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Abstract

QTL hotspots (genomic locations affecting many traits) are a common feature in

genetical genomics studies, and are biologically interesting since they may harbor critical

regulators. Therefore, statistical procedures to assess the significance of hotspots are of

key importance. One approach, randomly allocating observed QTLs across the genomic

locations separately by trait, implicitly assumes all traits are uncorrelated. Recently,

an empirical test for QTL hotspots was proposed based on the number of traits that

exceed a predetermined LOD value, such as the standard permutation LOD threshold.

The permutation null distribution of the maximum number of traits across all genomic

locations preserves the correlation structure among the phenotypes, avoiding the detection

of spurious hotspots due to non-genetic correlation induced by uncontrolled environmental

factors and unmeasured variables. However, by only considering the number of traits

above a threshold, without accounting for the magnitude of the LOD scores, relevant

information is lost. In particular, biologically interesting hotspots composed of a moderate

to small number of traits with strong LOD scores may be neglected as non-significant.

In this paper we propose a quantile-based permutation approach that simultaneously

accounts for the number and the LOD scores of traits within the hotspots. By considering

a sliding scale of mapping thresholds, our method can assess the statistical significance

of both small and large hotspots. Although the proposed approach can be applied to any

type of heritable high volume ‘omic’ data set, we restrict our attention to eQTL analysis.

We assess and compare the performances of these three methods in simulations and we

illustrate how our approach can effectively assess the significance of moderate and small

hotspots with strong LOD scores in a yeast expression data set.

Introduction
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QTL hotspots, groups of traits co-mapping to the same genomic location, are a com-

mon feature of genetical genomics studies. Genomic locations associated with many traits

are biologically interesting since they may harbor influential regulators. Therefore, statis-

tical procedures aiming to assess the significance of such hotspots are of key importance.

Brem et al. (2002) and Schadt et al. (2003) detected hotspots by dividing the genome

of an organism into equally spaced bins, counting the number of expression traits with

a QTL in each bin. A hotspot was considered significant if it had more traits with

quantitative trait loci (QTL) than expected if the expression QTLs were randomly dis-

tributed across the genome. Darvasi (2003) and Perez-Enciso (2004) pointed out that

these hotspots may arise as an artifact of high correlation among expression traits, rather

than by the action of a common master regulator. Non-genetic mechanisms, uncontrolled

environmental factors and unmeasured variables are capable of inducing strong correla-

tions among clusters of traits. Hence, whenever a trait shows a spurious linkage, many

correlated traits will likely map to the same locus, creating a spurious eQTL hotspot.

Furthermore, multiple testing and relaxed mapping thresholds may inflate the hotspots

(Darvasi 2003).

West et al. (2007) and Wu et al. (2008) proposed a permutation test where the

positions of the eQTLs detected in the original data set are permuted across the genome

separately by trait, using the distribution of the maximal number of expression traits

across the genome to assess hotspot significance. This Q-method permutes QTL positions,

not phenotype or genotype data and improves upon the permutation approaches of Brem

et al. (2002) and Schadt et al. (2003) since it accounts for multiple testing across the

genome. However, the Q-method implicitly assumes traits are uncorrelated and hence

underestimates the clustered pattern of spurious eQTLs for correlated traits.

Breitling et al. (2008) proposed a permutation test that randomized rows in the
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marker data relative to rows in the trait data, preserving the correlation structure among

phenotypes. The null distribution for this N -method of hotspot sizes depends on the

number N of traits with LOD score exceeding a predetermined LOD threshold at each

locus. The choice of LOD threshold is important: higher LOD thresholds yield smaller

sized spurious hotspots by chance under the null hypothesis of no hotspots. Two natural

LOD threshold choices are the Churchill-Doerge (1994) single-trait LOD threshold, con-

trolling genome-wide error rate (GWER) for one trait, and a conservative permutation

threshold for the maximum LOD score across all traits and all genomic locations. The

former allows large hotspots by chance under the null distribution (Breitling et al. 2008).

The latter favors small hotspots composed of traits with high LOD scores under the null.

Which threshold is more appropriate?

We propose a quantile-based permutation approach, the NL-method, with a sliding

scale of thresholds ranging from the conservative to the single-trait threshold, jointly

considering hotspot size and the distribution of LOD scores among correlated traits.

Hence, even a small hotspot, with a modest number of correlated traits all having high

LOD scores at a location, can be significant. The NL-method controls the genome wide

error rate across a range of possible hotspot sizes. Explicitly, we examine spurious hotspot

size n, ranging from 1 to N , with N the hotspot size threshold delivered by the N -method

using the single-trait LOD threshold. While the N -method yields the minimum significant

hotspot size for a fixed LOD threshold, we turn the problem around and determine an

empirical LOD threshold given a spurious hotspot size.

We assessed and compared the performances of the NL-, N - and Q-methods using: (i)

simulated examples, where we generated hotspots with varying LOD score distributions

for data sets with correlated and uncorrelated traits; and (ii) simulation studies, where we

generated null data sets, i.e., data sets where none of the phenotypes had any QTLs, and



E. Chaibub Neto et al. 6

assessed the error rates of the three procedures under different levels of correlation among

the traits. Application of the NL-method to a yeast data set detected additional moderate

and small hotspots considered non-significant by the N -method and avoided spurious

hotspots detected by the Q-method. This ability to assess the statistical significance

of hotspots with varying sizes and LOD score distributions has the potential to yield

important additional biological discoveries.

Methods

The Q- and N methods

The now standard permutation threshold method for QTL mapping (Churchill and

Doerge 1994) estimates the null distribution of the genome-wide maximum LOD score by

shuffling the phenotypes relative to the genotype data, breaking the association between

the phenotype and the genotypes. Our interest, though, is to assess the significance of

QTL hotspots. This section presents two different permutation schemes that have been

used in hotspot analysis. Supplementary Figure S1 shows a schematic of the genotype

data, phenotype data and the output of hotspot analysis in genetical genomics experi-

ments.

The first permutation scheme for the Q-method (Supplementary Figure S2) derives the

null distribution of hotspot sizes by permuting the cells of the observed QTL matrix along

its rows, independently for each column; that is, the QTLs are permuted across genomic

locations separately by trait. The Q-method does not account for the correlation structure

among the phenotypes and, contrary to the Churchill-Doerge and Breitling’s permutation

tests, does not break the connection between phenotypes and genotypes. The Q-method

permutation null distribution is generated under the assumption that phenotypes are

uncorrelated. Violation of this assumption leads to a severe underestimation of the null
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distribution of hotspot sizes and to detection of an many spurious hotspots, as shown by

Breitling et al. (2008) in the re-analysis of the Wu et al. (2008) data and illustrated in

the simulation study and examples below.

The second permutation scheme (Breitling et al. 2008; Supplementary Figure S3),

used for the N - and NL-methods breaks the connection between genotypes and pheno-

types while preserving the correlation structure separately within each type of data by

permuting the rows of the phenotype data matrix relative to the rows of the genotype

data. Mapping analysis is redone for all traits with the permuted data. This scheme, a

direct extension of Churchill and Doerge (1994), preserves the correlation structure among

the phenotypes, accounting for spurious hotspots due to non-genetic correlation.

The NL-method

In linkage analysis of a single phenotype we are usually interested in controlling the

genome wide error rate (GWER) of falsely detecting a QTL. For a given error rate α, we

determine a single trait mapping LOD threshold λ such that

Pr
(
max
k

{LODk} ≥ λ | there is no QTL anywhere in the genome
)

= α , (1)

where k = 1, . . . , K represents the genomic locations being tested for linkage. In the

presence of multiple phenotypes we need to account for multiple testing across traits, and

seek to control the genome wide error rate of falsely detecting at least one QTL associated

with any of the T traits at level α. We determine a LOD threshold λc such that

Pr
(
max
t,k

{LODt,k} ≥ λc | none of the traits have a QTL anywhere in the genome
)

= α (2)
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where t = 1, . . . , T , k = 1, . . . , K and λc represents a more conservative LOD threshold

that controls the probability that any of the traits have one or more false linkages anywhere

in the genome.

Which threshold is more adequate depends on the underlying situation. We discard

small hotspots with strong LOD scores when we adopt λ, but we miss hotspots composed

of many traits with linkages barely reaching the single trait mapping threshold using

λc. Therefore, we propose a sliding scale of thresholds λn,α for n varying from 1 to N ,

where N represents the hotspot size (i. e., the number of traits with significant LOD at a

given genomic location) expected by chance under the N -method’s permutation scheme,

computed using the LOD score threshold λ.

Given a fixed mapping threshold, the N -method determines the hotspot size expected

by chance. We turn the problem around: given a fixed spurious hotspot size n, the NL-

method determines the associated mapping threshold λn,α. We adopt maxk {qLODk(n)}

as a test statistic where qLODk(n) corresponds to the nth LOD value of an ordered sample

of T LOD scores, ordered from highest to lowest. Note that by taking the maximum of

qLODk(n) across the genome we are able to control the genome wide error rate associated

with the qLODk(n) statistic. Explicitly, we control

Pr
(
max
k

{qLODk(n)} ≥ λn,α | none of the traits have a QTL anywhere in the genome
)

= α.

(3)

In other words, by adopting a QTL mapping threshold λn,α we control GWER at level α

of detecting at least one spurious hotspot of size n or higher somewhere in the genome,

given that none of the traits have a QTL anywhere in the genome.

Observe that when n = N the LOD threshold λ (that controls the detection of a false

QTL at a GWER α), matches λN,α (that controls the detection of a false hotspot of size N

or higher), and qLODk(N) corresponds to LODk. Therefore, when n = N , the quantity
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in (3) reduces to (1). Similarly, when n = 1 we have that λc = λ1,α and qLODk(1) =

maxt {LODt,k}, so that maxk {qLODk(1)} = maxt,k {LODt,k} and (3) reduces to (2).

Finally, the quantity in (3) is the probability of detecting at least one spurious hotspot

of size exactly n somewhere in the genome given that none of the traits have a QTL

anywhere in the genome. However, under the null hypothesis of no QTLs, detecting a

hotspot of size n∗ > n is less likely than a hotspot of size n, therefore, if a threshold

λn,α controls the full-null GWER for a hotspot of size n, it will also control the full-null

GWER for a hotspot of size larger than n. Below, we detail the permutation algorithm

for LOD quantiles.

NL-method algorithm: For a fixed hotspot size, n = 1, . . . , N , we obtain the permu-

tation LOD threshold that controls the genome-wide error rate of detecting at least one

hotspot of size n or higher, at a fixed α level as follows:

1. Permute the data according to the N -method to break the associations among geno-

types and phenotypes, while keeping the correlation structure among phenotypes

intact. Compute the LOD scores for all phenotypes across all genomic locations.

2. Process the LOD profile of each trait as follows: (1) determine the LOD peak for

each chromosome; (2) compute the LOD support interval around the peak (Lander

and Botstein 1989, Dupois and Siegmund 1999, Manichaikul et al. 2006); and (3)

set to zero the LOD scores outside the LOD support interval (and below the single

trait mapping threshold).

3. For a fixed hotspot size n, compute qLODk(n) for genomic positions k = 1, . . . , K,

and store its maximum.

4. Repeat steps (1) to (3), B times. The histogram of the B permutation samples of
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maxk {qLODk(n)} is an estimate of the null distribution of the test statistic for at

least one spurious hotspot of size n or higher anywhere in the genome, given that

none of the traits have a QTL anywhere in the genome.

5. The upper (1− α)-quantile of the permutation sample generated in step (4) is our

threshold (denoted by λn,α).

This algorithm is analogous to the traditional permutation test, replacing LOD scores

by LOD quantiles. Chen and Storey (2006) perform permutation tests for distinct quantile-

based statistics, in a different context, where they consider a set of relaxed significance

thresholds to detect multiple QTLs for a single trait.

The LOD score processing step described in Step 2 of the NL-method algorithm

confines the hotspot location on the chromosome. LOD support intervals are the most

commonly used interval estimates for the location of a QTL. Following Manichaikul et al.

(2006) we adopt 1.5-LOD support intervals for a backcross, and 1.8-LOD support intervals

for an intercross, decreasing the spread of the hotspot as illustrated in Supplementary

Figure S4.

Finally, note that instead of running a genuine, but infeasible, multiple trait joint anal-

ysis to account for the correlation structure among the traits, our strategy is to perform

multiple single trait mapping analyses with an appropriate multiple trait permutation

threshold. Justification for permutation tests in the context of QTL mapping of a single

phenotype is given by Churchill and Doerge (1994). A sufficient condition for a permu-

tation test to have type I error rate held at the nominal level is that the observations

are exchangeable (Good 1994, p.203, Lehmann 1986, p.231). Violation of the exchange-

ability assumption can lead to an inflation of type I error rates (Churchill and Doerge

2008). Observations are exchangeable if the joint probability of any outcome is the same
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irrespective to the order in which the observations are considered (Lehmann 1986, p.

231). Permutation tests remain valid for a multivariate response that can be reduced to a

single-valued test statistic (Good 1994, chapter 5). Exchangeability of subjects under the

null distribution follows by the construction of an experimental cross. At a fixed genomic

location our test statistic corresponds to qLODk(n). Across the whole genome, we adopt

maxk{qLODk(n)} as our genome-wide and single-valued test statistic.

Results

Simulated examples

In this section we illustrate the application of the Q-, N - and NL-methods to two

simulated data sets: one with highly correlated traits, and the other with uncorrelated

traits. We generated data from backcrosses composed of 112 individuals with 16 chromo-

somes of length 400cM containing 185 equally spaced markers each, and phenotype data

on 6,000 traits. The phenotype data was generated according to the following models,

Yk = βM + θ L+ ϵk, if Yk belongs to a hotspot,

Yk = θ L+ ϵk, if Yk does not belong to a hotspot,

where L ∼ N(0, σ2) represents a latent variable that affects all k = 1, . . . , 6000 traits; θ

represents the latent variable effect on the phenotype and works as a tuning parameter

to control the strength of the correlation among the traits; M = γ Q + ϵM represents a

master regulator trait that affects the phenotypes in the hotspot; β represents the master

regulator effect on the phenotype; Q represents the QTL giving rise to the hotspot. Note

that traits composing the hotspot are directly affected by the master regulator M and

map to Q indirectly; γ represents the QTL effect on the master regulator; and ϵk and

ϵM represent independent and identically distributed error terms following a N(0 , σ2)

distribution.
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In both examples we simulated 3 hotspots: (i) a small hotspot located at 200cM on

chromosome 5 showing high LOD scores, see panels (a) and (d) on Supplementary Figure

S5; (ii) a big hotspot located at 200cM on chromosome 7 showing LOD scores ranging

from small to high, see panels (b) and (e) on Figure S5; and (iii) a big hotspot located

at 200cM on chromosome 15 showing LOD scores ranging from small to moderate, see

panels (c) and (f) on Figure S5.

In both simulations we set σ2 = 1 and γ = 2. QTL analysis was performed using

Haley-Knott regression (Haley and Knott, 1992) with the R/qtl software (Broman et al.

2003). We adopted Haldane’s map function and genotype error rate of 0.0001. Because

we adopted a dense genetic map, our markers are approximately 2.16cM apart, we did

not consider putative QTL positions between markers.

In the first example, denoted simulated example 1, we adopted latent effect equal to

1.5. In the second example, denoted simulated example 2, we adopted latent effect equal

to 0 and simulated uncorrelated traits. Panels (a) and (b) of Supplementary Figure S6

shows the distribution of all pairwise correlations among the 6,000 traits for both simulated

examples. These extreme examples illustrate the effect of phenotype correlation on QTL

hotspot sizes. The correlation of the real data is actually intermediate (see panel c).

Figure 1 shows the results for the Q- and N -methods for simulated example 1 using

α = 0.05. Panel (a) shows the hotspot architecture computed using a single trait LOD

threshold of 3.65, i.e., at each genomic location the plot shows the number of traits with

LOD score above 3.65. In addition to the simulated hotspots on chromosomes 5, 7 and

15, panel (a) shows a few spurious hotspots, including a big hotspot on chromosome 8.

The blue and red lines show the N - and Q-method’s thresholds, 560 and 7, respectively.

In this example the N -method was unable to detect any hotspots, whereas the Q-method

detected false hotspots on chromosomes 3, 6, 8, 9, 12 and 16. Panels (b) and (c) show
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the hotspot size null distributions, and the 5% significance thresholds for the N - and

Q-methods, respectively.

Figures 2 and 3 show the NL-method analysis results for simulated example 1 using

α = 0.05. Panels (a)-(d) on Figure 2 present the hotspot architecture inferred using 4 dif-

ferent quantile-based permutation thresholds. Panel (a) presents the hotspot architecture

inferred using a LOD threshold of 7.07. Only the true hotspots (on chromosomes 5, 7 and

15) were significant by this conservative threshold. Panel (b) presents the hotspot archi-

tecture computed using a LOD threshold of 4.93, that aims to control GWER ≤ 0.05 for

spurious hotspots of size 50. The hotspots on chromosomes 5, 7 and 15 were detected by

this threshold. Panels (c) and (d) show the hotspot architectures using LOD thresholds of

4.21 and 3.72, respectively. Only the hotspot on chromosome 7 was detected as significant

for these thresholds. Note that neither the big spurious hotspot on chromosome 8, or any

of the other spurious hotspots we see in Figure 1(a), were picked up by the quantile-based

thresholds.

Figure 3 connects hotspot size to quantile-based threshold. This hotspot size sig-

nificance profile depicts a sliding window of hotspot size thresholds ranging from n =

1, . . . , N , where N = 560 corresponds to the hotspot size threshold derived from the N -

method. For each genomic location, the hotspot size (left axis) is significant for the LOD

threshold (right axis). For example, the chromosome 5 hotspot was significant up to size

49, meaning that more than 1 trait mapped to the hotspot locus with LOD higher than

7.07, more than 2 traits mapped to the hotspot locus with LOD higher than 6.46, and

so on up to hotspot size 49 where more than 49 traits mapped to the hotspot locus with

LOD higher than 4.93. The hotspot on chromosome 7 was significant up to size 499, and

the hotspot on chromosome 15 (higher peak) was significant for hotspot sizes 2 to 129

and 132 to 143.
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The NL-method only detected the real hotspots on chromosomes 5, 7 and 15, whereas

theN -method did not detect any hotspots and theQ-method detected 6 spurious hotspots,

in addition to the real hotspots. The sliding window of quantile-based thresholds detected

the small hotspot composed of traits with high LOD scores on chromosome 5 as well the

big hotspots on chromosomes 7 and 15. Equally important, the NL-method dismissed

spurious hotspots, such aschromosome 8, composed of numerous traits with LOD scores

smaller than 5.57.

Figure 4 shows the results for the Q- and N -methods for simulated example 2 using

α = 0.05. Panel (a) shows the hotspot architecture. The blue and red lines show the N -

and Q-method’s thresholds, 19 and 8, respectively. In this example, both the N - and the

Q-methods were able to correctly pick up the hotspots on chromosomes 5, 7 and 15.

Comparison of panels (a) on Figures 1 and 4 shows that the spurious hotspots tend to

be much smaller when the traits are uncorrelated (compare chromosome 8 on both plots)

leading to much smaller N -method thresholds (compare the blue lines). The Q-method

thresholds, on the other hand, are quite close. This is expected since the Q-method

threshold depends on the number of significant QTLs (we observed 3,162 significant link-

ages in simulated example 1, against 3,586 significant linkages in example 2) and not on

the correlation among the traits.

Supplementary Figure S7 displays the hotspot size significance profile for simulated

example 2. The NL-method also detected the hotspots on chromosomes 5, 7 and 15.

Simulation study

In this simulation study we assess and compare the error rates of the Q-, N - and

NL-methods under three different levels of correlation among the traits. In order to

determine whether the methods are capable of controlling the GWER at the target levels,
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we conduct separate simulation experiments as follows:

1. We generate a “null genetical genomics data set” from a backcross composed of

(i) 6,000 traits, none of which is affected by a QTL, but that are nevertheless

affected by a common latent variable in order to generate a correlation structure

among the traits; and (ii) genotype data on 2960 equally spaced markers across 16

chromosomes of length 400cM (185 markers per chromosome). Any detected QTL

hotspot is spurious, arising from correlation among the traits.

2. We perform QTL mapping analysis, and 1.5-LOD support interval processing, of the

6,000 traits. For each one of the the following single trait QTL mapping permutation

thresholds (that control GWER at the α = 0.01, 0.02, . . . , 0.10 levels, respectively):

(a) We compute the observed QTL matrix and generate the Q-method hotspot

size threshold based on 1,000 permutations of the observed QTL matrix. We

record whether or not we see at least one spurious hotspot of size greater than

the Q-method threshold anywhere in the genome.

(b) For each genomic location we count the number of traits above the single

trait LOD threshold. We compute the N -method hotspot size threshold based

on 1,000 permutations of the null data set. We record whether at least one

spurious hotspot of size greater than the N -method threshold anywhere in the

genome.

(c) We compute the NL-method LOD thresholds for spurious hotspots size thresh-

olds ranging from 1 to the N -method threshold. For each NL-method LOD

threshold, λn,α where n = 1, . . . , N , we count, at each genomic location, how

many traits mapped to that genomic location with a LOD greater than λn,α,
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and record whether there is at least one spurious hotspot of size greater than

n anywhere in the genome.

3. We repeated the first two steps 1,000 times. For each one of the three methods,

the proportion of times we recorded spurious hotspots, out of the 1,000 simulations,

gives us an estimate of the empirical GWER associated with the method.

QTL analysis was performed as described above. Figure 5 shows the simulation results

for null data sets generated using latent variable effects of 0.0, 0.25 and 1.0. The Q-

and N -methods, with observed GWER (red), and target error rate (black), have two α

levels, α1 for QTL mapping, and α2 for the tail area of the hotspot size permutation

null distribution; panels display the results when α1 = α2 = 0.01, 0.02, . . . , 0.10. The

NL-method has a single α level; the red curves are the observed GWERs for spurious

hotspot sizes n = 1, . . . , N , where N represents the N -method’s permutation threshold.

Panels (a-c) on Figure 5 show that for uncorrelated traits the Q- and N -methods were

conservative, below target levels, whereas the NL-method shows error rates about the

right target levels for most of hotspot sizes. Panels (d) and (g) show that error rates for

the Q-method are higher than target levels when the traits are correlated, and increase

with correlation strength among the phenotypes. These results are expected since the Q-

method thresholds depend on the number of QTLs detected in the un-permuted data and

tend to increase with the number of phenotypes. Because we generated the same number

of phenotypes on the three simulation studies, the Q-method’s thresholds were similar.

Therefore, the number and the size of the spurious QTLs tend to be proportional to the

correlation strength of the phenotypes. The N - and NL-methods on the other hand, are

designed to cope with the correlation structure among the phenotypes and show error

rates close to the target levels as shown in panels (e), (f), (h) and (i).
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Yeast data set example

In this section we illustrate and compare the Q-, N - and NL-methods using data gen-

erated from a cross between two parent strains of yeast: a laboratory strain, and a wild

isolate from a California vineyard (Brem and Kruglyak, 2005). The data consists of ex-

pression measurements on 5,740 transcripts measured on 112 segregant strains, with dense

genotype data on 2,956 markers. Processing of the expression measurements raw data was

done as described in Brem and Kruglyak (2005), with an additional step of converting the

processed measurements to normal quantiles by the transformation Φ−1[(ri − 0.5)/112]

where Φ is the standard normal cumulative density function, and the ri are the ranks.

We performed QTL analysis using Haley-Knott regression (Haley and Knott, 1992) with

the R/qtl software (Broman et al. 2003). We adopted Haldane’s map function, genotype

error rate of 0.0001, and set the maximum distance between positions at which genotype

probabilities were calculated to 2cM.

Hotspot analysis of the yeast data, based on the N -method (Figure 6a), detected

significant eQTL hotpots on chromosomes 2 (second peak), 3, 12 (first peak), 14 and

15 (first peak), at a GWER of 5% according to null distribution of hotspot sizes shown

in Figure 6b. The blue line represents the N -method’s significance threshold of N=96.

The maximum hotspot size on chromosome 8 was 95 and almost reached significance.

Nonetheless, Figure 6a also shows suggestive (although substantially smaller) peaks on

chromosomes 1, 4, 5, 7, 9, 12 (second peak), 13, 15 (second peak) and 16 that did not

reach significance according to the N -method’s significance threshold.

The red line on (Figure 6a) represents the Q-method’s significance threshold of 28,

derived from the null distribution of hotspot sizes shown in Figure 6c. The Q-method

detected significant hotspots on chromosomes 2 (both peaks), 3, 4, 5 (both peaks), 7, 8,

12 (both peaks), 13, 14, and 15 (both peaks).
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Figure 7 shows the hotspot significance profile for theNL-method. The major hotspots

on chromosomes 2, 3, 12 (first peak), 14 and 15 (first peak) were significant across all

thresholds tested up, and the hotspot on chromosome 8 was significant up to size 93.

Furthermore, the NL-method showed that the small hotspots detected by the Q-method

on chromosomes 5, 12 (second peak), 13 and 15 (second peak) might indeed be real.

Nonetheless, the small hotspots on chromosomes 4 and 7, detected by the Q-method, are

less interesting than the small hotspot on chromosome 1, that was actually missed by the

Q-method.

Discussion

A common feature in genetical genomics studies of expression traits is the presence

of eQTL hotspots where a single polymorphism leads to widespread downstream changes

in the expression of distant genes. These genomic loci associated with many distant

genes are biologically interesting since they may harbor important regulators. Statistical

procedures aiming to assess the significance of such hotspots are of key importance.

Breitling et al. (2008) were the first to propose a permutation test (the N -method)

for eQTL hotspots that accounts for the correlation structure among phenotypes due to

the effect of confounders. However, the authors restricted their attention to the single

trait empirical threshold only, and may have overlooked interesting hotspots composed of

moderate to small numbers of traits with strong LOD scores.

In this paper, we adopt the Breitling et al. permutation scheme and propose a method

to determine a range of quantile-based permutation thresholds (the NL-method) that

allows us to assess the significance of hotspots based on the number and on the linkage

strength of the traits composing those hotspots. For a fixed error rate α, our approach

investigates the significance of a hotspot using a range of N distinct mapping thresholds,
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where N is the smallest hotspot size that is significant by the N -method. For each

n = 1, . . . , N we determine the LOD threshold that controls the genome wide error rate

of detecting at least one spurious hotspot of size n or higher somewhere in the genome,

at an error rate less or equal than α.

Our simulated examples and simulation studies show that Q-method performs well

when the traits are uncorrelated, but detects spurious hotspots at high rates when the

traits are correlated. This result is not surprising since the Q-method implicitly assumes

that the traits are uncorrelated. Molecular traits such as mRNA expression levels, metabo-

lite concentrations and protein levels are often highly correlated and the Q-method is not

adequate in these situations. On the other hand, our simulations suggest that the N - and

NL-methods perform adequately for correlated or uncorrelated traits, showing genome

wide error rates close the target levels.

The advantage of the NL-method over the N -method is that it can assess the signif-

icance of hotspots with any type of LOD score distribution. For instance: i) a hotspot

composed of many traits with moderate LOD scores will be found with thresholds close to

the single trait threshold; ii) a hotspot consisting of a few traits with strong LOD scores

will be detected with thresholds close to the conservative threshold; iii) a large hotspot

with a range of moderate to large LOD scores will be significant at all thresholds in our

sliding scale. The ability to assess the significance of these different types of hotspots

can lead to important additional biological findings that might be overlooked by previous

approaches, while still avoiding the detection of spurious hotspots. In the analysis of the

yeast data, the hotspots on chromosomes 5, 8, 12 (second peak), 13 and 15 (second peak)

have a LOD distribution of type ii. The hotspots on chromosomes 2, 3, 12 (first peak), 14

and 15 (first peak) have LOD distributions of type iii. No hotspot with LOD distribution

of type i is present in the yeast data set. Note that hotspots composed of moderate to
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small number of traits with moderate LOD scores will be missed by all thresholds in

our sliding scale, and will be discarded as non-significant by our analysis. Application

of the N -method detected only the 5 big hotspots on chromosomes 2, 3, 12, 14 and 15.

Additionally, the simulated example 1 shows an example were the NL-method was able

to pick up the 3 simulated hotspots missed by the N -method.

The NL-method is in a certain sense analogous to the approach proposed by Chen

and Storey (2006). In the same way that Chen and Storey relax the single trait mapping

threshold by controlling the probability that a trait falsely maps to k or more genomic

locations, we relax the conservative threshold by controlling the probability that n or

more traits falsely map to a common genomic location.

Even though the sliding window of thresholds delivered by the NL-method is more

informative than the single hotspot size threshold of the N -method, these approaches

have the same computational complexity. They use exactly the same permutations but

summarize the results differently. Both methods are computationally intensive: reliable

results require 1,000 or more permutations, and for each permuted data set we perform

mapping analysis of several thousand traits. Thus, in general, parallel computation on

a cluster are required. In order to reduce the computational burden, we adopted Haley-

Knott regression and mapped traits with common missing phenotype data patterns as

blocks. An R package called qtlhot is being submitted to CRAN.

The approach in this paper relied on single-QTL mapping methods. To examine

whether an apparent hotspot could be an artifact, such as a ghost QTL (Haley and Knott

1992), we used multiple QTL methods (Manichaukal et al. 2008) for some smaller hotspots

(data not shown). Most traits from these hotspots continued to map to the same location

detected by single trait analysis when we allowed for other possible QTL on the same

or other chromosomes. It would be possible to extend our quantile-based permutation
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approach to multiple QTL mapping (Jansen 1993, Jansen and Stam 1994, Manichaukal

et al. 2008) by considering the LOD profile for each QTL adjusted for all other QTLs

(e.g. using the addqtl or the multiple QTL mapping functions in R/qtl, Broman and Sen

2009, Arends et al. 2010). However, this would require considerably more computation

and is left for future research.

The analysis of data sets containing groups of repetitive traits (that is, distinct traits

representing slightly different measurements of a same “baseline” phenotypic trait) must

be conducted with care. Repetitive traits are artifacts of the experimental design rather

than indications of underlying biological processes. For instance, traits derived from oligos

of same gene are often highly correlated simply because they arise from the same gene,

and might be picked up as a hotspot. Thus, repetitive traits can introduce artefactual

hotspots that are indistinguishable statistically from biologically-driven hotspots, unless

this is addressed by attention to the design. Other examples of repetitive traits include:

(i) protein traits where one protein can exist in many variants due to post-translational

modifications and the abundance of each variant is measured and used as a separate trait;

and (ii) classical phenotypic traits such as flowering in Arabidopsis, where a major QTL

has been investigated in a number of independent studies, under different environmental

conditions, leading to a group of repetitive traits strongly mapping to the same QTL (see

supplement for Fu et al. 2009). If repetitive traits are known ahead of time, they should

be removed or otherwise accounted for in the analysis. For example, Fu et al (2009)

proposed organizing repetitive classical traits into disjunct phenotypic groups based on

trait annotations and performed hotspot analysis on the average trait per category.

Fu et al. (2009) point out that large eQTL hotspots may or may not persist when ex-

amining proteomic (pQTL), metabolic (mQTL) and phenotypic (phQTL) gene mapping.

Now that we can infer smaller hotspots composed by any of these QTL types, it may be
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possible to find more connections. A small hotspot could in fact be quite important to

reveal genetic effects on whole-body phenotypes.
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Figure 1: N - and Q-method analyzes for simulated example 1. Panel (a) depicts the

inferred hotspot architecture using a single trait permutation threshold of 3.65 corre-

sponding to a GWER of 5% of falsely detecting at least one QTL somewhere in the

genome. The blue line at count 560 corresponds to the hotspot size expected by chance

at a GWER of 5% according to the N -method permutation test. The red line at count 7

corresponds to the Q-method’s 5% significance threshold. The hotspots on chromosomes

5, 7, 8 and 15 have sizes 50, 500, 125 and 280, respectively. Panel (b) shows theN -methods

permutation null distribution of the maximum genomewide hotspot size. The blue line

corresponds to the hotspot size 560 expected by chance at a GWER of 5%. Panel (c)

shows the Q-methods permutation null distribution of the maximum genomewide hotspot

size. The red line at 7 shows the 5% threshold. Results based on 1,000 permutations.
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Figure 2: NL-method analysis for simulated example 1. Panels (a)-(d) present the hotspot

architecture inferred using different quantile-based permutation thresholds, i.e., for each

genomic location it shows the number of traits that mapped there with a LOD threshold

higher than the quantile-based permutation threshold. Panel (a) presents the hotspot

architecture inferred using a permutation LOD threshold of 7.07 corresponding to the

LOD threshold that controls the probability of falsely detecting at least a single linkage

for any of the traits somewhere in the genome under the null hypothesis that none of the

traits have a QTL anywhere in the genome, at an error rate of 5%. Panels (b), (c) and (d)

present the hotspot architectures computed using QTL mapping LOD thresholds of 4.93,

4.21 and 3.72 that aim to control GWER at a 5% error rate for spurious eQTL hotspots

of size 50, 200 and 500, respectively.
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Figure 3: Hotspot size significance profile derived with the NL-method for simulated ex-

ample 1. For each genomic location (i.e., x-axis position) this figure shows the hotspot

sizes at which the hotspot was significant, that is, at which the hotspot locus had more

traits mapping to it with a LOD score higher than the threshold on the right, than

expected by chance. The scale in the left shows the range of spurious hotspot sizes in-

vestigated by our approach. The scale in the right shows the respective LOD thresholds

associated with the spurious hotspot sizes in the left. The range is from 7.07, the conser-

vative empirical LOD threshold associated with a spurious “hotspot of size 1”, to 3.65,

the single trait empirical threshold, associated with a spurious hotspot of size 560. All

permutation thresholds were computed targeting GWER ≤ 0.05, for n = 1, . . . , 560.
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Figure 4: N - and Q-method analyzes for simulated example 2. Panel (a) depicts the

inferred hotspot architecture using a single trait permutation threshold of 3.65 corre-

sponding to a GWER of 5% of falsely detecting at least one QTL somewhere in the

genome. The blue line at count 19 corresponds to the hotspot size expected by chance

at a GWER of 5% according to the N -method permutation test. The red line at count 8

corresponds to the Q-method’s 5% significance threshold. The hotspots on chromosomes

5, 7 and 15 have size 50, 464 and 220, respectively. Panel (b) shows the N -method’s

permutation null distribution of the maximum genomewide hotspot size. The blue line

at 19 corresponds to the hotspot size expected by chance at a GWER of 5%. Panel (c)

shows the Q-methods permutation null distribution of the maximum genomewide hotspot

size. The red line at 8 shows the 5% threshold. Results based on 1,000 permutations.



E. Chaibub Neto et al. 29

0.
00

0.
04

0.
08

0.
12

ob
se

rv
ed

 G
W

E
R

Q−method

(a)

0.
00

0.
04

0.
08

0.
12

N−method

(b)

0.
00

0.
04

0.
08

0.
12

NL−method

(c)

0.
0

0.
2

0.
4

0.
6

0.
8

ob
se

rv
ed

 G
W

E
R

(d)
0.

00
0.

04
0.

08
0.

12

(e)

0.
00

0.
04

0.
08

0.
12

(f)

0.02 0.04 0.06 0.08 0.10

0.
0

0.
4

0.
8

target error rate

ob
se

rv
ed

 G
W

E
R

(g)

0.02 0.04 0.06 0.08 0.10

0.
00

0.
04

0.
08

0.
12

target error rate

(h)

0.02 0.04 0.06 0.08 0.10

0.
00

0.
04

0.
08

0.
12

target error rate

(i)

Figure 5: Observed GWER for the Q-, N - and NL-methods under varying strengths of

phenotype correlation. Black lines show the targeted error rates. Red curves show the

observed GWER. Panels (a), (b) and (c) show the results for uncorrelated phenotypes.

Panels (d), (e) and (f) show the results for weakly correlated phenotypes generated using

latent variable effect equal to 0.25. Panels (g), (h) and (i) show the simulation results for

highly correlated phenotypes generated using latent effect set to 1. The left, middle and

right panel columns show the results for the Q-, N - and NL-methods, respectively. Note

the different y-axis scales for the Q-method panels. The red curves on the NL-method

panels show the observed GWER for hotspot sizes ranging from 1 to N, where N is the

median N -method threshold for α = 0.10.
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Figure 6: N - and Q-method analyzes for the yeast data. Panel (a) depicts the inferred

hotspot architecture using a single trait permutation threshold of 3.44 corresponding to a

GWER of 5% of falsely detecting at least one QTL somewhere in the genome. The blue

and red lines at counts 96 and 28 correspond to the hotspot size expected by chance at

a GWER of 5% according to the N - and the Q-method permutation tests, respectively.

Panels (b) and (c) show, respectively, the permutation null distributions of the maximum

genomewide hotspot size based on 1000 permutations. The blue and red lines at 96 and

28 correspond, respectively, to the hotspot size expected by chance at a GWER of 5% for

the N - and Q-methods.
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Figure 7: Hotspot size significance profile derived with the NL-method. The range is

from 7.40, the conservative empirical LOD threshold associated with a spurious “hotspot

of size 1”, to 3.45, the single trait empirical threshold, associated with a spurious hotspot

of size 96. All permutation thresholds were computed targeting GWER ≤ 0.05, for

n = 1, . . . , 96.


