Stat/For/Hort 571 — Final, Fall 98 — Brief Solutions 1. (a) There are k=4 treatments and $n_1=\cdots=n_4=7$ observations per treatment. The ANOVA table is | Source | df | SS | MS | |--------|----|---------|--------| | Trt | 3 | 811.21 | 270.40 | | Error | 24 | 1047.30 | 43.64 | | Total | 27 | 1858.51 | | The observed F = MSTrt/MSErr = 270.40/43.64 = 6.20. The reference is $F_{3,24}$ and we have 0.001 < p – value < 0.005. There is strong evidence against the null that the population means are the same for all 4 treatments. (b) The contrast is $\bar{y}_{\rm ctrl} - \frac{1}{3}(\bar{y}_{\rm glu} + \bar{y}_{\rm fru} + \bar{y}_{\rm suc})$; thus $\lambda_C = 1, \lambda_G = -1/3, \lambda_F = -1/3, \lambda_S = -1/3$. The sample value for the contrast is 9.90; the standard error is $$s_p \sqrt{\frac{1}{7} + \frac{1}{9} \left(\frac{1}{7} + \frac{1}{7} + \frac{1}{7}\right)} = 2.883;$$ note $s_p = \sqrt{\text{MSErr}} = 6.606$. Since $P(T_{24} \ge 2.064) = 0.025$, the 95% confidence interval is given by $$9.90 \pm 2.064 \times 2.883 = 9.90 \pm 5.95 = (3.95, 15.85).$$ The range of plausibility for the difference between the control treatment and the average of the 3 sugar treatments is from 3.95 to 15.85. Note that a difference of 0 is not a plausible value. (c) Two population means are found to be significantly different with a comparison-wise error rate of 0.05 if the corresponding sample means differ by more than LSD = $2.064s_p\sqrt{2/7} = 7.288$. Thus: Treatments not connected by an underline are significantly different. 2. (a) The slope is estimated by $$\hat{b}_1 = \frac{\sum x_i y_i - (\sum x_i \sum y_i)/n}{\sum x_i^2 - (\sum x_i)^2/n} = -0.0653;$$ the intercept is estimated by $\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x} = 8.967$. (b) First, note that SSError = SSTotal – SSRegression, where SSTotal = $\sum y_i^2 - (\sum y_i)^2/n$ and SSRegression = $\hat{b}_1(\sum x_i y_i - (\sum x_i \sum y_i)/n)$. Therefore, SSError = 0.8213. Since dfError = n-2=4, the underlying regression variance σ_e^2 is estimated by $s_e^2 = \text{SSError}/4 = 0.205$. Note for dfError = 4, $P(V^2 \ge 11.14) = P(V^2 \le 0.48) = 0.025$, so a 95% confidence interval for σ_e^2 is given by $$\frac{\text{SSError}}{11.14} \le \sigma_e^2 \le \frac{\text{SSError}}{0.48} = 0.074 \le \sigma_e^2 \le 1.71.$$ (c) The standard error of \hat{b}_1 is $$\frac{s_e}{\sqrt{\sum x_i^2 - (\sum x_i)^2/n}} = 0.007221;$$ therefore $t = (\hat{b}_1 - (-0.1))/0.007221 = 4.81$. Since the reference T-distribution has 4 df, the p-value is between 0.002 and 0.01. There is strong evidence that b_1 is different from -0.1. . (a) Since there are two hypotheses of interest, to maintain an experiment-wise error rate of 0.05, each hypothesis should be tested at level 0.025. Since the normal approximation to the binomial is justified, both null hypotheses can be tested by $$z = \frac{\hat{p} - 0.5}{\sqrt{0.5 \times 0.5/100}} = \frac{\hat{p} - 0.5}{0.05}.$$ For the green coin, z = -2.6; for the red coin, z = 2. The corresponding p-values are 0.0094 and 0.0456. Thus, H_0 is rejected for the green coin but not for the red coin. (b) The observed counts are given by The expected counts are given by Because the expected values are all > 5, the χ^2 approach is appropriate. The test statistic χ^2 is given by $\sum_{\rm allcells} (\exp{-}{\rm obs})^2/\exp{=}9.598$ on 2 df. The p-value is between 0.005 and 0.01. There is strong evidence that the three fungicides are not equally effective. - 4. (a) False. Since one well is dug in the uplands and one in the valley, this does not give a good indication of contamination overall in the two regions; there is no measure of variability within each region. Furthermore, the weekly readings from these wells may be correlated. - (b) True. The weight of a randomly selected mouse is predicted by \bar{y} . The variance of \hat{Y}_p is $\sigma^2(1+1/n)$, where the "1/16" comes from the variability of \bar{y} and the "1" comes from the uncertainty in the new observation. Thus, the standard error of \hat{Y}_p is $s\sqrt{1+1/16}=20.61$. Note that $P(T_{15} \geq 2.131)=0.975$ and $43.9=2.131\times 20.61$. - 5. We need to find n so that $P((\hat{p}_A \hat{p}_B) > 0.12 | p_A = 0.8, p_B = 0.6) = 0.95$. Note that $Var(\hat{p}_A \hat{p}_B) = (0.8 \times 0.2)/n + (0.6 \times 0.4)/n = 0.4/n$. The picture leads to the equation $$\frac{0.12-0.2}{\sqrt{0.4/n}} = -1.645$$ (since $P(Z \ge -1.645) = 0.95$). Solving for n gives $\sqrt{n} = \sqrt{0.4}(1.645)/0.08 \doteq 13.005$ so that n = 169.13. Rounding up results in n = 170. Grade Distribution: 90's 10 mean=63.8; median=63 80's 22 70's 28 60's 28 50's 25 40's 23 below 14