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Abstract

The non-homogeneous Poisson process with a competing risk structure can be used
to smulate the interacting stochastic lives of individualsin an ecological community.
Such atechnique can help quantify the relationships among observed behaviors of
individuals and describe the resulting coupling between interacting populations
defined in state space descriptions commonly used in population biology. The event
structure provides the dynamics that drives time, rather than the usual time-driven
stochastic dynamic programming. We illustrate the ideas with the California Red
Scale-Aphytis host-parasitoid system, athough the method has wider applicability.
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Theory of Competing Risks

The theory of competing risks arose initially in the study of mortality, with risks of death
"competing” for an individua’s life. The theory applies equally to reliability of machines and the
study of illness processes, and is intimately connected with the study of life tables (Chiang 1968).
It provides a mechanistic way to model how critical events evolve moment to moment, influenced
by the surrounding environment. Competing risks and life table methods have been used regularly
in ecological modeling (Caswell 1989). We reconsider the implications of theoretical developments
in competing risks on the future of ecological modeling.

Anindividua aive at sometimet has severa "choices' about future events. It might die, for
one of several possible reasons--the classical competing risks framework. Or it might eat, or
reproduce, or migrate to another locale. The chance of the jth type of event occurring during the
"Instant” t is proportional to the competing risk, or hazard m(t). If one assumes that at most one
event can occur in any instant, then the risks add up and the chance of any event in an instant is m(t)
=3 m(t).

One can model the effect of the environment and an individua’s life stage on these
competing risks in a variety of ways. Keyfitz (1966, 1968) and others developed complicated
methods to incorporate birth and death processes into life tables indexed by age and gender. Chiang
(1968, 1972) provided a simple unifying probability framework for life tables and competing risks,
which tacitly assumes that events of interest occur at particular ages (e.g. every 5 years for humans)
in order to make the process identifiable. The proportional hazards model (Cox 1972) and
accelerated lifetimes model (Viertl 1988; Clarotti and Lindley 1988) have allowed researchers to
consider smoothly varying competing risks. Recent efforts allow interdependence among risks (Fine



1999). This literature has been largely focused on inference for competing risks.

Fix and Neyman (1951) introduced an illness-death process, generalized by Chiang (1968),
inwhich an individual may move between healthy and sick states, continually exposed to competing
risks of death. However, one cannot identify competing risks with a single measurement per
individual even if theillnessis progressive (Clifford 1977). Yandell (1982) showed that independent
competing risks cannot be identified even with periodic measurements of an individual’s state unless
these measurements correspond to the times of transition between states. Further, one can only
identify the cumulative competing risks, or mean value functions M;(t) = [ m(t)dt, rather than the
competing risks my(t) themselves

An alternative way to model competing risks involves potential lifetimes T; for each type of
risk j (see David 1974). Suppose severa future eventsindexed by | are competing to become the next
event for an individual. The observed time to next event T would be the minimum of these potential
event times. Hence, the chance that no event occurs beforetimetis

P{T>t} =Pr{min(T;)>t} =1 P{ T >t} =[] exp(— M(t)).

The product [ isjustified if the potential event times, or equivaently the competing risks, are
independent of one another. Tsiatis (1975) showed that without the assumption of independence the
potential lifetimes T;, and hence the sub-probabilities Pr{ T, > t } and mean value functions M;(t),
cannot be uniquely determined from the data. Further, it isimpossible to investigate the assumption
of independence with these data. As aresult, these potential lifetimes have fallen out of favor in the
competing risks literature.

It isuseful to examine how competing risks might depend on one another. The key issueis
how competing risks m(t) change over time. These changes may be due to discrete changes in state
of other features of the environment--including states of other individuals--or to gradually changing
environmental conditions. If one observes the changes in the environment, then the competing risk
structure could be altered after each event. Similarly, predictable gradual changes in the environment
could be readily incorporated into the competing risks structure. Both of these approaches have been
used extensively in inference for hazards my(t). We propose to build them into a modeling system
based on potential lifetimes T; and mean value functions M;(t). While we agree that inference cannot
be based on these potentia event times, they are extremely useful for smulation models of complex
living systems.

Stochastic M odelsin Ecology

Stochastic models in ecology are designed to study ecological systems by ssimulating the
underlying processes and then studying multiple realizations of a simulation model. We focus here
on models of life history events. Interestingly, the life table approximation of dividing time into
discrete "quanta’ migrated early into stochastic models in ecology. The Lotka-Volterra model is
typically developed in this way. Modern simulation studies have advanced by considering smaller
and smaller time increments, but within this same fixed time step framework (Mangel and Clark
1988; Hutchinson and McNamara 2000).

The shortcoming of this approach is that while one must have finer scale time incrementsin
order to capture more intricate events, more and more time is spent simulating no activity.
Alternatively, one can develop models based on the actual time of transitions. The difficulty with



this shift in perspective isthat events for individuals are no longer synchronized. Further, generations
may not be synchronized, making life table summaries problematic.

The development below of a ssimulation structure for competing risksin abiological system
is built upon the concept of potential lifetimes using the cumulative risks M;(t) as abasic building
block. This approach necessitates detailed knowledge of the ecosystem under study, which is
precisely what we want. The purpose here is to provide a framework for biologists to incorporate
great detail about known and suspected aspects of an ecosystem. Biologists inherently recognize that
their knowledge is incomplete and may even be wrong in part. However, it is extremely difficult for
them to test their hypotheses about ecosystem-level and population-level properties that may depend
on processes that affect individuals.

Work in complexity (Langton 1986) suggests that higher level structure can emerge from
local structure. These models are promising, but to date suffer from the same quantization problem
found with life-table derived methods.

Considerationsfor Living Systems

Consider a biological system as a stochastic process X that progresses through timet from
one event to the next. An event is defined as a significant biological change that can be marked and
counted, resulting in an instantaneous state change. That is, mathematically at atimet the process
changes state to X(t) = s. The state s, from some space S of possible states, may be rather
complicated, but it needs to be specified in some explicit or implicit fashion. It is typically assumed
that the probability of two or more events occurring simultaneously is negligible. This allows
probabilities for events to be characterized by a competing risk system. At any point in timet, the
possible events are mutually exclusive, and hence their instantaneous probabilities, or risks m(t), add
up to the chance m(t) for any event at t. These competing risks my(t) may change over time, but are
assumed to be fairly well-behaved. There isacompanion process{ N(t), t>0} that counts the number
of events of the stochastic process { X(t), t>0}. The mean number of events by time t, E[N(t)|=M(t),
Isthe integral of m(t) from time t=0, with M(0)=0. M(t) is usually assumed to be continuous and
strictly increasing with derivative m(t), or more generally to be right-continuous and non-decreasing
with derivative m(t) at all but a countable number of time points. The process N is a non-
homogeneous Poisson process, as are the counting processes N; for each type of risk.

A non-homogeneous Poisson process can be described as counting process with a time-
varying intensity that satisfies certain properties, such as independent increments between distinct
time intervals. The use of the non-homogeneous Poisson process to simulate a biological system
forces some mathematical requirement onto the system not inherent in the biology. For one thing,
it assumes that events can be identified, and thus counted. A straightforward use might be to include
the whole system in X, but that would lead to a very complicated competing risk system and state
space. Another approach involves letting X be a set of interconnected stochastic processes X; indexed
by individual i. This has typically been done with either independent processes or with limited
interaction, e.g. based on nearest neighbors. The difficulty with these approaches isthat they already
have removed most of the biology, proscribing the types of interactions among individualsin an
environment. We propose another way.

Stochastic processes are usually described as proceeding from time to time. This has led to
awhole simulation industry in stochastic dynamic programs (Hutchinson and McNamara 2000),
stepping through finer and finer time increments to approach "reality”. We find it useful to think



instead of a process moving from event to event. In thisway, timeis defined implicitly through the

sequence of realized events. From this perspective, imagine a stochastic process as a sequence of

scheduled events, beginning in state 5, at time to=0, with events, or state transitions, ss—$—S—

... that imply event time< t,< .... If the structure of the process does not change, events can be
scheduled as far forward as desired. For instance, one could schedule the next event for every
individual in a population, and every event for each individual.

The investigator must decide up front what aspects of a biological system will be studied,
based on measurable events and the focus of scientific inquiry. Once these have been determined,
events can be defined within the context of the resolution and span of the model. Resolution is
defined to be the smallest increment of time that contributes useful biological information to a
simulation. Events over smaller time scales are assumed to occur instantaneously. Negligible
knowledge can be gained about the process under immediate study by going to finer time scales,
while such an effort will only increase the cost of simulation. Span is defined to be the largest
amount of time the model can encompass. Aspects of a living system that occur at longer time
intervals than the span of a model are considered to be essentially constant, or slowly varying in a
smooth fashion, for the purposes of simulation. For example, with a resolution of one hour, an
Aphytis feeding on a California red scale would appear to be instantaneous. On the other hand, if the
same model has a span of six months, then a mature orange fruit could be considered static, not
changing appreciably as a substrate for red scale.

Span and resolution of space must be established in tandem with span and resolution of time
to be meaningful for a particular simulation. Further, spatial span and resolution determine the detall
required for spatial interactions among individuals. It is important to note that if the resolution and
span are changed then the model of the biological system will also change. In fact, it may be
appropriate to model a biological system at several different spatial and temporal spans and
resolutions.

In a biological system it is highly unlikely that the non-homogeneous Poisson process will
be satisfied over even a few events, since the occurrence of an event will modify the probability of
future events. Because of the requirements of the non-homogeneous Poisson process the structure
of the event space must be carefully defined. The requirements of no eventstad tamé of the
probability of simultaneous events being vanishingly small put severe limitations on the biological
system that can be suitably modeled using the non-homogeneous Poisson process. For instance, if
these limitations are not addressed, then such processes as death due to predation and birth cannot
be simulated. To avoid this limitation three special types of events are defined:

1. Future events are events that are scheduled to occur at some future time, such as
reproduction, based on the competing risks system.

2. Immediate events handle multiple events that are not resolved individually at a
particular resolution in the simulation. Such events--the birth of multiple
offspring--appear to be coincident.

3. Pending events are events whose occurrence depend conditionally on other events
or particular states of the model. This is especially designed to deal with
predators and prey, or parasitoids and their hosts. It can also address events that
depend on environmental changes such as fire.




Reproduction is a future event, which may have as its consequence the birth of a certain
number of individuals, that for the purpose of the model may be considered as one immediate event.
For instance, the birth of red scale crawlers would be considered to be instantaneous when viewed
over themodel span of six months with amodel resolution of one hour. Another simulation at afiner
time resol ution (seconds) and span (days) might simulate the birth processin great detail. At birth,
one or more new individuas enter the smulation, which modifies other future or pending events due
to the search for food, etc.

Death may be a pending event, since it depends on locating and consuming an adequate
amount of resources while avoiding predation. Notice that the focus is on “finding food” rather than
“food availability”; it is not enough to model the presence of a resource without modeling the
process of obtaining it. Pending events depend conditionally on other events and on particular states
of the model. For instance, events that depend on cooperation of individuals would be a pending
event. A pride of lionesses hunts as a group, depending on cues among members of the pride to
successfully bring down a prey. Movements of one lioness depend on the actions of others in the
vicinity. Pending events must be scheduled together. It is possible to chain such events, scheduling
one, then the next conditional on the first, etc. For instance, one lioness may isolate a particular
antelope, leading to two others charging in to attempt a kill. Another example of a pending event is
germination of fire-sensitive seeds. One must first schedule a fire, and then schedule germination
conditional on fire scorching seeds at a particular location. Pending events may have to be repeatedly
rescheduled, while independent future events are only infrequently modified.

In a biological system it is highly unlikely that the assumptions of a non-homogeneous
Poisson process will be satisfied over even a few events, since the occurrence of an event modifies
the probability for future events. For this reason, the structure of the event space must be carefully
defined in a manner to allow changes over time. The simulation of the biological system can be
viewed as a sequence of non-homogeneous Poisson processes that are separated by future events.
When a future event occurs, the simulation is stopped. Action is taken on any immediate events
induced by the future event, and any pending events are modified as necessary. Once pending or
immediate events are processed, the non-homogeneous Poisson structure is reconstructed containing
only future events from the current time onward. The simulation proceeds to the next future event,
at which time the simulation is again stopped.

With this in mind, it is only necessary to construct a new non-homogeneous Poisson structure
containing future events. The simulation proceeds to the next future event, the one with the shortest
time to occurrence. Suppose that a future event is scheduled to occur at sotrentitieat other
future events are scheduled;a, ti.», ..., afterti,. When the simulation reachgsthe future event
Is realized, immediate events are initiated and any pending events may be modified. This may change
the competing risk structure of the model, which in turn may cause the non-homogeneous Poisson
process to fail. The stochastic process must be rebuilt at this point, with the events scheduled at
ti+2, ..., Still being future events unless any immediate or pending event modified or rejected one or
more of them.

The event structure is induced on the biological system by the requirements of the non-
homogeneous Poisson process. Immediate or pending events can change the underlying structure of
the model, requiring the rebuilding of the Poisson process, while future events change time in the
model and control the competing risk sequencing. With this event structure, the biological system
can be simulated by alternating between a sequence of future events satisfying a non-homogeneous
Poisson process and a sequence of immediate or pending events that reconstruct that process. In most



situations, only a few competing risks are atered by immediate or pending events, requiring only
modest changes. However, the competing risks for future events now depend on the past history of
events. It isno longer sufficient to describe the process as simply afunction of timet. Nevertheless
the stochastic processis still predictable and henceis still well defined. Thisis dramatically different
from the vast literature on ecological simulations that proceed from time to time waiting for events
to occur. Here, time is afunction of events, as opposed to events being a function of time.

Event Structurefor an Individual

The structure of an individual can be divided into two interrelated parts. The first part
consists of "static" properties that change as a function of time and are affected by the competing
risks structure for future events, but are not directly a part of that competing risk system. Such
properties as physical attributes and relationships with other individuals are included in this part. The
second part of the total structure for an individua isthe competing risk structure, or event structure.

The event structure has within it the potential dynamics of each individual, and the dynamics of the
simulation.

Viewed as a Poisson process over the time span [a,b], a biological system may be
represented by { X(t), tO[a,b]}, in which timet marches over the span at a specified resolution. The
values of the process X are states s in the state space S and most of the time the state does not
change.

However, the stochastic process under consideration is in reality a function of two
arguments, time and the current state. WWhen the state changes, it may alter the entire state space for
the future of the stochastic process. One could imagine a progression of stochastic processes indexed
by the current state, { X(t, 5), t>t; },j = 0, 1, ..., withs, the initial state a,=0 ands the current state
after the future event at timie The realization of this stochastic process is equivalent to a sequence
(to,S0), (t1,S0), ..., .S), ... While this can theoretically be accommodated within the framework of
Markov processes if one extends the sample space to be arbitrarily large, it provides little insight into
how to implement a simulation in practice.

For any one individual there are many events that can occur and hence there are many
changes in the sample space during its lifetime. In a community of simulated individuals, the event
structure would be frequently changing. Recasting the above stochastic ptdoeske whole
community, it is clear that even for small simulations this structure can become cumbersome. At the
occurrence of each event it would be necessary to rebuild the entire structure of the event space,
which would be enormously expensive.

The following technique was developed to avoid this situation. Viewing the stochastic
process as a biological system that changes with each new eveiitpic@mes an implicit random
function of the current time and state and the next future event within the context of the current event
structure. That is, if the current statesisvas realized at timgg, then the future evest—s, will
happen at some random future tityre T(s—$S; | t1,51). This property of the process allows a smooth
transition between the time domain of the biological system and the event domain in modeling the
biological system.



M easur ements and the Sampling Process

If the biological system to be studied is sparse and satisfies the above assertions, then it is
some sense “quantized” and is intrinsically dependent on measurements and the manner of sampling
the biological system. If this modeling process is to be realistic, it is completely dependent on the
data collected. Actually, model dependence on the sampling design may be more fundamental than
Is implied above. A member of a population is an integrated organism which functions as a unit, and
this suggests that any attempt to explain the actions of that organism by analyzing its constituent will
not lead to a complete description of the dynamics of that organism. In a sense, the reductionist
techniques are limited in their applicability, hence one is faced with analyzing populations of whole
organisms without further subdivisions. If a measurement is performed on a biological system, the
researcher finds the members of that population in a number of particular, quantifiable states. The
measurement process in some sense projects out the state of the system for that point in time. If the
measurement is not performed, it is impossible to quantify the state of the population. In a sense, the
totality of all of the potential states that the system may occupy are eliminated by the measurement
process, leaving only the state that is measured.

We have approached the concept of a “measurement” from a mathematical point of view, and
not from the point of view of a field biologist. The quality of what is called measurement is similar
to the concept of a decomposition of a Hilbert space in which the measurement process and the
observer are in some sense active contributors to the determination of the understanding of the
system being studied. We are not proposing the existence of some sort of Heisenberg uncertainty
principle of canonical variables. Rather we suggest that knowledge of the structure and dynamics of
a particular system is uniquely determined by the measurement that a field biologist performs.
Further the process of measurement and understanding of that system is itself a dynamic process. For
the field biologist, the usefulness of any modeling technique is directly related to its ability to suggest
clearer understanding of the data collected.

Time Depends on Events

The ethologist is faced with the task of defining probabilities for each observed event in such
a way that those probabilities somehow reflect the observed data. In essence, this task involves the
construction of life tables that provide links to age specific measured rates. Since events contain all
the measured dynamics for the population, there is an advantage in transforming the simulation from
a time domain to an event domain.

Let T be a random time to the next event for an individual. This time is assumed to have a
left-continuous non-decreasing distribution functiodefined on [0p)

Pr{T<t}=F(t)=1-exp(—M(t))

with the mean value functidv(t) being left-continuous, monotonic and non-decreadi(t),= 0

for t<0 but otherwise arbitrary. In general F(c0) < 1, meaning that there is a finite probability that no

event occurs. Scheduling this future eveErain be viewed as drawing a random probability between

0 and 1 and mapping it to time rather than the other way around. The philosophical shift from
marching through time to scheduling events by drawing a probability is crucial. By reformulating
a time-dependent problem into an event-driven problem it is possible to carry the dynamics from



event to event using a competing risk structure. An event changes the state of the modd at a future
timet.

Now time becomes an implicit, dependent variable, and the event structure becomes the
determining independent parameter. Processes that are continuous over a given span modify the
scheduling of future events, but may not dynamically change the state 5 of the model. If the events
are sparse, then a given simulation can be very efficient. The counting process assumes implicitly
a categorization of the individuals into defined categories. However, for a biological system the
categories must be arbitrarily defined.

Suppose one wished to model the structure and dynamics of asmall population of bald eagles
over aspan of six years. One future event in such a study is reproduction, which usually occurs once
ayear. While one could set the time step at one year, this would not allow for other events such as
hunting and migration. It would be more appropriate to consider a resolution of one day. A time-
dependent simulation would require over 2000 daily increments per bald eagle, with most of the
calculation being simple updates. In an event-driven simulation, it is possible to schedule the
reproductive and other future events and proceed directly to from event to event when they reach the
top of the event queue. Further, one can directly incorporate reproductive curves from field data.
Finally, environmental effects such as pollution that can severely reduce the probability of any
reproductive event, F(w«0) < 1, can be explicitly modeled.

While one may either specify the mean value function M or the distribution F, it seems more
convenient to specify M as developed below. Consider drawing a random variate U, which is
uniform over [0,1], and defining time T in terms of U as

MT(G(U) =T

with G(u) = —log(1-u) and M~ theinverse of M if it is continuous, or a suitably defined generalized
inverse otherwise. Thus M™'(G(-)) maps from the [0,1] probability domain into thex{Dtime
domain. Figure 1 shows this mapping for a probability distribufitmat has a plateau in the middle.
The random variate = G(U) = M(T) has a standard exponential distribution

P{V<v}=1-exp(-Vv).

If the mean value function itself is the identi&(t)=t, thenT=V. Control over the shape bf(:)
allows considerable flexibility to incorporate relevant knowledge of biological processes into the
distribution of the scheduling tim& The mean value functioM could be estimated from
experimental data, or sketched based on partial knowledge and hunches.

Sampling a unifornt yields a future event timd™*(G(U)) = T. On the other hand, sampling
V avoids calculating logs, which are traditionally very expensive computationally. Thus, events may
be scheduled in the following manner. Sample a standard exponential random WArsetale
construct the random tinleasM ™' (V)=T, or M(T)=V. That is, Pri{y<M(t)} = Pr{T<t} = F(t). Thus
the mean value functiov(-) transforms the exponential waiting tidased on constant risks to
a biological time that may encompass the ongoing processes of an ecosystem.

However, this generic mean value functid(t) needs to be fine-tuned to each individual in
a species, and to different species. Future event times may need to be adjusted based on individual
histories and situations. In practice, many individuals may have similarly shaped mean value
functions. Thus it is feasible to design a few such curves and then shift, stretch or otherwise modify



them to suit multiple needs. This can enhance the biologist’s control over model simulations while
keeping the decisions ssmple. The development below shows how this generic biological time can
be easily modified to adjust to individual biological clocks.

Five-Dimensional Parameterization

For each individual i there exists aset of random potentid times{T;,, o =1,2,...} when future
events are predicted to occur. These random times are in general modified by changes in the
population, changes in the environment, and changes in the individual over its life span. These
changes may slow or delay the biological clock, or increase the risk of certain types of events. It is
helpful to have an easily adaptable system to reschedule future event times. We have characterized
this in terms of dispersion, location, intensity, truncation and rejection of events.

Modifications to the random times are handled using the following technique. A random time
Ti, is defined by a five-dimensional transformatigg, c4¢ based on a five-element vector of non-
negative real numbers that may depend on the individual on the future event a. This vector
[a,b,c,d,e] may also be influenced by other individuals and by the current environment of the model
system. The random variablg = Tjapcde schedules the time of the future event a of the process
for individuali under the conditions in the model. The span and resolution of time determine how
this five-parameter transformation can be used to modify scheduling of future events.

The five parameters in this vector have natural interpretations in terms of transformations of
clock time into biological time, as defined below:

operation time mean value description  constraint
Ti1010 T=M"(V) V=M(T) identity

Ta0101] T=aM'(V) M(T/a) dispersion  a>0
Tiib101] T=b+M (V) M(T-b) location b=0
Tr10c0.1] T=M"(Vlc) cM(T) intensity c>0
Tii01d.1] T=M"(V+G(d)) max(OM(T)-G(d)) truncation  Gd<1
Ti10104 T=M"(V) min(M(T),G(e)) rejection 0<<lI

providedF(T) <e

Ti10144 is censored iF(T) > e, or equivalentlyM(T) > G(e). Further,T is truncated iM(T) < G(d).

The flexibility of this family of curves is illustrated in Figure 2, where each parameter except
rejection is varied individually. Figure 3 shows how to achieve a modest reduction or extension in
mean time to event by changing each of the five parameters, with markedly different results. These
parameters in a sense adjust the biological clock of the individual with useful, intuitive biological
interpretations. Dispersion can slow or speed the biological clock, or time to the next event. Location
shifts probabilities of events uniformly to later times, postponing events as appropriate to changing
conditions. Intensity can raise or lower the mean number of future events, while keeping the same
shape M, corresponding to changes in the environment such as reduced food supply. Truncation and
rejection have special roles in terms of immigration and emigration from the system under study, and
are considered in some detail in the next section.

O t—-b
=1- —)—-G(d
Frapeae (1) =1 eXpET E:M( a ) —G( )%
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These transformations can be combined mathematically, leading to the sub-distribution
provided that F(t) < e and t > aM™'(G(d)/c)+b. While this may be mathematically appealing, it
appears rather complicated and is in fact incomplete. However, in practice it is only necessary to
generate V and compute the scheduled future event time

Te=aM'[ (G(d)+V)/c] +bh.

The future event cannot be scheduled before time aM ™' (G(d))+b due to truncation. In fact, truncation
can shift the probability structure considerably. If F(Ti,) > e, then the scheduling of this future event
Isrejected asit is beyond the meaningful lifetime of that individual for this simulation.

The importance of this technique in terms of computational efficiency cannot be
overemphasized. This above parameterization can dramatically reduce the computer storage
requirements for a simulation. In addition, the calculations involve no integration, reducing to an
expontial random variate, a pair of linear transformations and an evaluation of M'(-). All that is
needed in addition is an efficient computatiorM{f) andM'(-), for instance using forward and
backward cubic splines (e.g. the splines library in the R statistical package, www.r-project.org), and
efficient generation of standard exponential pseudo-random numbers. Ewing and collaborators (see
www.stat.wisc.edu/~yandell/ewing) have designed a prototype system to interactivelyMigyign
andM '(:) and use them and the five-parameter transformation in event-driven competing risks
simulations of interacting individuals.

Truncation and Rejection

Thefirst three parameters are fairly straightforward in interpretation. Dispersion is essentially
Cox’s (1972) proportional hazards, while intensity corresponds to accelerated lifetime models (Viertl
1988; Clarotti and Lindley 1988); location is merely a shift. Truncation allows for entry of an
individua to a population from outside, conditional on some chance of prior events, while rejection
allowsfor the remova of individuals, eliminating the scheduling of future events. In practical terms,
individuals that are rejected may be removed from the remainder of the simulation, cleaning up the
model considerably. Truncated individuals may enter the smulation carrying only vague knowledge
of past history. An important future event for such atruncated individua may have happened before
it entered the simulation, but the timing would be unknown; aternatively, there is a chance that
future event could still be scheduled to occur in the near future. Truncation and rejection make it
easy to simulate the population processes of immigration and emigration, respectively. Immigrants
can move into an area and continue life processes based on imperfect information, while emigrants
can leave an area with future events unknown and irrelevant.

As an example, consider an Aphtis arriving at an orange to attack red scale. Thisindividual
may enter the simulation with very little knowledge of its previous life history. The field biologist
may know a small amount about its age, health, direction of travel. However, the biologist has no
information concerning past history. The Aphytis is an immigrant, with a truncated life history.
Eventually this invader may oviposit in red scale, laying eggs, and ultimately creating a new
population of adult Aphytis that may either attack nearby red scale, or emigrate to another orange
tree. Finaly the origina flying adult may leave the orange, never to return. While it, and its
offspring, may attack other red scale, it islost to the present simulation. Therefore at emigration its
remaining life history isrejected, asitsfutureisirrelevant.

10
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Competing Risks Across I ndividuals

With these five parameters, it is possible to adjust the distribution functions for each individual

inabiosystem toitsindividua situation. The basic distributions F, or equivalently M, are calculated
once. Using the above five parameters, each individual is given its unique waiting time to each future
event. For example, suppose we have a system involving § = 50 individuals, and suppose each
individual can have six possible events occur to him. Defining the whole system’s event space
requires room to consider 300 events. However, only one event is scheduled next for each individual .
This most immediate event will usually but not always be the most probable event, depending on
random chance. Hence, we need only consider 50 events—one for each individual. For the whole
system only one event is the most immediate. All that is necessary is a minimization of the event
times. It is important to note that it is unnecessary to continually recalculate the distributions at each
event point. By considering the five scaling parameters, this calculation is done implicitly.

For each individual, there is a corresponding set of random tinigs ¢=1.2,...}for future
events. The random tim&g, depend on thea[b,c,d,e] vector, which in turn depends on the current
states of the system and the time of the most recent event. Thus the time may be altered by events
for other individuals, or by changes in the environment. For each individate is one event that
will be the next event. By the linear properties of the non-homogeneous Poisson process, it is only
necessary to calculate the minimiipr min{T,, , o = 1,2,3,...}.

The next event in a community of B individuals is found by calculating the minimum over
all the individuals;T = min{T;, i=1,...,p}. If the simulation involves a high degree of structure, with
many levels of events, then the minimization property given above becomes an efficient technique
for finding the next event for the whole population.

The linearization property of the non-homogeneous Poisson process manifests itself in some
intriguing ways. The distribution for the next event tifn@ the community is

Fr() = Pr{T<t}=1-TIPr{ Ti>t}=1-ITexp{ Mi(t)}=1—exp{=Mi(t)}

with M; the mean number of events for individudlote that the mean number of evevi($) is the
sumM(t) = ZM;(t). This linearization can be further refined for each individual across all future
events by noting thali(t) = ZM;,(t). Note that we are not considering individuals to be independent
per se. However, the competing risk structunil the next future event decomposes in this linear
fashion as if the individuals were independent. At that fim&in{T;}, the competing risk structure
must be rebuilt, which may cause rescheduling of some future events.

Consider the situation where § predators of some species are hunting independently. The
probability of an event occurring is certainly different than the situation in which one predator of that
species is hunting. The above situation can be handled in the following manner. If § predators hunt
independently with the same chance of success during a time interval, then the mean value function
for the 3 predators is just M(t) = BM(t).

The probabilityFr(t)=1-exp{ZM;(t)}is an example of the linearization process with respect
to the non-homogeneous Poisson process. The fact that the product operation can be reduced to a
summation operation for exponential functions is the critical step in the linearization of the
competing risk structure.

Scheduling Immediate Events
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There are occasions when it may be appropriate to schedule an event without knowing its
outcome. At the time of that future event, its specific outcome may be predicted based on the
environment and current state of the simulation. Which of the 3 predators made the kill? The future
event scheduled may be based on the group, but the consequence of the event may affect certain
predators (the prey, of course, is now dead). For instance, the dominant predator may get the biggest
portion, which in turn might affect its future fitness, and may also affect the future fitness of other
members of its group. This can be handled as an immediate event and consequent pending events.

The multinomial is an excellent way to schedule such immediate events. The future event
of predation is scheduled by drawing from the distribution of T. Conditional on a predation event,
one of the predators may be responsible for the kill. The immediate event deciding which is the
primary predator involves drawing from the multinomial distribution with probabilities

b= M) / M@, i =1, ..., p.

The event i is processed, taking care to reschedule any pending events that might be affected by this.
That is, the immediate events might affect other future events by modifying the five parameters for
one or more individuals, based on the amount they are able to consume. Thus future events for
individua i could be rescheduled at thistime, changing the appropriate M;(t). Other individuals may
need to reschedule events as well. Once thisis completed, the process continues as before, but with
anewly modified competing risk structure.

Again, consider Californiared scale being attacked by Aphytis. The parasitoid selects a host
on which to oviposit by some random search. There may be 3 hosts in the vicinity, differing in terms
of distance, size, and other factors that may affect the chance of being chosen. Once a host is
selected, there is a further chance mechanism as to whether a male or female egg would be
oviposited. Either way, the red scale isimmediately rescheduled for death.

Immediate events that handle multiple events may need to decide how many events are to be
created. The number of live births may be random, and hence can be drawn from an appropriate
distribution. A natural choice would be to use a histogram based on experimental data. Since the
distribution might be modified by environmental considerations (temperature), health of the
individual, and actions of other individuals, one could construct modifications along similar lines
to those considered for the probability distributions to schedule future events.

The Red Scale/Aphytis System

The Californiared scale Aonidiella aurantii isamagor pest for California citrus growers and
Is responsible for significant financial loss for the growers. Though red scale does not actually kill
the fruit, it effectively blemishesit so that the fruit is not marketable (Forester, L.D., Luck, R., and
Grafton-Cardwell, E.E., 1998, “Life stages of California red scale and its parasitoids”, U.C. Div. of
Agric. & Nat. Res. Pub. 21529). The normal method for controlling red scale is by spraying
insecticide. However, red scale is showing an increased resistance to spraying. An alternative to
spraying uses a biological control agent to augment chemical control. It is possible to release a small
wasp,Aphytis melinus Debach, which effectively parasitizes red scale.

Environmental Factors

12
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Y u and Luck (1988) found evidence that the devel opmental stages of red scale are extremely
temperature dependent. Under certain environmental conditions, when the ambient temperature
remains above a certain minimum threshold, the entire developmental stage may experience minimal
successful parasitization. In addition, red scale developmental rates depend on the substrate, doing
best on fruit, then leaves, and worst on stems and bark. Aphytis only parasitizes scale during daylight
hours. However, scale can grow as long as the temperature stays above a certain threshold. Hence
the number and quality of scale available as hosts depends on temperature, and the available host
population is not even aged. Finally the entire processis seasonal.

In addition to the tempora description presented below, spatial distribution should be
addressed. The migration pattern depends on the number of other red scale on the citrus. However,
this dependency islocal. Scaleis normally not uniformly distributed on either the fruit or the leaves
and branches; hence the searching mechanism used by Aphytisis non-trivial.

Red Scale Life History

Red scale life cycle begins as a crawler that is mobile long enough to find a suitable location
on either a branch, leaf or fruit on which it can begin to feed. From this point on, red scale is
immobile except for the adult males. Red scale displays two distinct immobile stages, an instar or
feeding stage and a molt or dormant stage. Immature males compl ete a single molt while immature
females complete two molts. Males and females feed during the instar stages but not during the
dormant, molt stage. Since red scale development is temperature dependent, times between life
stages are presented in degree-days, which are approximately the cumulative degrees above 11°C.

Males complete three distinct immature stages: the second instar male, the prepupal male,
and the pupal male. After about 330 degree-days, the second instar males begin to pupate and in
approximately 30 degree-days the prepupate male transforms into a pupate male and emerge as adult
males approximate 20 degree-days later. Adult males depart the area to mate. Second instar females,
on the other hand, enter a second molt which last approximately 50 degree-days. After that, females
reinsert their rostrum to resume feeding as third instars. Third instar females may vary greatly in
cover and size; mating occurs during this phase. Unmated third instar femal es continue to grow, but
will not fully develop. A mated mature female is sealed inside the scale cover and stops feeding. In
approximately 90 degree-days the mature femal e produces crawlers. The cycle from crawler to this
final stage lasts approximately 650 degree-days.

AphytisLifeHistory

Aphytis, an external wasp, is the primary natural enemy associated with red scale. Aphytis
insertsits ovipositor through the scale cover and deposits its eggs on either the dorsal or ventral side
of the insect body. Before laying its eggs, Aphytis permanently paralyzes the scale with a venom,
leading to scale death scale even if eggs are not deposited. The food available to the developing
Aphytis offspring is determined by the size of the scale body at the time it was paralyzed.

The life stages of Aphytis are as follows:. egg stage, larval stage, prepupa stage, pupal stage
and host feeding stage. Eggs may become damaged or flattened if suitable scale stages are not found,
since the competition for suitable scale stages often results in more than one Aphytis parasitizing a
single host (superparasitism). Superparasitized scale rarely yields healthy Aphytis. After two days,
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health Aphytis eggs hatch into larvae and begin to feed. In approximatedly five days the larvae develop
into prepupae. In approximately one more day, Aphytis completes pupation. Adult Aphytis emerge
in approximately four to five days. The process of emergence of adult Aphytis once the egg is
oviposited requires approximately thirteen days.

Not all scale stages are consistently available or of equal quality. Aphytis can only parasitize
certain scale stages. In general, Aphytis prefer scale in one of the instar stages to those in the molt
stage. During the instar stage the scale cover is free of the body and Aphytis can lay eggs on both the
dorsal and ventral surfaces of the scale. During the molt and the mature female stage, the scale cover
isrigidly fused to a hardened body, and Aphytis can only lay eggs on the ventral surface of the body.
Since the scale is extremely tough, immature larvae find it difficult to feed. In fact, most immature
Aphytis dieif forced to develop in amolt stage.

From the perspective of Aphytis, red scale grow through awindow of availability improving
in quality asthey grow larger, but suddenly become unavailable upon maturity. Aphytis prefer to
oviposit during the scales third instar because of its large size. By paralyzing the scale before
ovipositing on it, Aphytis choose the amount of food that will be available for it's offspring. The
number of offspring is proportional to the size of the scale. The sex of the offspring is a function of
scale size; most femabghytis are produced from the third instar. In addition to scale stage and size,
Aphytis seems to select second instar scale with large skirt areas over third instar with small skirts.
Scale access may be more important than overall scale body size. In host selection, therefore, the
probability that a particular scale is attacked is a function of the number of red scAfghgisin
the area and of the stage, size and accessibility of each individual scale.

Female Aphytis usually mature their first batch of eggs, approximately 12% of its lifetime
egg supply, within 24 hours of emergence using resources from their larval stage. They produce eggs
during their entire adult lifetime, relying on periodic feeding on body fluids of small, immature hosts
for sustenance (Opp and Luck,1986; Luck and Nunney 1999). Adult Aphytis host feed by probing
the scale body more extensively than when ovipositing, feeding on the body fluids that ooze from
the wound. Aphytis feed on small scale hosts while searching for larger scales to serve as suitable
hosts to lay eggs. Host feeding kills a substantial percentage of Californiared scale beyond those
killed through parasitism.

Within 12 to 18 hours of host feeding, the female devel ops approximately 1.3 eggsiif it has
not recently oviposited, or about 2.7 eggs if it has. Host feeding appears to provide both metabolic
maintenance and to support egg production. Collier (1995) showed that Aphytis that do not have
access to hosts for either oviposition or host feeding will re-absorb about one egg per day. However,
egg re-absorption will not supply the metabolic needs of the wasp in the absence of honey or other
carbohydrates.

Red Scale/Aphytis System Event Structure

Upon careful examination of the parasitization process displayed by Aphytis, the system is
comprised of complex set of conditiona probabilities that can be used to describe overall probability
that certain events will occur, given a defined span and resolution.
1. Probability of successful search by Aphytis depends on: number of red scale in alocal area,

time of day, temperature, stage of development of an individual red scale, size of an
individual red scale.
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2. Probability of oviposit depends on: host stage of development, host size, host accessibility.
3. Probability of emergence depends on: host stage of development, host size, previous feeding
and/or superparasitisim.

Thus there are three special types of events. In the red scale-Aphytis system the probability of a
successful search is apending event, while the probability of oviposit could be considered to be an
immediate event, and finally the probability of emergence is a future event. In this system both
parasitism and host feeding lead to the death of an individual scale. However, host feeding could
affect the probability of emergence. It appears that Aphytis has exploited the system by selecting
small sized red scale to feed upon, saving the larger red scale to oviposit on. The host’s stage of
development and size modifidphytis parasitizing strategydphytis-red scale system exhibits a
fairly complex set of conditional probabilities that ultimately determine the abiliyphbytis to
reproduce successfully.

Simulation

A simulation system is being developed using the event-driven competing risks structure for
guantitative population ethology as outlined above. The initial implementation is focused on the
California red scaléphytis system, although the software module has no code specific to this
system except for some details of handling of events. Simulated red scale "lives" on a degree-day
basis (the integral of degrees above 52 Fahrenheit), pfilgis follows a diurnal clock, inactive
at night. When it is cold, Red Scale grows slowly and is readily parastiz&phiglys. However,
when it is warm, Red Scale can continue to grow overnight, effectively escaping by maturing to
gravid state. The simulation uses life history information from Forster et al. (1988 op. cit.). Times
to future events are by default drawn from the exponential, but that can be tuned, as in Figures 1 and
2, using a graphical interface. The parasite search algorithm and life events for both species are being
refined based on data collected by Luck. The software is written in the R language, which is
graphical, extensible, and in the public domain (Venables and Ripley 2000; see www.r-project.org).
Further details of the simulation and access to public domain software can be found at
www.stat.wisc.edu/~yandell/ewing.
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Figure 2. Four of the five parameters transform the probability to time mapping.
Basic curve isfrom Figure 1 with dispersion=10 and location=100: (a) dispersion
variesfrom 5 to 15; (b) location varies from 90 to 110; (c) intensity varies
geometrically from 2.25 to 1/2.25; (d) truncation varies from 0 to 1.
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Figure 3. Modification of five parameters for time reduction or extension: (a) 5% and (b)
10% time reduction); (c) 5% and (d) 10% time extension. Original curve with mean of
140 days is black dotted line. Reduction or extension involves changing one parameter:
dispersion (blue dash), location (red dot dash), intensity (green long dash), rejection
(black solid) or truncation (aqua short-long dash). Horizontal black solid lineis at mean
time of 140 days, blue dashed line is at reduced or extended mean time.
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