$\begin{array}{c} & \text{Outline} \\ \text{Thresholding Methods: The Basic Ideas} \\ & \text{Thresholding Pearson's } \chi^2 \text{ Statistic} \end{array}$

Order Thresholding and Goodness-of-Fit Testing

Michael Akritas

Joint work with Ph.D. Student Min Hee Kim

Work supported in part by NSF grant DMS-0805598.

Madison, 3 June 2010

< ロト (周) (日) (日)

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.66ider] Thloekhaulping teutlinGpadnbys:N&FigrTestDb/IS-0805598.

 $\begin{array}{c} {\rm Outline} \\ {\rm Thresholding \ Methods: \ The \ Basic \ Ideas} \\ {\rm Thresholding \ Pearson's \ } \chi^2 \ {\rm Statistic} \end{array}$

Thresholding Methods: The Basic Ideas

Thresholding Pearson's χ^2 Statistic

Motivation

The Statistic

Asymptotics

Empirical Results

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.**35der] Wicekhaldping textlife pach bys his Figratest Dy**/S-0805598.

< ロト (周) (日) (日)

Motivation

- Suppose X₁,..., X_n are independent with X_i ∼ N(µ_i, 1), and we want to test H₀: µ₁ = ··· = µ_n = 0 vs H_a: H₀ is not true.
- The obvious test statistic is

$$W_n = \sum_{i=1}^n Y_i$$
, where $Y_i = X_i^2$.

- ▶ The asymptotic, as $n \to \infty$, distribution of this statistic under alternatives μ which tend to infinity at rates $||\mu||^2 = o(\sqrt{n})$ is the same as under the null.
- The use of thresholding methods in hypothesis testing is motivated by attempts to improve the power of the chi-square statistic.

(D) (A) (A)

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.35der] Twoekhaldping taddisGoodhaysNSF igrataly/S-0805598.

Signal-to-Noise Ratio

- Alternatives μ such that μ_i = 0 for "most" i will be called low signal-to-noise ratio alternatives.
- For such alternatives there is an intuitive explanation for the low power of the chi-square statistic:

Too much "noise" drowns out the few "signals"

where "noise" refers to the central χ_1^2 r.v.'s, and "signals" refers to the non-central χ_1^2 r.v.'s.

The basic idea of thresholding methods is to somehow eliminate the noise and focus on the signal.

(D) (A) (A)

Hard and Order Thresholding

The HT statistic is

$$T_H(\delta_n) = \sum_{j=1}^n Y_j I(Y_j > \delta_n), \quad \delta_n = 2\log(n\log^{-2} n).$$

The OT statistic is

$$T_O(k_n) = \sum_{i=1}^n I(i > n - k_n) Y_{i,n}, \quad k_n < n, \ k_n \to \infty.$$

where $Y_{1,n} < \cdots < Y_{n,n}$ are the ordered Y_i s.

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.86der] Wicekhaldping textlife pathbys N&Figratest Dy/S-0805598.

・ロト ・ 同ト ・ ヨト ・ ヨト

Hard and Order Thresholding

The HT statistic is

$$T_H(\delta_n) = \sum_{j=1}^n Y_j I(Y_j > \delta_n), \quad \delta_n = 2\log(n\log^{-2} n).$$

The OT statistic is

$$T_O(k_n) = \sum_{i=1}^n I(i > n - k_n) Y_{i,n}, \quad k_n < n, \ k_n \to \infty.$$

where $Y_{1,n} < \cdots < Y_{n,n}$ are the ordered Y_i s.

Their form makes it clear that they eliminate excess "noise" by focusing on the largest squared values. But they differ in the way they go about doing it.

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.66ider] Thloekhaulping teutlinGpadnbysAbsFigrTestDb/IS-0805598.

	Empirical Power $n = 500$						
	<i>T_H</i> (5.122)	$T_O(\widehat{k}_{500}^{opt})$	W _n				
H ₁₀	0.817	0.908	0.744				
<i>H</i> ₁₂	0.783	0.903	0.709				
H_{14}	0.734	0.864	0.649				
H_{16}	0.564	0.707	0.484				
H_{17}	0.529	0.675	0.432				
H_{18}	0.435	0.584	0.373				
H_{19}	0.402	0.570	0.347				
H ₂₀	0.380	0.547	0.308				
H ₂₁	0.390	0.555	0.319				
H ₂₂	0.364	0.534	0.281				
H ₂₃	0.362	0.517	0.279				

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.**05dar] Tkicekholdpog textli@pachbysNSFigrTextDy**S-0805598.

물 > : < 문 >

æ

How about high signal-to-noise ratio?

► In high signal-to-noise ratio situations, i.e. if all µ_i = c, the threshold statistics will not improve the power ...

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.86der] Wicekhaldping textlife pathbys N&Figratest Dy/S-0805598.

・ 同 ト・ ・ ヨート・ ・ ヨート

In high signal-to-noise ratio situations, i.e. if all µ_i = c, the threshold statistics will not improve the power ... unless we can transform the data so the signal IS concentrated in a few locations.

・ 同 ト・ ・ ヨート・ ・ ヨート

- ► In high signal-to-noise ratio situations, i.e. if all µ_i = c, the threshold statistics will not improve the power ... unless we can transform the data so the signal IS concentrated in a few locations. Here is the basic idea:
- Set $\mathbf{X} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$, for the data vector, let $\mathbf{\Gamma}$ be an orthonormal matrix, and transform \mathbf{X} to

$$\Gamma X = \Gamma \mu + \Gamma \epsilon$$
 or $X_{\Gamma} = \mu_{\Gamma} + \epsilon_{\Gamma}$.

so that $||\boldsymbol{\mu}|| = ||\boldsymbol{\mu}_{\Gamma}||$ and $\boldsymbol{\epsilon}_{\Gamma} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.65der] Workhalding teutling pathbys/WSFigrTestDMS-0805598.

不良 とうてき とうてい

- ► In high signal-to-noise ratio situations, i.e. if all µ_i = c, the threshold statistics will not improve the power ... unless we can transform the data so the signal IS concentrated in a few locations. Here is the basic idea:
- Set $\mathbf{X} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$, for the data vector, let $\mathbf{\Gamma}$ be an orthonormal matrix, and transform \mathbf{X} to

$$\Gamma X = \Gamma \mu + \Gamma \epsilon$$
 or $X_{\Gamma} = \mu_{\Gamma} + \epsilon_{\Gamma}$.

so that $||\boldsymbol{\mu}|| = ||\boldsymbol{\mu}_{\Gamma}||$ and $\boldsymbol{\epsilon}_{\Gamma} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$

• W_n has the same power on **X** as it does on **X**_{Γ}.

< ロト (周) (日) (日)

- ► In high signal-to-noise ratio situations, i.e. if all µ_i = c, the threshold statistics will not improve the power ... unless we can transform the data so the signal IS concentrated in a few locations. Here is the basic idea:
- Set $\mathbf{X} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$, for the data vector, let $\mathbf{\Gamma}$ be an orthonormal matrix, and transform \mathbf{X} to

$$\Gamma X = \Gamma \mu + \Gamma \epsilon$$
 or $X_{\Gamma} = \mu_{\Gamma} + \epsilon_{\Gamma}$.

so that $||\boldsymbol{\mu}|| = ||\boldsymbol{\mu}_{\Gamma}||$ and $\boldsymbol{\epsilon}_{\Gamma} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$

W_n has the same power on X as it does on X_Γ. Thus, if μ_Γ is a low signal-to-noise ratio alternative, thresholding will improve the power.

< ロト (周) (日) (日)

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.05der] Woekhalding teddic pedneys \&FigrTestDyS-0805598.

 $\begin{array}{c} \mbox{Outline} \\ \mbox{Thresholding Methods: The Basic Ideas} \\ \mbox{Thresholding Pearson's } \chi^2 \mbox{Statistic} \end{array}$

The Discrete Fourier Transformation (DFT)

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.65der] Workhalding teutling pathbys/WSFigrTestDMS-0805598.

The Discrete Wavelet Transformation (DWT)

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.86der] Woekhalping teutliGpedneys148FigrTest@MS-0805598.

 $\begin{array}{c} & \text{Outline} \\ \textbf{Thresholding Methods: The Basic Ideas} \\ & \text{Thresholding Pearson's } \chi^2 \text{ Statistic} \end{array}$

	Before	e DFT	After DFT		
	$\sum_{i=1}^{255} X_i^2$	$T_O(\widehat{k}_{255}^{opt})$	$\sum_{i=1}^{255} X_{\Gamma,i}^2$	$T_O(\widehat{k}_{255}^{opt})$	
H ₀	0.051	0.056	0.051	0.075	
$H_a^{(1)}$	0.091	0.087	0.091	0.148	
$H_{a}^{(2)}$	0.397	0.294	0.397	0.841	
$H_a^{(3)}$	0.816	0.671	0.816	0.992	
$H_a^{(4)}$	0.850	0.877	0.850	0.925	

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.**05dar] Tkicekholdpog textli@pachbysNSFigrTextDy**S-0805598.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\begin{array}{c} & \text{Outline} \\ \textbf{Thresholding Methods: The Basic Ideas} \\ & \text{Thresholding Pearson's } \chi^2 \text{ Statistic} \end{array}$

	Before	DWT	After DWT		
	$\sum_{i=1}^{256} X_i^2$	$T_O(\widehat{k}_{256}^{opt})$	$\sum_{i=1}^{256} X_{\Gamma,i}^2$	$T_O(\widehat{k}_{256}^{opt})$	
H ₀	0.051	0.062	0.051	0.058	
$H_a^{(1)}$	0.093	0.094	0.093	0.096	
$H_{a}^{(2)}$	0.396	0.313	0.396	0.400	
$H_a^{(3)}$	0.813	0.661	0.813	0.881	
$H_a^{(4)}$	0.861	0.880	0.861	0.998	

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.**05dar] Tkicekholdpog textli@pachbysNSFigrTextDy**S-0805598.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\begin{array}{c} \text{Outline} \\ \text{Thresholding Methods: The Basic Ideas} \\ \text{Thresholding Pearson's } \chi^2 \text{ Statistic} \end{array}$

Motivation The Statistic Asymptotics Empirical Results

- ▶ X_1, \ldots, X_n iid *G*. Wish to test $H_0 : G = G_0$. Transforming to $U_i = G_0(X_i)$ we consider testing $H_0 : G(t) = t$, $\forall 0 < t < 1$.
- Karl Pearson's 1900 χ² test uses a partition of n_{bin} cells and tests for the parameters of a multinomial distribution.

► As such it has been widely applied also in contingency tables.

- ► Mann and Wald (1942) were the first to establish the power advantages of letting n_{bin} tend to infinity with n, and found n_{bin} = n^{2/5} to be the optimal rate.
- For a corresponding development in the area of contingency tables see Holst (1972), Morris (1975), and Koehler and Larntz (1980).
- We will explore the use of thresholding methods to further improve the power.

Motivation The Statistic Asymptotics Empirical Results

▶ Partition the interval (0, 1] into the n_{bin} subintervals $J_i = ((i - 1)/n_{bin}, i/n_{bin}]$, $i = 1, ..., n_{bin}$, and set

$$N_j = n \int_{J_j} \mathrm{d}\widehat{G}_n(x), ext{ so that } S_j = rac{N_j - n/n_{bin}}{\sqrt{n(n_{bin}-1)/n_{bin}^2}} \stackrel{.}{\sim} N(0,1).$$

▶ Transform $\mathbf{S} = (S_1, \dots, S_{n_{bin}})'$ by either the DFT or DWT:

$$\mathbf{S}_{\mathbf{\Gamma}} = (S_{\mathbf{\Gamma},1}, \dots, S_{\mathbf{\Gamma},n_{bin}})'$$

and use the OT statistic on S_{Γ} :

$$T_O(k_{n_{bin}}) = \sum_{j=n_{bin}-k_{n_{bin}}+1}^{n_{bin}} S^2_{\mathbf{F},(j)}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.65der] Workhalding teutling pathbys/WSFigrTestDMS-0805598.

Outline Thresholding Methods: The Basic Ideas Thresholding Pearson's χ^2 Statistic Empirical Results

- The S_j's are not quite normal and are not quite independent. Thus, application of the OT methodology needs justification. The asymptotic justification consists of two parts:
 - 1. Use a strong approximation of the empirical process by a Brownian bridge, to represent each S_i as:

$$S_j = X_j + V_j, \ j = 1, \ldots, n_{bin},$$

where $X_j \sim \text{iid } N(0,1)$ and $V_j = -n_{bin}^{-1/2} W_n(1) + R_n$.

2. Account for the fact that the ordering of the S_j^2 's is not exactly the same as the ordering of the $Y_j = X_j^2$'s.

(D) (A) (A)

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.65der] Workhalding teutling pathbys/WSFigrTestDMS-0805598.

 $\begin{array}{c} & \text{Outline} \\ \text{Thresholding Methods: The Basic Ideas} \\ \text{Thresholding Pearson's } \chi^2 \text{ Statistic} \end{array}$

Motivation The Statistic Asymptotics Empirical Results

► The basic idea for accounting for the lack of ordering of the Y_(j)'s is to create a "buffer zone" which separates "most" of the largest k_{nbin} order statistics that we want to include in the OT statistic (i.e. Y_{nbin}-k_{nbin}+1,n_{bin},..., Y_{nbin},n_{bin}) from "most" of the smallest ones that we want to exclude.

• We now make this idea precise.

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.65der] Workhalding teutling pathbys/WSFigrTestDMS-0805598.

< ロト (周) (日) (日)

Motivation The Statistic Asymptotics Empirical Results

It is shown that the sequence of integers $a_{n_{bin}} = k_{n_{bin}} + k_{n_{bin}}^{1/2-\delta}$ satisfies

(1)
$$k_{n_{bin}} < a_{n_{bin}} \le n_{bin}$$

(2) $\frac{\sum_{j=n_{bin}-a_{n_{bin}}+1}^{n_{bin}}Y_{j,n_{bin}}-n_{bin}\mu_{n_{bin}}(k_{n_{bin}})}{\sqrt{n_{bin}}\sigma_{n_{bin}}(k_{n_{bin}})} \xrightarrow{d} N(0,1),$
(3) $P\left(\left\{Y_{(n_{bin}-k_{bin}+1)},\dots,Y_{(n_{bin}-k_{bin})}\right\}\right)$

$$(3) \quad P\left(\left\{\begin{array}{c} Y_{(n_{bin}-k_{n_{bin}}+1)}, \dots, Y_{(n_{bin})}\right\} \subset \\ \left\{Y_{n_{bin}-a_{n_{bin}}+1, n_{bin}}, \dots, Y_{n_{bin}, n_{bin}}\right\}\right) \to 1.$$

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.85der] Wicekhaldping textlife pathbys N&Figratest Dy/S-0805598.

・ロト ・ 日本 ・ モート・・ モート・

-2

 $\begin{array}{c} \text{Outline} \\ \text{Thresholding Methods: The Basic Ideas} \\ \text{Thresholding Pearson's } \chi^2 \text{ Statistic} \end{array}$

Motivation The Statistic Asymptotics Empirical Results

Example 1. Mixture model alternatives of the form:

 $H_0: G = N(0,1)$ versus $H_a: G = 0.7N(\mu/0.7,1) + 0.3N(-\mu/0.3,1)$,

			After DFT		After DWT		
μ	Pearson	KS	CVM	$T_{H}(1.93)$	$T_{O}(6)$	$T_{H}(1.96)$	$T_{O}(6)$
.400	.9668	.8344	.8967	.9273	.9804	.9410	.9637
.367	.8777	.6692	.7393	.8206	.9124	.8334	.8777
.333	.7161	.4881	.5413	.6553	.7724	.6795	.7161
.300	.5087	.3244	.3473	.4787	.5675	.4951	.5110
.267	.3184	.2132	.2150	.3322	.3711	.3594	.3276
.233	.1940	.1480	.1396	.2346	.2194	.2526	.2025
.200	.1059	.0935	.0891	.1579	.1215	.1830	.1180

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.85der] Wicekhaldping textlife pathbys N&Figratest Dy/S-0805598.

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\begin{array}{c} & \text{Outline} \\ \text{Thresholding Methods: The Basic Ideas} \\ \text{Thresholding Pearson's } \chi^2 \text{ Statistic} \end{array}$

Motivation The Statistic Asymptotics Empirical Results

Example 2. Beta alternatives of the form: $H_0 : G = Uniform(0, 1)$ versus $H_a : G = Beta(1.1, c)$.

				After DFT		After DWT	
с	Pearson	KS	CVM	$T_{H}(1.93)$	$T_O(6)$	$T_{H}(1.96)$	$T_O(6)$
1.8	.9842	1	1	.9987	.9926	.9983	.9949
1.7	.9391	.9999	1	.9885	.9595	.9890	.9703
1.6	.8171	.9972	.9988	.9437	.8550	.9467	.8789
1.5	.6126	.9720	.9853	.8187	.6631	.8289	.6809
1.4	.3871	.8505	.8880	.5939	.4285	.6247	.4284
1.3	.2045	.5330	.5841	.3597	.2324	.3909	.2183
1.2	.1169	.1964	.2110	.2012	.1329	.2195	.1158
1.1	.0687	.0552	.0532	.1332	.0837	.1542	.0771
1.0	.0741	.1697	.1957	.1406	.0850	.1586	.0806
0.9	.2113	.5684	.6523	.2806	.2215	.3123	.2214
0.8	.6243	.9303	.9609	.6083	.5956	.6455	.6732

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.05dar] Thioskholdportautli@pachbosNSFigrTattDy/S-0805598.

・ロト ・ 同ト ・ ヨト ・ ヨト