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Motivation

I Suppose X1, . . . ,Xn are independent with Xi ∼ N(µi , 1), and
we want to test H0 : µ1 = · · · = µn = 0 vs Ha : H0 is not true.

I The obvious test statistic is

Wn =
n∑

i=1

Yi , where Yi = X 2
i .

I The asymptotic, as n →∞, distribution of this statistic under
alternatives µ which tend to infinity at rates ||µ||2 = o(

√
n) is

the same as under the null.

I The use of thresholding methods in hypothesis testing is
motivated by attempts to improve the power of the chi-square
statistic.
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Signal-to-Noise Ratio

I Alternatives µ such that µi = 0 for ”most” i will be called
low signal-to-noise ratio alternatives.

I For such alternatives there is an intuitive explanation for the
low power of the chi-square statistic:

Too much ”noise” drowns out the few ”signals”

where ”noise” refers to the central χ2
1 r.v.’s, and ”signals”

refers to the non-central χ2
1 r.v.’s.

I The basic idea of thresholding methods is to somehow
eliminate the noise and focus on the signal.
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Hard and Order Thresholding

I The HT statistic is

TH(δn) =
n∑

j=1

Yj I (Yj > δn), δn = 2 log(n log−2 n).

I The OT statistic is

TO(kn) =
n∑

i=1

I (i > n − kn)Yi ,n, kn < n, kn →∞.

where Y1,n < · · · < Yn,n are the ordered Yi s.

I Their form makes it clear that they eliminate excess ”noise”
by focusing on the largest squared values. But they differ in
the way they go about doing it.
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Empirical Power n = 500

TH(5.122) TO(bkopt
500) Wn

H10 0.817 0.908 0.744

H12 0.783 0.903 0.709

H14 0.734 0.864 0.649

H16 0.564 0.707 0.484

H17 0.529 0.675 0.432

H18 0.435 0.584 0.373

H19 0.402 0.570 0.347

H20 0.380 0.547 0.308

H21 0.390 0.555 0.319

H22 0.364 0.534 0.281

H23 0.362 0.517 0.279
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How about high signal-to-noise ratio?

I In high signal-to-noise ratio situations, i.e. if all µi = c , the
threshold statistics will not improve the power . . .

unless we
can transform the data so the signal IS concentrated in a few
locations. Here is the basic idea:

I Set X = µ + ε, where ε ∼ Nn(0, σ2I), for the data vector, let
Γ be an orthonormal matrix, and transform X to

ΓX = Γµ + Γε or XΓ = µΓ + εΓ.

so that ||µ|| = ||µΓ|| and εΓ ∼ Nn(0, σ2I)

I Wn has the same power on X as it does on XΓ. Thus, if µΓ
is a low signal-to-noise ratio alternative, thresholding will
improve the power.

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.35cm] Work supported in part by NSF grant DMS-0805598.Order Thresholding and Goodness-of-Fit Testing



Outline
Thresholding Methods: The Basic Ideas

Thresholding Pearson’s χ2 Statistic

How about high signal-to-noise ratio?

I In high signal-to-noise ratio situations, i.e. if all µi = c , the
threshold statistics will not improve the power . . . unless we
can transform the data so the signal IS concentrated in a few
locations.

Here is the basic idea:

I Set X = µ + ε, where ε ∼ Nn(0, σ2I), for the data vector, let
Γ be an orthonormal matrix, and transform X to

ΓX = Γµ + Γε or XΓ = µΓ + εΓ.

so that ||µ|| = ||µΓ|| and εΓ ∼ Nn(0, σ2I)

I Wn has the same power on X as it does on XΓ. Thus, if µΓ
is a low signal-to-noise ratio alternative, thresholding will
improve the power.

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.35cm] Work supported in part by NSF grant DMS-0805598.Order Thresholding and Goodness-of-Fit Testing



Outline
Thresholding Methods: The Basic Ideas

Thresholding Pearson’s χ2 Statistic

How about high signal-to-noise ratio?

I In high signal-to-noise ratio situations, i.e. if all µi = c , the
threshold statistics will not improve the power . . . unless we
can transform the data so the signal IS concentrated in a few
locations. Here is the basic idea:

I Set X = µ + ε, where ε ∼ Nn(0, σ2I), for the data vector, let
Γ be an orthonormal matrix, and transform X to

ΓX = Γµ + Γε or XΓ = µΓ + εΓ.

so that ||µ|| = ||µΓ|| and εΓ ∼ Nn(0, σ2I)

I Wn has the same power on X as it does on XΓ.

Thus, if µΓ
is a low signal-to-noise ratio alternative, thresholding will
improve the power.

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.35cm] Work supported in part by NSF grant DMS-0805598.Order Thresholding and Goodness-of-Fit Testing



Outline
Thresholding Methods: The Basic Ideas

Thresholding Pearson’s χ2 Statistic

How about high signal-to-noise ratio?

I In high signal-to-noise ratio situations, i.e. if all µi = c , the
threshold statistics will not improve the power . . . unless we
can transform the data so the signal IS concentrated in a few
locations. Here is the basic idea:

I Set X = µ + ε, where ε ∼ Nn(0, σ2I), for the data vector, let
Γ be an orthonormal matrix, and transform X to

ΓX = Γµ + Γε or XΓ = µΓ + εΓ.

so that ||µ|| = ||µΓ|| and εΓ ∼ Nn(0, σ2I)

I Wn has the same power on X as it does on XΓ.

Thus, if µΓ
is a low signal-to-noise ratio alternative, thresholding will
improve the power.

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.35cm] Work supported in part by NSF grant DMS-0805598.Order Thresholding and Goodness-of-Fit Testing



Outline
Thresholding Methods: The Basic Ideas

Thresholding Pearson’s χ2 Statistic

How about high signal-to-noise ratio?

I In high signal-to-noise ratio situations, i.e. if all µi = c , the
threshold statistics will not improve the power . . . unless we
can transform the data so the signal IS concentrated in a few
locations. Here is the basic idea:

I Set X = µ + ε, where ε ∼ Nn(0, σ2I), for the data vector, let
Γ be an orthonormal matrix, and transform X to

ΓX = Γµ + Γε or XΓ = µΓ + εΓ.

so that ||µ|| = ||µΓ|| and εΓ ∼ Nn(0, σ2I)

I Wn has the same power on X as it does on XΓ. Thus, if µΓ
is a low signal-to-noise ratio alternative, thresholding will
improve the power.

Michael Akritas[.5cm] Joint work with Ph.D. Student Min Hee Kim[.35cm] Work supported in part by NSF grant DMS-0805598.Order Thresholding and Goodness-of-Fit Testing



Outline
Thresholding Methods: The Basic Ideas

Thresholding Pearson’s χ2 Statistic

The Discrete Fourier Transformation (DFT)
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The Discrete Wavelet Transformation (DWT)
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Before DFT After DFT∑255
i=1 X 2

i TO(k̂opt
255)

∑255
i=1 X 2

Γ,i
TO(k̂opt

255)

H0 0.051 0.056 0.051 0.075

H
(1)
a 0.091 0.087 0.091 0.148

H
(2)
a 0.397 0.294 0.397 0.841

H
(3)
a 0.816 0.671 0.816 0.992

H
(4)
a 0.850 0.877 0.850 0.925
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Before DWT After DWT∑256
i=1 X 2

i TO(k̂opt
256)

∑256
i=1 X 2

Γ,i
TO(k̂opt

256)

H0 0.051 0.062 0.051 0.058

H
(1)
a 0.093 0.094 0.093 0.096

H
(2)
a 0.396 0.313 0.396 0.400

H
(3)
a 0.813 0.661 0.813 0.881

H
(4)
a 0.861 0.880 0.861 0.998
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Empirical Results

I X1, . . . ,Xn iid G . Wish to test H0 : G = G0. Transforming to
Ui = G0(Xi ) we consider testing H0 : G (t) = t, ∀0 < t < 1.

I Karl Pearson’s 1900 χ2 test uses a partition of nbin cells and
tests for the parameters of a multinomial distribution.

I As such it has been widely applied also in contingency tables.

I Mann and Wald (1942) were the first to establish the power
advantages of letting nbin tend to infinity with n, and found
nbin = n2/5 to be the optimal rate.

I For a corresponding development in the area of contingency
tables see Holst (1972), Morris (1975), and Koehler and
Larntz (1980).

I We will explore the use of thresholding methods to further
improve the power.
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I Partition the interval (0, 1] into the nbin subintervals
Ji = ((i − 1)/nbin, i/nbin], i = 1, . . . , nbin, and set

Nj = n

∫
Jj

dĜn(x), so that Sj =
Nj − n/nbin√

n(nbin − 1)/n2
bin

·∼ N(0, 1).

I Transform S = (S1, . . . ,Snbin
)′ by either the DFT or DWT:

SΓ = (SΓ,1, . . . ,SΓ,nbin
)′

and use the OT statistic on SΓ:

TO(knbin
) =

nbin∑
j=nbin−knbin

+1

S2
Γ,(j)

.
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I The Sj ’s are not quite normal and are not quite independent.
Thus, application of the OT methodology needs justification.
The asymptotic justification consists of two parts:

1. Use a strong approximation of the empirical process by a
Brownian bridge, to represent each Sj as:

Sj = Xj + Vj , j = 1, . . . , nbin,

where Xj ∼ iid N(0, 1) and Vj = −n
−1/2
bin Wn(1) + Rn.

2. Account for the fact that the ordering of the S2
j ’s is not

exactly the same as the ordering of the Yj = X 2
j ’s.
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I The basic idea for accounting for the lack of ordering of the
Y(j)’s is to create a “buffer zone” which separates “most” of
the largest knbin

order statistics that we want to include in the
OT statistic (i.e. Ynbin−knbin

+1,nbin
, . . . ,Ynbin,nbin

) from “most”
of the smallest ones that we want to exclude.

I We now make this idea precise.
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It is shown that the sequence of integers anbin
= knbin

+ k
1/2−δ
nbin

satisfies

(1) knbin
< anbin

≤ nbin

(2)

∑nbin
j=nbin−anbin

+1 Yj ,nbin
− nbinµnbin

(knbin
)

√
nbinσnbin

(knbin
)

d→ N(0, 1),

as nbin →∞

(3) P
({

Y(nbin−knbin
+1), . . . ,Y(nbin)

}
⊂{

Ynbin−anbin
+1,nbin

, . . . ,Ynbin,nbin

})
→ 1.
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Example 1. Mixture model alternatives of the form:

H0 : G = N(0, 1) versus Ha : G = 0.7N (µ/0.7, 1) + 0.3N (−µ/0.3, 1) ,

After DFT After DWT

µ Pearson KS CVM TH(1.93) TO(6) TH(1.96) TO(6)

.400 .9668 .8344 .8967 .9273 .9804 .9410 .9637

.367 .8777 .6692 .7393 .8206 .9124 .8334 .8777

.333 .7161 .4881 .5413 .6553 .7724 .6795 .7161

.300 .5087 .3244 .3473 .4787 .5675 .4951 .5110

.267 .3184 .2132 .2150 .3322 .3711 .3594 .3276

.233 .1940 .1480 .1396 .2346 .2194 .2526 .2025

.200 .1059 .0935 .0891 .1579 .1215 .1830 .1180
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Example 2. Beta alternatives of the form: H0 : G = Uniform(0, 1)
versus Ha : G = Beta(1.1, c).

After DFT After DWT

c Pearson KS CVM TH(1.93) TO(6) TH(1.96) TO(6)

1.8 .9842 1 1 .9987 .9926 .9983 .9949
1.7 .9391 .9999 1 .9885 .9595 .9890 .9703
1.6 .8171 .9972 .9988 .9437 .8550 .9467 .8789
1.5 .6126 .9720 .9853 .8187 .6631 .8289 .6809
1.4 .3871 .8505 .8880 .5939 .4285 .6247 .4284
1.3 .2045 .5330 .5841 .3597 .2324 .3909 .2183
1.2 .1169 .1964 .2110 .2012 .1329 .2195 .1158
1.1 .0687 .0552 .0532 .1332 .0837 .1542 .0771
1.0 .0741 .1697 .1957 .1406 .0850 .1586 .0806
0.9 .2113 .5684 .6523 .2806 .2215 .3123 .2214
0.8 .6243 .9303 .9609 .6083 .5956 .6455 .6732
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