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Thresholding Methods: The Basic ldeas

Motivation

» Suppose Xi, ..., X, are independent with X; ~ N(u;,1), and
we want to test Hyp : 1 = --- = up = 0 vs H, : Hy is not true.

» The obvious test statistic is

n
Wo=>_Yi, where Y;=X?.
i=1

> The asymptotic, as n — oo, distribution of this statistic under
alternatives p which tend to infinity at rates ||u||? = o(y/n) is
the same as under the null.

» The use of thresholding methods in hypothesis testing is
motivated by attempts to improve the power of the chi-square
statistic.
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Thresholding Methods: The Basic ldeas

Signal-to-Noise Ratio

» Alternatives p such that p; = 0 for "most” i will be called
low signal-to-noise ratio alternatives.

» For such alternatives there is an intuitive explanation for the
low power of the chi-square statistic:

Too much "noise” drowns out the few "signals”
where "noise” refers to the central X% r.v.'s, and "signals”
refers to the non-central x? r.v.’s.

» The basic idea of thresholding methods is to somehow
eliminate the noise and focus on the signal.
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Thresholding Methods: The Basic ldeas

Hard and Order Thresholding

» The HT statistic is

n

TH(0n) = Z YiI(Y; > 3,), 0, =2log(nlog2n).
j=1

» The OT statistic is
To(kn) =Y 1(i > n—kn)Yin, kn<n, kn— oc.
i=1

where Y1, < -+ < Y, , are the ordered Yis.
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Thresholding Methods: The Basic ldeas

Hard and Order Thresholding

» The HT statistic is

n

Tu(6n) = Z Yil(Y; > 6n), 0n= 2log(nlog™2 n).
j=1

» The OT statistic is
To(kn) =Y 1(i > n—kn)Yin, kn<n, kn— oc.
i=1

where Y1, < -+ < Y, , are the ordered Yis.

» Their form makes it clear that they eliminate excess " noise”
by focusing on the largest squared values. But they differ in
the way they go about doing it.
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Thresholding Methods: The Basic ldeas

Empirical Power n = 500

Th(5.122) | To(k% W,
Hio 0.817 0.908 | 0.744
Hio 0.783 0.903 | 0.709
Hia 0.734 0.864 | 0.649
Hie 0.564 0.707 | 0.484
Hi7 0.529 0.675 | 0.432
Hhg 0.435 0584 | 0.373
Hio 0.402 0.570 | 0.347
Hxo 0.380 0.547 | 0.308
o 0.390 0.555 | 0.319
Hao 0.364 0.534 | 0.281
Hs 0.362 0.517 | 0.279
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Thresholding Methods: The Basic ldeas

How about high signal-to-noise ratio?

» In high signal-to-noise ratio situations, i.e. if all y; = ¢, the
threshold statistics will not improve the power ...
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Thresholding Methods: The Basic ldeas

How about high signal-to-noise ratio?

» In high signal-to-noise ratio situations, i.e. if all y; = ¢, the

threshold statistics will not improve the power ... unless we
can transform the data so the signal IS concentrated in a few
locations.
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Thresholding Methods: The Basic ldeas

How about high signal-to-noise ratio?

» In high signal-to-noise ratio situations, i.e. if all y; = ¢, the
threshold statistics will not improve the power ... unless we
can transform the data so the signal IS concentrated in a few
locations. Here is the basic idea:

> Set X = p + €, where € ~ N,(0,521), for the data vector, let
I' be an orthonormal matrix, and transform X to

IX=Tp+Te or Xp=pr+er.

so that |[ps|| = [|ep|| and ep ~ Ny(0,021)
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Thresholding Methods: The Basic ldeas

How about high signal-to-noise ratio?

» In high signal-to-noise ratio situations, i.e. if all y; = ¢, the
threshold statistics will not improve the power ... unless we
can transform the data so the signal IS concentrated in a few
locations. Here is the basic idea:

> Set X = p + €, where € ~ N,(0,521), for the data vector, let
I' be an orthonormal matrix, and transform X to

IX=Tp+Te or Xp=pr+er.

so that |[ps|| = [|ep|| and ep ~ Ny(0,021)

» W, has the same power on X as it does on Xr.
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Thresholding Methods: The Basic ldeas

How about high signal-to-noise ratio?

» In high signal-to-noise ratio situations, i.e. if all y; = ¢, the
threshold statistics will not improve the power ... unless we
can transform the data so the signal IS concentrated in a few
locations. Here is the basic idea:

> Set X = p + €, where € ~ N,(0,521), for the data vector, let
I' be an orthonormal matrix, and transform X to

IX=Tp+Te or Xp=pr+er.

so that |[ps|| = [|ep|| and ep ~ Ny(0,021)

» W, has the same power on X as it does on Xp. Thus, if pr
is a low signal-to-noise ratio alternative, thresholding will
improve the power.
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Thresholding Methods: The Basic ldeas

The Discrete Fourier Transformation (DFT)

H1:6=0.16, i=1,....n H@): g=sin(4in)/2, i=1,...,n HY: @=sin(dimin)cos(irtn), i=1....,"HY: 8=1.8, i=n-20,...,n, 0, o.w.
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Thresholding Methods: The Basic ldeas

The Discrete Wavelet Transformation (DWT)

H®:8=0.16,i=1,....n H): @=sin(4ivn)/2, i=1,...n  HS: 8=sin(irvn)cos(inn), i=1....,nHY: 8=1.8, i=n-20,....n, 0, o.w.
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Thresholding Methods: The Basic ldeas

Before DFT After DFT
YEIX? Tolksss) EIXE,  Tolksss)

Ho 0.051 0.056 0.051 0.075
HY  0.001 0.087 0.091 0.148
H?  0.397 0.294 0.397 0.841
H® 0816 0.671 0.816 0.992
H® 0850 0.877 0.850 0.925
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Thresholding Methods: The Basic ldeas

Before DWT After DWT
YNEIX? Tolksss) EIXE,  Tolksss)

Ho 0.051 0.062 0.051 0.058
HY  0.003 0.094 0.093 0.096
H?  0.396 0.313 0.396 0.400
H® 0813 0.661 0.813 0.881
H®  0.861 0.880 0.861 0.998
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Motivation

The Statistic
Asymptotics
Empirical Results

Thresholding Pearson’s \2 Statistic

> Xi,...,X,iid G. Wish to test Hy : G = Gp. Transforming to
Ui = Go(X;) we consider testing Hp : G(t) =t, VO < t < 1.

» Karl Pearson’s 1900 X2 test uses a partition of np;, cells and
tests for the parameters of a multinomial distribution.

» As such it has been widely applied also in contingency tables.

» Mann and Wald (1942) were the first to establish the power
advantages of letting np;, tend to infinity with n, and found
npin = N%/® to be the optimal rate.

» For a corresponding development in the area of contingency
tables see Holst (1972), Morris (1975), and Koehler and
Larntz (1980).

» We will explore the use of thresholding methods to further
improve the power.
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Thresholding Pearson’s \2 Statistic

Empirical Results

» Partition the interval (0, 1] into the np;, subintervals
J,' = ((I — 1)/nb,-,,, i/nb,-,,], i = 1, .o vy Npin, and set

Nj B n/nbin

N(0, 1).

N; = n/ dGn(x), so that S =
Jj \/n(nb;,, — 1)/n%,.n

» Transform S = (S1,...,Sp,,,)" by either the DFT or DWT:
Sl- = (5r71, ceey Sr,”bin)/

and use the OT statistic on Sp:

Npin

TO(knbin) = Z 5|2"(J-)'

J=nbin—kn,,, +1
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p S
Empirical Results

Thresholding Pearson’s \2 Statistic

> The S;'s are not quite normal and are not quite independent.
Thus, application of the OT methodology needs justification.
The asymptotic justification consists of two parts:

1. Use a strong approximation of the empirical process by a
Brownian bridge, to represent each S; as:

Si=Xi+ Vi, j=1,....nbin,

where X; ~ iid N(0,1) and Vj = —n, > W,(1) + Rn.

2. Account for the fact that the ordering of the SJ?'s is not
exactly the same as the ordering of the Y; = XJ-2's.
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Motivation

The Statistic
Asymptotics
Empirical Results

Thresholding Pearson’s \2 Statistic

» The basic idea for accounting for the lack of ordering of the
Y(j)'s is to create a "buffer zone” which separates “most” of
the largest k,, order statistics that we want to include in the
OT statistic (i-e. Yo, —kn,. +1,npps - -+ Ynpinnpp) from “most”
of the smallest ones that we want to exclude.

» We now make this idea precise.
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Motivation

The Statistic
Asymptotics
Empirical Results

Thresholding Pearson’s \2 Statistic

It is shown that the sequence of integers a,,, = kn,, + k,%,.f_d
satisfies
(1) k”bin < npin < Npin
e T
=npjn—an,. +1 ' JsNbin binMnpin\Knpin) 4
(2) (J=np, angin N N(O,].),

Vv Mbin0 nyp ( knbin )

as Npjp — 00

(3) P ({ Vot 175> Yo } €
Y"bfﬂ*""binJrL"bin7 T Y”bim”bin}) — L
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Motivation

The Statistic
Asymptotics
Empirical Results

Thresholding Pearson’s \2 Statistic

Example 1. Mixture model alternatives of the form:

Ho : G = N(0,1) versus H, : G =0.7N (x/0.7,1) + 0.3N (—p/0.3,1),

After DFT After DWT
I Pearson KS CVM | Ty(1.93) To(6) | TH(1.96) To(6)

.400 .9668 .8344  .8967 .9273 .9804 .9410 .9637
.367 8777 6692  .7393 .8206 9124 .8334 8777
.333 7161 4881 5413 .6553 7724 .6795 7161
.300 .5087 .3244 3473 4787 .5675 14951 5110
.267 .3184 2132 .2150 .3322 3711 .3594 .3276
.233 .1940 .1480  .1396 .2346 2194 .2526 .2025
.200 .1059 .0935 .0891 .1579 1215 .1830 .1180
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Motivation

The Statistic
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Empirical Results

Thresholding Pearson’s \2 Statistic

Example 2. Beta alternatives of the form: Hy : G = Uniform(0, 1)
versus H, : G = Beta(1.1, c).

After DFT After DWT
c Pearson KS CVM | Ty(1.93) To(6) | Tw(1.96) To(6)
1.8 .9842 1 1 .9987 .9926 .9983 .9949
1.7 .9391 .9999 1 .9885 .9595 .9890 .9703
1.6 .8171 0972  .9988 .9437 .8550 9467 .8789
1.5 6126 9720 .9853 .8187 .6631 .8289 .6809
1.4 .3871 .8505 .8880 .5939 .4285 .6247 4284
1.3 .2045 5330 .5841 .3597 2324 .3909 .2183
1.2 .1169 1964  .2110 2012 .1329 .2195 1158
1.1 .0687 .0552 .0532 1332 .0837 .1542 .0771
1.0 .0741 .1697  .1957 .1406 .0850 .1586 .0806
0.9 2113 5684  .6523 .2806 2215 .3123 2214
0.8 .6243 .9303  .9609 .6083 .5956 .6455 6732
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