Equivalence concepts play a key role in learning the structure of networks from
the data. Here we present three important equivalence relations for graphs or its
statistical models. Two graphs avtarkov equivalenif they have the same set of
d-separation relation2}]. Two structuresn,; andms for Y aredistribution equiv-
alentwith respect to the family” if they represent the same joint distributions for
Y, that is, for every;, there exists & such thap(Y | 01,m1) = p(Y | 62, m2)

[28]. In other words;n,; andmy are distribution equivalent if the parametéis
andd, are simple re-parametrizations of each othem{fandm, are distribution
equivalent, then the invariance principle of maximum likelihood estimates guaran-



tees thap(Y | 61, m1) = p(Y | 62, ms), andm; andms cannot be distinguished
using the data. In this case we say that andm, arelikelihood equivalentIn

a Bayesian setting we define likelihood equivalence using the prior predictive dis-
tribution, that is, an integral of the likelihood function with respect to the prior
distribution. Hence, if models:; andms are distribution equivalent, it is often
reasonable to expect thatY | m1) = p(Y | mq) with a proper prior or9, and

that we cannot distinguisiu; andms for any data seY” [2§].

Now we state four important results regarding causal inference in systems ge-
netics: (1) Two DAGs are Markov equivalent if and only if they have the same
skeletons and the same set of v-structug. [(2) Distribution equivalence im-
plies Markov equivalence, but the converse is not necessarily 2ije (B) For a
Gaussian regression model, Markov equivalence implies distribution equivalence
[30]. (4) For the homogeneous conditional Gaussian regression model, Markov
equivalence implies distribution equivalendé]|

Therefore, for the HCGR parametric family, two DAGs are distribution and
likelihood equivalent if and only if they are Markov equivalent. This implies that
we can simply check out if any two DAGs have the same skeleton and the same
set of v-structures in order to determine if they are likelihood equivalent and hence
cannot be distinguished using the data.

Getting back to the idea of causal inference among phenotypeSyleep-
resent a standard Gaussian regression Bayesian network of gene expression phe-
notypes,Y. Expression data alone can distinguish some network structures by
its likelihood but there are some network structures that are not distinguishable.
For example, consider the three network structures in Tablklodels G5, and
G% have the same skeletoFi(— Y2 — ¥3) and the same set of v-structures (no v-
structure) and, thus, are distribution/likelihood equivalent. Ma#el on the other
hand, has the same skeleton but a different set of v-structures and, hence, is not
distribution/likelihood equivalent to mode(s;, andG5.. Therefore, expression
data alone can identifg#? but cannot distinguisty}. andG3..

DAG structures | skeletons | v-structures
G%/:Y1—>Y2—>Yg Yi-Y—-Y; ]
Gi=Y1 =Y« Y3 | V1 -Y, V3|V Y, Vs
G:)S/:Y1<—Y2*>}/3 Ylfi/Q*Yg @

Table 1: ModelsG;, andGs. are distribution/likelihood equivalent.

Adding causal QTL nodes to a phenotype network allows the inference of
causal relationships between phenotypes that could not be distinguishable using
expression data alone. For example, if we add a causal @Tto Y7 in pheno-



type networks7; andG3. in the above example, then the corresponding extended
network structure&’t andG? have different v-structures as shown in TaBle

Extended DAG structures| skeletons | v-structures
Gl=Q1 - Y1 =Y —-¥V[Q-V1-Y,-Y; [
GSZQl"YIHYQ"YE Q-Y1-Y,-Y;|Q—Y <Y,

Table 2: Extended model&! andG? are no longer distribution/likelihood equiv-
alent.

2.4 QTL mapping conditional on phenotype network structure

Single trait QTL mapping analysis may detect QTLs that directly affect the pheno-
type under investigation, as well as QTLs with indirect effedé®.[For example,

we consider a causal phenotype network in Figuréhen the expected results of
single trait analysis are given as in Fig@e

Q2 — Y,

7N

Qi —Y, =Y =>Y; < Qs

NS

Qs —Y,

Figure 1: Example network with five phenotypes and four QTLs.

Q1 Q: Q1 G Qe Q1 Q2 Qs Qs
| / / P

| / / R

y 2 y 2 BN A

Y Ys Y3 Yy 5

Figure 2: Output of a single trait QTL mapping analysis for the phenotypes in
Figurel. Dashed and pointed arrows represent direct and indirect QTL/phenotype
causal relationships, respectively.

Now, consider QTL mapping analysis tailored to the phenotype network struc-
ture and assume, for a moment, that the phenotype network structure is known.



In this situation we can avoid detecting indirect QTLs by simply performing map-
ping analysis of the phenotypes conditional on their parents. For instance, in Fig-
ure 1, if we perform QTL mapping ofYs conditional onY3, Y3 andY, we do

not detect);, Q2 and@4 becausé’; L Q; | Y2,Y3, Yy, Y5 1Q2 | Ya,Ys, Y, and

Y5 1Qq4 | Yo, Y5, Y,. We only detect)s sinceYs; V@5 | Yo, Ys, Y.

In practice, however, the structure of the phenotype network is unknown, and
performing QTL mapping conditional on a misspecified phenotype network struc-
ture can result in the inference of misspecified genetic architectures as shown in
Figure3. The mapping analysis of a phenotype conditional on downstream pheno-
types in the true network, induces dependencies between the phenotype and QTLs
affecting downstream phenotypes. This leads to the erroneous inference that the
phenotype includes downstream QTLs as its QTLs. However, a model with mis-
specified phenotype and genetic architectures will generally have a lower marginal
likelihood score than the model with the correct causal order for the phenotypes
and correct genetic architecture. Since in practice QTLnet adopts a model selec-
tion procedure to traverse the space of network structures, it tends to prefer models
closer to the true data generating process. Simulation studies presenid in [
corroborate this point.

(@) @ —>Y; (b)) Q2—>Ys
Q1—>Y, —Y; —=Y5<- Qs Qi—>=Y1 —=Y; —=>Y5<— Qs
N NP2
Q4 _>Y4 Q4 —>Y4

Figure3: QTL mapping tailored to the network structure. Dashed, pointed
and wiggled arrows represent, respectively, direct, indirect and incorrect
QTL/phenotype causal relationships. (a) Mapping analysig;afonditional on

Y5 andY} still detects); and(@- as QTLs forYs, since failing to condition oy
leaves the path@; — Y7 — Y5 — Y5 andQs — Y, — Y5 in Figure 1 open. In
other words); and(@- are d-connected t&; conditional on Y3, Yy) in the true
causal graph. (b) Mapping analysis¥of conditional onY7, Y3 andYj incorrectly
detects)5 as a QTL forY; because in the true network the paiis— Y5 <+ Qs
andY; «— Y3 — Y5 <« Qs in Figure 1 are open when we condition &x

On a technical note irlf], it was shown that the conditional LOD score (log-
arithm of the odds favoring linkage), used for detecting QTLs according to the
phenotype network structure, can be adopted as a formal measure of conditional
independence between phenotypes and QTLs. Even though we restrict our atten-
tion to HCGR models, conditional LOD profiling is a general framework for the
detection of conditional independencies between continuous and discrete random



variables and does not depend on the particular parametric family adopted in the
modeling. Contrary to partial correlations, the conditional LOD score does not
require the assumption of multi-normality of the data in order to formally test for
independence and it can handle interactive covariates.

2.5 Joint inference of phenotype network and genetic architecture

As before, letz be a Bayesian network structure of phenotypes and QTL3 ket
represent a standard Bayesian network of phenotypesnd letG_.y represent

a graph composed of QTL nodes, phenotypes nodes and directed edges from QTL
node to the phenotype node. Note that andGg_y are subgraphs of the ex-
tended network structur@. Genetic architectures for all traits can be represented

in two ways:y = {y}L, andGq_y, with v defined as before. The likelihood

of a Bayesian network of phenotypes and causal QTLs can be written as

P(Y‘G>X7 QG) = P(Y|GYaGQ—>Y>X7 QG) = P(Y|GY17>X7 9G)a

where

P<Y|GY7’77X7 QG) = H
t=1 1

N | pi + Z Bik Ui » 07

n
=1 yrEPa(yt)

The marginal likelihood of phenotypd¥ Y |G, X) is calculated by integrating
parameters; out in the Bayesian network

PY|G,X) = /P(Y|G, X,0c)P(0c|G)dbg,

and can be asymptotically approximated as a function of the BIC score of network
G. The posterior probability off conditional on the data is given by

B P(Y|G,X)P(QG)
PIGYX) = = “p(v1G, X)P(G)

where P(G) represents the prior probability of the network structGtre In the
next section we devote our attention to the specificatioR @¥) using integrated
biological knowledge.

Following [16], we adopt the QTLnet framework that jointly infers the pheno-
type network structure and genetic architecture. Most of the current literature in
genetical network reconstruction has treated the problems of QTL inference and
phenotype network reconstruction separately, generally performing genetic archi-
tecture inference first, and then using QTLs to help in the determination of the
phenotype network structuréd,lL4]. As indicated in Sectio2.4, such strategy can
incorporate QTLs with indirect effects into the genetic architectures of phenotypes.



3 Causal network incorporating biological knowledge

Besides the causal QTLs, biological knowledge is another useful and important
information resource to enhance the construction of a network. Such knowledge
can be integrated on the top of the causal network to provide a more comprehensive
picture of how genes are regulated. This integrated network could generate a new
hypothesis of gene regulation, along being consistent with biological knowledge
in overall.

In this section, we propose a network inference method, QTLnet-prior, from
expression data with genetic variations, integrating biological knowledge. The
QTLnet-prior extends the framework of QTLnet. It specifies the prior probability
on network structures to integrate multiple sources of biological knowledge with
flexible tuning parameters on confidence of knowle@&jé [The weighted integra-
tion of biological knowledge could produce a more predictive Bayesian network.
The details of our extended framework, QTLnet-prior, are presented in Section
3.1 In Section3.2, we sketch a Metropolis-Hastings (M-H) MCMC scheme for
QTLnet-prior implementation that integrates the sampling of network structures
[31,32], the QTL mapping, and the sampling of biological knowledge weights. In
Section3.3, we present how to encode biological knowledge into prior distribu-
tions over network structures.

3.1 Model

Extended model Denote byG a Bayesian network structure of phenotypes
and QTLs.G consists of a phenotype netwotky) and genetic architectures for
phenotypes@o—.y). LetY be expression data” be genetic variations, and’
represent weights of biological knowledge. The QTLnet framework presented in
Section2 assumes intrinsically a uniform prior over network structures. Here, bio-
logical knowledge determines a prior probability on phenotype network structures,
Gy. Additionally, we specify a prior distribution on the weights of biological
knowledge in order to control the consistency between expression data and knowl-
edge. Because the prior information can be inaccurate or incompatible with the
expression data, it is important to quantify its uncertainty. We write the extended
model as follows.

P(G,W|Y,X,B) x P(Y|G,W, X, B)P(G,W|X, B)

Y|G, X)P(G,W|X, B)

Y|G, X)P(Gy,W|X, B)P(Gg_y|X, B)
Y|G, X)P(Gy,W|B)P(Gg_y|X)
)P(

Y|G, X)P(Gy|B,W)P(W|B)P(Go_y|X) (2)

P
=P
=P

P
P

~ N /N~

whereP(Y |G, W, X, B) is the marginal likelihood of the traits given the network
structureG and can be simplified to bB(Y'|G, W), andP(G, W|X, B) is a prior



probability of a network and weights given marker information and biological
knowledge. In the second equality relation, the prior probabifityz, W|X, B)

can be decomposed inf®(Gy, W|X, B) and P(Gqo—y|X, B) by assuming the
joint independence between a phenotype netwigykalong with the weightd?’

and genetic architecturék,_,y given marker informatioX” and biological knowl-
edgeB. The third equality is provided by the fact thatGy, W |X, B) = P(Gy, W|B)
because the genetic markers are not included in the structure of phenotype network
Gy, andP(Gg-y|X,B) = P(Gg—y|X) because the biological structufeis
about the phenotype network structure. The extended mod®lsmows that prior
distributions on phenotype network structutéGy-| B, W), biological knowledge
weightsP(IW|B), and genetic architecturd¥ G_.y|X) are needed to be spec-
ified. We will describe how to seP(Gy |B, W), P(W|B), P(Gg—y|X) in the
following.

Prior on phenotype network structures  P(Gy|B, W) Incorporation of

a priori biological knowledge into a prior on network structures can lead to dis-
criminate Bayesian networks of the same likelihoad,33). If G' andG? have

the same likelihoodR (Y |G') = P(Y|G?)) but have different prior probabilities
(P(GY) # P(G?)), the posterior probabilities would become differeR{G'|Y) #
P(G*Y) < P(Y|G?)P(G?)). For example, if it is knowra priori thatt — v is
more likely thant < v, the posterior preferg(t — v|Y) x p(Y|t — v)p(t — v)
overp(t «— v|Y) o< p(Y|t « v)p(t — v).

Various types of information can supplement the learning of a network of gene
expression. We can encode this supplementary information into unequal priors on
network structures. A transcription factor binding location can be used to prefer the
direction from a transcription factor to the target ged4].[ Pathway information
can also guide to infer directions among phenotyf@$. [ Regulation inference
[35,36,37] from knock-out data and protein-protein interacti@g|[can be used
as a prior for network structure. We will describe how to encode this information
in Section3.3. Since QTLnet is a Bayesian approach, we can flexibly incorporate
various sources of biological knowledge through constructing meaningful priors
for the network structures.

Now, it remains to set the prior distribution on phenotype network structure
Gy with respect to biological knowledgB. It is known that a graphical model
(Markov random field) for an undirected graph has a Gibbs distribution and vice
versa B9,40. As a Markov random field’s distribution is factored by its cliques
[Tc.criques #(Ye), @ Bayesian network’s distribution is factored by its parent-child
relations] [, P(Y:|Ypq)). Hence, it is natural to assume the Gibbs distribution
for the prior on DAG structure2D]. Imoto et al. [20] and Werhli and Husmeier
[21] used the Gibbs distribution as the prior distribution over network structures
to integrate biological knowledge. We adapted the prior formulation over network
structures in21] as follows. First, theenergyof a phenotype networ&'y- relative



to the biological knowledg® is defined to be

T
E(Gy) =Y _ IB(i,j) — Gy (i,j)] (3)

i,j=1

whereB is an encoding to describe biological knowledge ranging from 0 €4,
is represented by an adjacency matrix of network structde/i, j) = 1 means
the presence of the directed edge from node j andGy (i, ) = 0 means the
absence of the directed edge frono ;.

The energy¥ (Gy) acts as a distance measure between biological knowledge
and a network structur&'y. For a fixed biological knowledge matri®, there
are network structures close to the biological knowle@gehich agree with the
knowledge well and hence have small energy, while there are network structures
distant fromB which disagree with the knowledge and hence have large energy.
Therefore, the prior distribution on network structures can be constructed in terms
of energy€(Gy ) to be adjusted by biological knowleddge

PGy |B,W) = <P ZV(V%GY)), Gy € DAG.

For a fixedWW, network structures with small energy will have higher prior prob-
abilities than network structures with large energy., the weight of biological
knowledgeB, is introduced to tune the confidence of biological information since
biological information can be inaccurate or incompatible with expression data. As
W — 0, the influence of priori knowledge gets negligible and the prior distri-
bution of network structure is assumed to be almost uniform. On the contrary, as
W — oo, the prior on network structure peaks at the biological knowledgél”)
denotes the normalizing constanl; cpag exp(—WE(Gy)).

Multiple sources of biological knowledge can be integrated into a prior on
network structures with different weights.

exp(— > Wiék(Gy))
Z(W) !

P(Gy|B,W) = Gy € DAG

where B, is an encoding matrix of biological knowledge from souk¢céV, indi-
cates a weight oBy, relative to the dataly = (Wy,...,Wy), andZ (W) is the
summation of the numerator over all DAGs.

Prior on biological knowledge weights P(W|B) We specify the prior
probability distribution on each biological knowledge weidght to be an expo-
nential distribution}V' o exp(—AW), with the rate parametex = 1. The expo-
nential distribution is chosen to control the case when biological knowledge dis-
agrees with expression data, so that it can easily reduce the contribution of negative
biological knowledge.



Prior on genetic architectures P(Gg—y|X) We assume a prior on genetic
architectures to be a uniform distribution. Several alternative specifications can be
found in Bayesian QTL mapping such @dJand [42].

3.2 Sketch of MCMC

A main challenge in the reconstruction of networks is that the graph space grows
super-exponentially with the number of nodes. An exhaustive search approach
over all network structures is impractical even for small networks. Hence, heuris-
tic approaches are needed to efficiently traverse the graph space. We adopt a
Metropolis-Hastings (M-H) MCMC scheme that integrates the sampling of net-
work structures31,43], the QTL mapping, and the sampling of biological knowl-
edge weight$¥. The MCMC scheme iterates between accepting a network struc-
tureG and accepting weightsiy, - - - | W}, corresponding té types of biological
knowledge.

1. Sample a new phenotype network structGig™ from a network structure
proposal distributioR(G* | GY).

2. Given the phenotype network structd¥€“", sample a new genetic architec-
ture G-,y from an architecture proposal distributi{ G G"Qliy).

3. Accept the new extended network structd@e” composed ofGy** and

Oy given the biological knowledge weight® with a probability

P(Y|G™, X)P(G3"|B,W)P(GE"y | X)

P(Y|Geld, X)P(G$| B, W)P(GZ2,y | X)

" R(GH|GE)R(GHLy ai”w}
R(GEIGIOR(GE Y GELy )

—

Ag = min{1,

4. For each biological knowledde
(a) Sample a new weight’;'" of biological knowledgé: from a weight pro-
posal distributionR (W v |Weld).,
(b) Accept the new biological weight;*** given the phenotype networky
with a probability

P(Gy [Wi, WO, B) P(Wp“"| B) R(W M| W)

Aw .
P(Gy|Wed, B)  P(WH|B) R(Wpew|wld)

k

= min{1,
5. Ilterate the steps 1-4 until the chain converges.

In step 1, a new phenotype network structure is proposed by a mixture of single
edge operations (single edge addition, single edge deletion, single edge reversal)
and edge reversal move®?. It has been shown that edge reversal moves signifi-
cantly improve the convergence of MCMC sampler.



In step 2, genetic architectures of phenotypes can be sampled conditional on
its phenotypic parents. One way is a Bayesian QTL mapping proposeceiraYi
[41] for each phenotype. Another way is the interval mapping of QTL for each
phenotype conditional on its phenotypic parents. The interval mapping of QTL is
a fast algorithm approximating the Bayesian mapping of QTL though it might fail
to satisfy the irreducibility of the Markov Chain. We use the interval mapping for
practical reasons.

In step 3, the computation of the ratio of marginal likelihaB¢Y'|G, X ), or
Bayes factor, can be approximated by the difference of BIC scd@svhen the
sample size is big,

PY|G™" X)

P(Y‘Gold’ X) ~ eXp(— (BICG’VL@'W — BICGold)).

1

2

In step 4, we need to compute

exp(=W"E(Gy))

P(GY’Wnew) . Z(Wnew)
P(Gy|Weld)y ~ “exp(CWoE(Gy)
Z(W"ld)

whereZ(W) = . cpac exp(—=WE(Gy)) is a normalizing constant. Note that

it is not feasible to compute the exa€{1¥’) due to the exclusion of cyclic net-
works. We approximate the normalizing constant by the summation over directed
graphs with restriction on the number of parents, e.g., 3 as adopte&djoy [

After running a MCMC chain, we need to efficiently summarize the chain for
the inference of a network structure. The choice by the highest posterior network
structure might not produce a convincing model because the graph space grows
rapidly with the number of phenotype nodes and the most probable network struc-
ture might still have a very low probability. Therefore, instead of selecting the net-
work structure with the highest posterior probability, we perform Bayesian model
averaging 45| over the causal links between phenotypes to infer an averaged net-
work. Explicitly, let A, represents a causal link between phenotypesd v,
thatis, Ay, ={Y, = Y,, Y, < Y,, Y, /A Y,andY, « Y,}. Then

P(Auw | Y,X) =) P(Aw | G.Y,X)P(G|Y,X)
G
=) 1{Aw € G} P(G| Y, X).
G

The averaged network is represented by the causal links with maximum posterior
probability or with posterior probability above a predetermined threshold, e.g., 0.5.

3.3 Summary of encoding of biological knowledge

In Section3.1, we construct a prior distribution on network structures in terms of
energy&(Gy) relative to biological knowledg®. Now we describe how to en-
code a biological knowledge matri from several biological information. When



there is no available knowledge, we would put every elemefit as1/2. Since
every DAG has the same energy, the probability of a network structure conditional
onW is 1/K with K as the number of all DAGs. We will look at several ways

in which biological knowledge can be used to encéetranscription factor and
DNA binding [34], protein-protein interactiordlp], and gene ontology annotations

[47].

Transcription factor and DNA binding Bernard and Hartemink3Hf] sug-
gested an approach to convert p-values, quantifying how well a transcription fac-
tor binds to putative target genes, into a posterior probability for the presence and
directionally of an edge in a Bayesian network. FollowiBd][we assume that

the p-value follows a truncated exponential distribution with mearhen the TF
binds to DNA (G (7, j) = 1) and a uniform distribution when the TF does not bind

to DNA (G(i,7) = 0).

- Ae” W
P/\(Pz] :p|G(Zv.7) = 1) = 1_ e N

Py\(P;; = p|G(i,j) =0) = 1.

The presence of an edge before observing any biological data is assumed to be
P(G(i,j) = 1) = 1/2 so that without any biological data, the probability of the
presence of the edge only depends on the expression data. By the Bayes’ rule, the
probability of presence of an edge after observing a p-value is

e AP

P)\(G(Za.]) = 1|PZ] :p) = e + (1 — 67)‘).

Here X is assumed to be uniformly distributed over the intefal, 7] and the
integration oven\ is performed to get the probability of the presence of an edge,

. 1 A e AP
R R e 8 b i ere o

This can be solved numerically, i.&.€ [0,10000] . We would get the estimate of

Protein-protein interaction Since protein-protein interaction does not have
the directionality, we put the same probability on both directions. If we do not
consider the diverse reliabilities of protein-protein interaction experiments, we put
B(i,j) = B(j,i) = 6 > 1/2 when we find any interaction. If we consider
the diverse reliabilities and have gold and negative standards for protein-protein
interactions, we can use the Bayes classifier proposed by Jahsdn[46] to
combine heterogeneous data. Suppose therg deta sets of protein interactions



and each data set has a different false positive rate. We can calculate the posterior
odds of an interaction from observatiofis . . ., f;, from L data sets,

pos|fi, ..., fr)

P
@) osterior — =0 rior X LR
post P(neg|fi,- .., fL) ?
_ P(pos) | Pl frlpos)
P(neg) = P(f1,..., fLIneg)

In a set of protein pairs with the same observation valfjes. ., f;, we get the
relative occurrence rates of protein pairs in the positive gold standard and in the
negative gold standard. The likelihood ratio is the ratio of two relative occurrence
rates and the prior odds can be defined by an expert. The encodibganh be
obtained by transforming the posterior odds into posterior positive rate,

Oposteri
Bli. i) = B(i.i) — posterior ]
(Z? j) <]7 Z) 1+ Oposterior

When the posterior odds is B(i,j) = B(j,i) = 1/2. As the posterior odds
increasesB(i, j) = B(j,1) increases.

Gene ontology The Gene Ontology (GOXB] is a well controlled vocabulary of
terms describing the molecular functions, biological processes, and cellular com-
ponents of a gene. A large fraction of genes are annotated with GO terms. The
distance between two genes can be defined in terms of their GO annotations. One
well defined distance is Lord’s similaritf#]. This measure takes into account the
hierarchy of GO ontology and GO term occurrences in the myriad of genes. If two
genes share a more specific GO term, in the below of the GO hierarchy, they are
more likely to be similar. However, even if the shared GO terms lie in the same
level of the hierarchy, the similarity of two genes can differ by how informative
the term is. Suppose there are one hundred genes annotated with semththere

are one thousand genes annotated with ternThen the chance that gepgand
geneg, share the terms is higher than the chance sharing the teimTherefore,
termc; is more informative. In consideration of the GO hierarchy and frequency
of a GO term, the information conteh€’(c) for a GO termc is defined to be the
negative logarithm of the number of times the term or any of its descendant terms
occurs in the myriad of genes divided by total GO term occurrences. The root of
the hierarchy will have zero information content while the leaf of the hierarchy
will have high information content. Once the information contBfi{c) for each

node in the GO ontology is set up, we can define GO term similarity and gene
similarity. The similarity between two GO terms is defined to be the maximum
information content among the shared parents of the two terms, which is

sim(cy,c2) = max IC(c).
c€(pa(c1)Npa(cz))



Then, the similarity between two genes can be defined to be the average similarities
of pairs of GO terms between two genes, which is

. Dit 2y sim(en, c2,5)
sim(g1,92) = i .

This Lord’s measure can be used as an encoding ibfit is rescaled to be in the
interval [0, 1].

4 Simulations

We performed a simulation study for comparing the proposed method (QTLnet-
prior) with three other methods - QTLnetq], WH-prior [21], and Expression.
Table3 gives a summary of these four methods in terms of using the genetic vari-
ation information and biological knowledge. The QTLnet was implemented using
R/QTLnet, the QTLnet-prior was implemented with prior setting on R/QTLnet,
the WH-prior was programmed as i@1] with a modification of approximating

the marginal likelihood with the BIC score instead of using the BGe sctie |
The Expression was programmed by modifying R/QTLnet excluding QTL map-

ping.

Method Use Genetic Variation Information Use Biological Knowledge

QTLnet-prior YES YES
QTLnet YES NO
WH-prior NO YES
Expression NO NO

Table 3: Four methods which differ in the use of genetic variation information and
biological knowledge.

We simulated expression data aagriori knowledge matrix according to the
network topology in Figurd for 100 times. To generate expression data based
on the network in Figurd, the genetic information was simulated first. The ge-
netic map had 5 chromosomes of length 100cM with 10 equally spaced markers
in each chromosome and the markers were simulated for 500 mice in an F2 pop-
ulation using R/qtl $0]. We assumed QTIQ); is located in the middle of chro-
mosomet. Then, each expression data set of F2 population was realized with
different genetic effects and partial regression coefficients between phenotypes.
Genetic additive effects were sampled from a uniform distributio®, 0.5] and
dominance effects were sampled frdm0, 0.25]. The partial regression coeffi-
cientsg,, were sampled frorV[—0.5, 0.5]. The residual phenotypic variance was
1. Biological knowledge matrix3 was generated for several caséXt, u) was



generated from one of twjo, 1]-truncated normal distribution¥ (0.5 + §,0.1)

[51]. B(t,u) of true edge was generated froM, and B(t,u) of false edge

was generated fronV_. The parametet controls the accuracy of the prior
knowledge. We examined eleven cases of different accuracies of prior knowledge,
0 = +0.1,40.08,+0.06, +0.04, +£0.02,0. In the extreme case when= 0.5,

the prior knowledge almost correctly reflects the network structure while when
0 = —0.5, the prior knowledge reflects the network structure almost in the oppo-
site way. Wherdy = 0, the information is generated with no distinction between
true and false edges. In each simulated data, we ran a Markov chain Monte Carlo
for 30300 iterations, discarded the first 300 iterations, sampled every 10 iterations,
and generated 3000 samples.

We assessed these four methods by using receiver operator characteristic (ROC)
curves of the proportion of recovered and spurious edges. Bigger areas under the
ROC curve generally indicate better performance, as the area represents the prob-
ability that the classifier ranks true edges higher than false e&g@gsThe ROC
curves are obtained from the set of proportions of recovered edges and spurious
edges for various posterior probability thresholds ranging from 0 to 1.
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The shaded area indicates the standard er-

ror of the area under ROC curve.

Figure 4: ROC curves



First, we evaluate the effect of incorporation of genetic variation information.
The effect of QTL mapping can be tested by comparing QTLnet-prior and WH-
prior. QTLnet-prior has more power in recovering the network structure than WH-
prior in Figure4aand we can conclude that QTL mapping increases the power.
This can be explained by that QTL mapping increases the differences in likelihood
between true model and wrong model. Even when prior probability is entailed by
negative knowledge, the likelihood increase by QTL mapping can overcome the
prior probability.
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Figure 5: The distribution of median weigh¥” of posterior sample by QTLnet-
prior inference. Each panel shows the medi&ndistribution when biological

knowledge is defectiveé(= —0.1), noninformative § = 0), and informative

(6 =0.1).

Second, we evaluate the effect of incorporation of biological knowledge. In
Figureda when/ is positive, QTLnet-prior performs better than QTLnet and WH-
prior performs better than Expression, whereas whennegative, QTLnet-prior
performs worse than QTLnet and WH-prior performs worse than Expression. With
a positived, as the accuracy of knowledge increases, QTLnet-prior and WH-prior
benefit by the prior knowledge incorporation. However, a negatjiadicating
that the knowledge disagrees with the true network structure, makes QTLnet-prior
and WH-prior be harmed by prior knowledge incorporation. The decreased per-
formances in QTLnet-prior and WH-prior bring in the attention whetiiecan
effectively control the influence of negative knowledge. Figbishows that the
median ofi¥ in the posterior sample is close to 0 with negative knowledge. It im-
plies that the weightV effectively controls the use of negative knowledge but not
completely. In comparison with QTLnet and Expression, the reduced performance
of QTLnet-prior and WH-prior can be explained by the remaining uncontrolled ef-



fect of prior probability incorporating negative knowledge. When noninformative
knowledge is incorporated, there is no significant difference in area under ROC
curve between QTLnet and the QTLnet-prior (p-value=0.73) and between the Ex-
pression and the WH-prior (p-value=0.99) as shown in Figdeesd4b.

5 Conclusion

We have developed a network inference method (QTLnet-prior) to incorporate ge-
netic variation information and biological knowledge. Genotypes are known to
control phenotypes but not the other way and thereby can help to distinguish phe-
notype network structures. Biological knowledge can improve the clustering and
directional inference between phenotypes. The simulation study shows that the
proposed method can improve the reconstruction of network by integrating ge-
netic variation information and biological knowledge as long as knowledge agrees
with data. When knowledge does not agree with data, the weight of prior knowl-
edge controls the contribution of prior on the likelihood of data to some extent but
not completely, which results in decreased performance.

When we interpret the inferred networks, we need to be cautious. Even though,
in theory, the incorporation of causal QTLs allows us to distinguish network struc-
tures that would otherwise be likelihood equivalent, in practice some of the de-
tected expression-to-expression causal relationships might be invalid. The prob-
lem is that the inferred expression network represents a projection of real causal
relationships that might take place outside the transcriptional regulation level. For
instance, the true causal regulations could be due to transcription factor binding,
direct protein-protein interaction, phosphorylation, methylation, etc, and might not
be well reflected at the gene expression level. The incorporation of diffused biolog-
ical knowledge, mined from different levels of biological regulation, could poten-
tially improve the reconstruction of gene-expression regulatory networks. In any
case, the inference of these networks can still play an important role in generating
hypothetically possible causal relations.

There are several factors that could change the inference by QTLnet-prior. One
is the prior distribution specification. We have used the Gibbs distribution as a prior
distribution on network structure?(Gy |B,W) = exp(-WE(Gy))/Z(W))
with an absolute distance measufé®y ) = szzl |B(i,7) — Gy (i,7)]) to in-
corporate biological knowledge and the exponential distribution for the weight of
biological knowledge ¥l o< exp(—AW)) with the rate parametei(= 1) in (2).
However, we could consider different choices of network structure distributions,
measures to incorporate information, weight distributions, and hyperparameters.
Another factor is the sample size of expression data. As the sample size increases,
the contribution of biological knowledge will be generally reduced. This puts un-
equal contribution of expression data and biological knowledge to the reconstruc-
tion of network, even though biological knowleddgcan also be obtained from
number of experiments as discussed2d][ Finally, the encoding of biological



knowledge plays an important role. We have proposed to use the encoding for
transcription factor and its targets 84, protein-protein interaction byf], and

gene ontology annotations b¥¢7. These encodings are mainly about direct re-
lationships in separate biological regulation levels. As discussed in the previous
paragraph, this diffused biological knowledge could improve the Bayesian network
reconstruction.

There are shortcomings of QTLnet-prior framework inherited from QTLnet.
One of the assumptions of QTLnet is no latent variables. Latent variables can
make it impossible to find the marginalized model in the class of DAG as shown in
[53] and can induce erroneous relations. Suppose there are threejnogess,
andy; andy, have a common parent, andy, andys have a common pareat. If
the common parents andc» are not observed, we get the independence relations
thaty; Lys andy; Lys | y2. Then we mistakenly infer thay andys; are parents of
2. One approach to overcome this problem is to consider the more general class
of ancestral graphs, which takes care of latent variables. Ancestral graphs open
up the possibility of latent variables while they do not explicitly include the latent
variables in the network structuresd.

A persistent challenge in Bayesian network analysis is to cope with large net-
works since the DAG space size grows super-exponentially with the number of
nodes. Approaches based on Markov blankets with and without restrictions on
the number of parent nodes have been proposé8%,56]. Jaakkolaet al. [57]
approximated the Bayesian network problem to a linear programming problem.
Tamadaet al. [58] developed a parallel algorithm that infers subnetworks re-
stricted on a Markov blanket and merges the subnetworks. Likewise, in phylogeny
estimation, the supertree reconstruction from small trees has been sthélied [
We think the rigorous development of super Bayesian network methodology to in-
tegrate small subnetworks is a promising direction to infer a large network since
the inference of small subnetworks is computationally inexpensive and multiple
subnetworks can be parallelized for computation. In the era of vast biological data
and knowledge in various aspects, integrating them reasonably in a large scale can
be an interesting topic for future research.
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