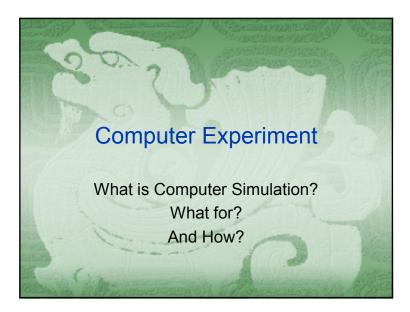
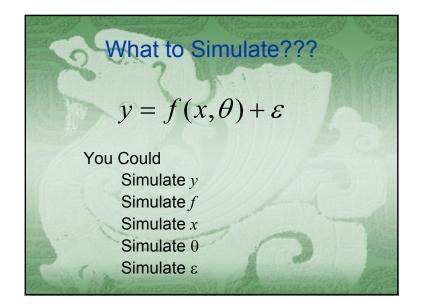


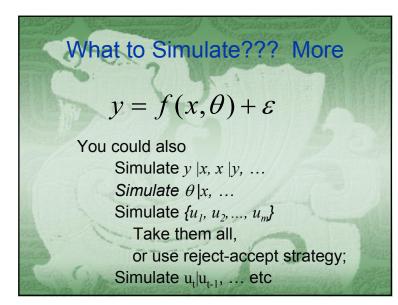
Dick Johnson: Now (Observed) and Not too long ago (Simulation)

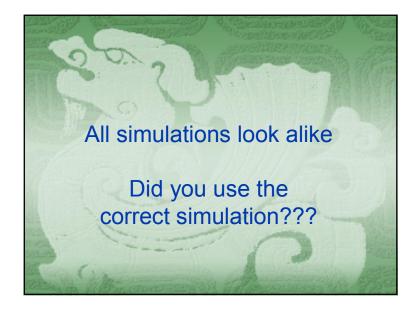
992 Quality Improvement

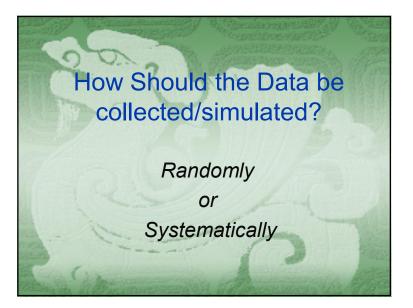
GEP Box

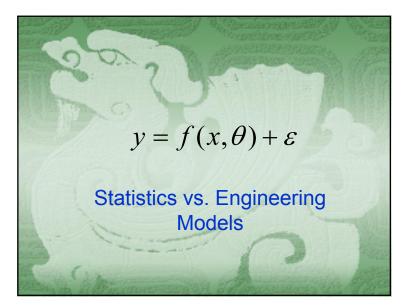


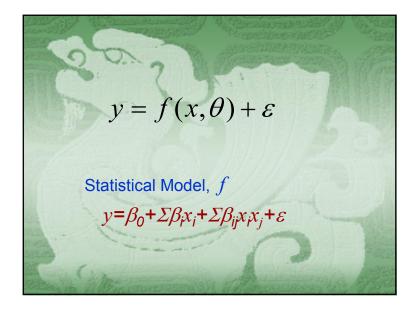

All Chinese Look Alike? Why?

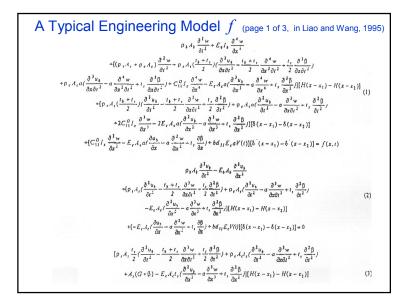

 (US) criteria for people classification (as used in the driver license):


Short Light Black Black	
DIGCK	
	Light Black


You must study under the "correct" (right statistics/subject/variable/model).







"Statistical" Simulation Research

- Random Number Generators
 Caleng and Lin (1997, 2001, 2007)
- Robustness of transformation (Sensitivity Analysis)
 - From Uniform random numbers to other distributions

Briefings & Update

 We have found a system of random number generators breaking the current world record. (Recall p=2³¹-1 is about 10⁹)

Old world record:

- ∝ MT19937 (1998)
- Period length 2¹⁹⁹³⁷-1=10^{6001.6}

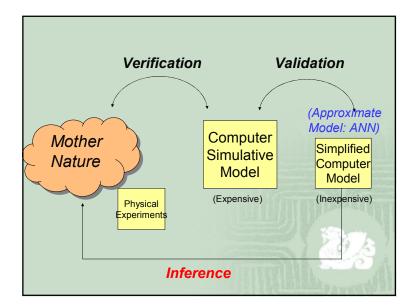
New record with $p=2^{31}-1$:

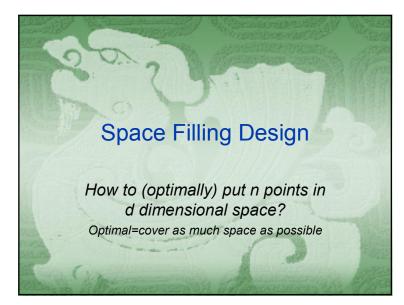
- DX-1597 [Deng, 2005]
- Period length: 10^{14903.1}
- Longest Period found so far:
 - Q Deng and Lin (2007)—A Penn State Patent

 - Survived from all (Small & Big Crash) Tests

Many theorems to transform U(0,1) to N(0,1)

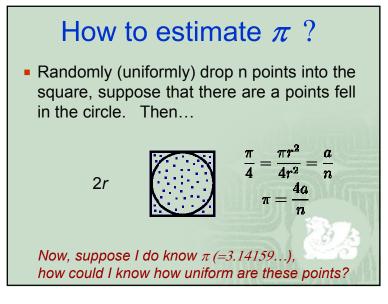
They are all correct (in principle)!

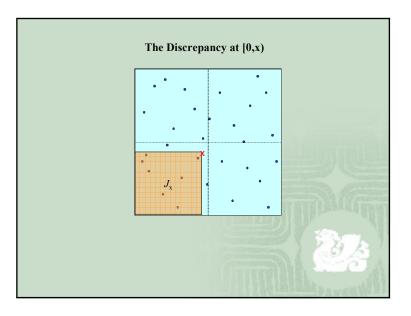

However, when the input is not a perfect U(0,1), some methods are more "robust" (insensitive/stable) than others


Mostly deterministic Many input variables Time consuming Grid Search is not feasible

Analysis of Computer Experiments

- Complicate mean model, with relatively simple error structure
 Polynomial model for mean model
 - equation = 0equation equation = 0
- Simple mean model, with relatively complicated error structure
 - Gaussian Process Model
 - Intercept model for mean
 - Matern Covariance for error
- Comparisons on pros & cons: Theoretically and Empirically.




Irrelevant Issues Replicates Blocking Randomization Question: How can a computer experiment be run in an efficient manner?

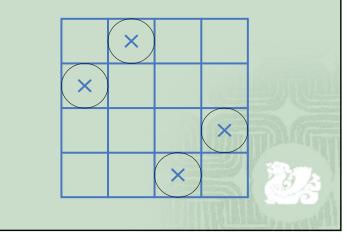
$$L_{p}\text{-star Discrepancy}$$

$$D_{p}(P) = \left[\int_{C^{s}} \left| \frac{|P \cap [0, \mathbf{x})|}{n} - \operatorname{Vol}([0, \mathbf{x})) \right|^{p} d\mathbf{x} \right]^{\frac{1}{p}}$$
where
$$[0, \mathbf{x}] = [0, x_{1}) \times [0, x_{2}) \times \cdots \times [0, x_{s});$$

$$|P \cap [0, \mathbf{x}]|: \text{ the number of points of } P \text{ falling in } [0, \mathbf{x}];$$

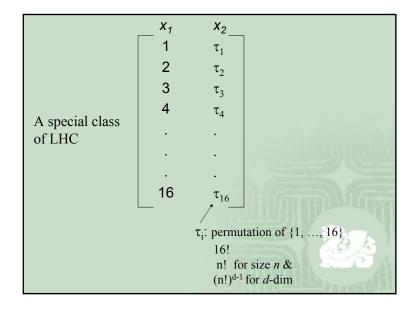
$$d_{p}([0, \mathbf{x})] = \left| \frac{|P \cap [0, \mathbf{x})|}{n} - \operatorname{Vol}([0, \mathbf{x})) \right| \text{ is called the discrepancy of } P \text{ over the rectangular } [0, \mathbf{x}];$$

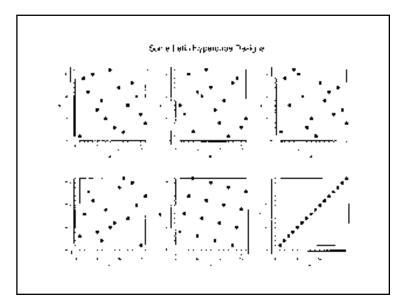
$$D_{p}(\mathcal{P}) \text{ is called the } L_{p} \text{ -star discrepancy of the set } \mathcal{P}.$$

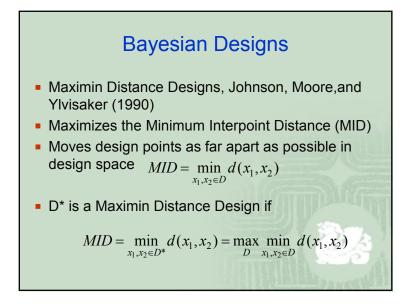

Uniform Design: Summary

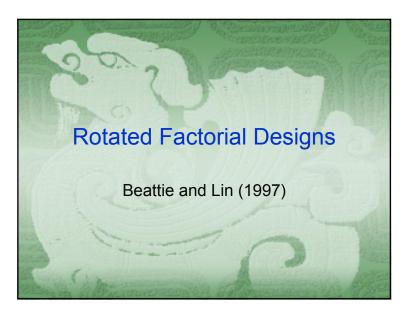
- Uniformity
- Model Robustness
- Flexibility in experimental runs
- Flexibility in the number of levels

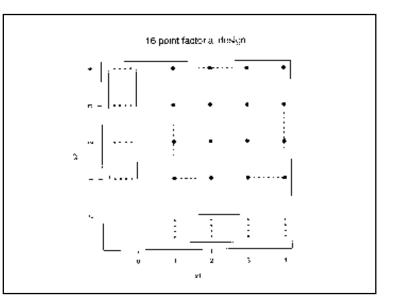
References

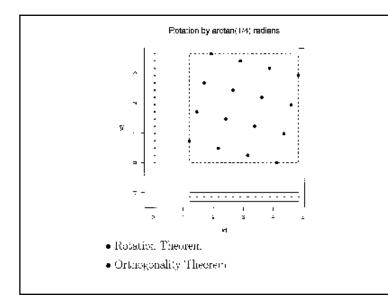

- Fang and Lin (2003) Handbook of Statistics, Statistics in Industry (Vol.22).
- Fang, Lin, Winker and Zhang (Technometrics, 2000)
- Website www.math.hkbu.edu.hk/UniformDesign

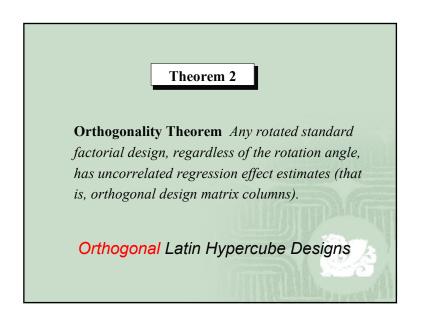

What is a Latin Hypercube?

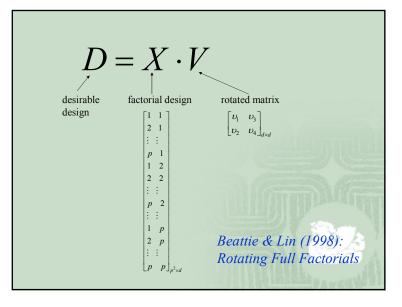


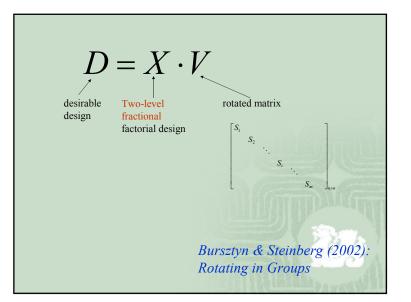

Why Latin Hypercube Designs?

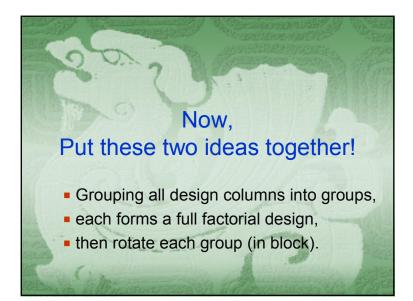

- Replication is worthless in CEs
- Factor levels are easily changed in CEs (not so in PEs)
- Suppose certain terms have little influence
 - Factorial designs produce replication when terms dropped
 - Can estimate high-order terms for other factors
- Provides pseudo-randomness since CEs are deterministic
- Smaller variance than random sampling or stratified random sampling (McKay, Beckman, and Conover (1979)

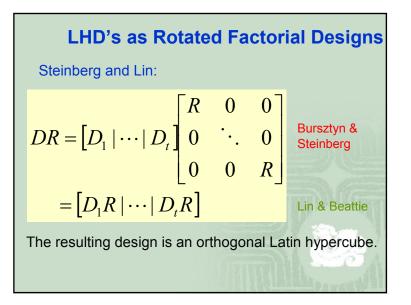


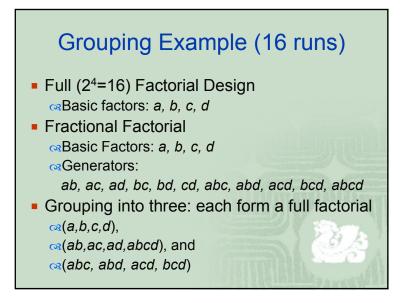


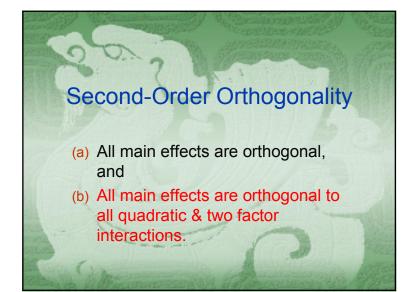











	e 1: Ex ors in 1		1. An	ortho	Innered						
facto	ors in 1	16 run	o The								
										ed by	15 to
			scale t	he des	ign to	the un	tit hyp	ercube			
1	2	3	4	5	6	7	8	9	10	11	12
-15	5	9	-3	7	11	-11	7	-9	3	-15	5
-13	1	1	13	-7	-11	11	-7	-1	-13	-13	1
-11	7	-7	-11	13	-1	-1	-13	9	-3	15	-5
-9	3	- 15	5	-13	1	1	13	1	13	13	-1
-7	- 11	11	- 7	11	- 7	7	11	5	15	- 3	- 9
-5	-15	3	9	-11	7	-7	-11	13	-1	-1	-13
-3	-9	-5	- 15	1	13	13	-1	-5	-15	3	9
$^{-1}$	-13	-13	1	-1	-13	-13	1	-13	1	1	13
1	13	13	-1	-9	3	-15	5	11	-7	7	11
3	9	5	15	9	-3	15	-5	3	9	5	1.5
5	15	-3	-9	-3	-9	-5	-15	-11	7	-7	-11
579	11	-11	7	3	9	5	15	-3	9	- 5	-15
9	-3	15	-5	-5	-15	3	9	-7	-11	11	-7
11	-7	7	11	5	15	-3	-9	-15	5	9	-3
13	-1	-1	-13	-15	5	9	-3	7	11	-11	7
15	-5	-9	3	15	- 5	-9	3	15			1.1

Steinberg and Lin (2006, Biometrika) Biometrika (2006), 93, 2, p. 279-288 2006 Biometrika Trans Protection method for orthogonal Latin hypercube designs A construction method for orthogonal Latin hypercube designs De DAVID M. STEINBERG Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel Jang Dennis K. J. LIN Department of Supply Chain & Information Systems, The Permsylvania State University, Diversity Park, Pennsylvania 16802, U.S.A.

dkl5@psu.edu

<section-header><section-header><section-header><section-header><text><text><text><text>

	Ye (1998	JASA	3
		,	'
Tab	le 1. A 5 $ imes$ 2 Ortho	ogonal Latin Hy	oercube
	1	-2	
	2	1	
	0	0	
	-1	. 2	
	-2	-1	
Tat	ole 2. A 9 × 4 Ortho	ogonal Latin Hyp	percube
1	ble 2. $A 9 \times 4$ Ortho -2	ogonal Latin Hyp 4	percube 3
1	$\frac{-2}{1}$	ogonal Latin Hyp 4 3	
1	-2 1 -4	ogonal Latin Hyp 4 3 –2	
1	$ \begin{array}{r} -2 \\ -4 \\ 3 \end{array} $	pgonal Latin Hyp 4 3 -2 -1	
1	-2 1 -4	9 <i>gonal Latin Hyp</i> 4 3 -2 -1 0	3 -4 -1
1	-2 1 -4	9gonal Latin Hyp 4 3 -2 -1 0 1	3 -4 -1
1	-2 1 -4	9 9 4 3 -2 -1 0 1 2	3 -4 -1
1	-2 1 -4	рдопаl Latin Нур 3 -2 -1 0 1 2 -3	3 -4 -1

Rhannet Ra (2005), 46, 4, pp. 471-474 25 2005 Biometric's Trans Printed in Great Schule ioi: 10.1003/Normal aplici Anyona: Array gablession *II*s (Jender 1903)

Miscellanea

Construction of orthogonal Latin hypercube designs

By FASHENG SON, MIN-QIAN UIU

The Key Laboratory of Pure Mothematics and Cambinatorius, School of Mathematical Sciences, Nankai University, Tranjin 3606/1, China shadha000(@mail.cankai.edu.cn mgliu@mailai.edu.cn

Aoin DENNIS K. J. LDA Department of Statistics, The Pennsylvania State University University Park, Pennsylvania 16802, U.S.A. dkl5ffgan.com

Second-Order Orthogonality

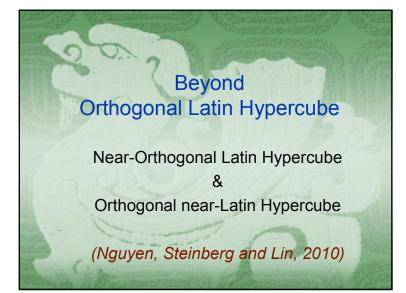
Sun, Liu & Lin (2009, Biometrika)

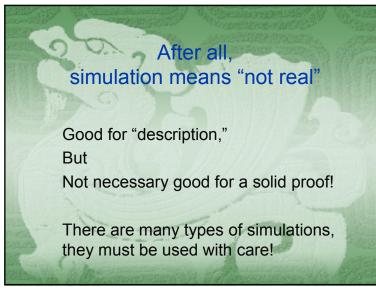
THEOREM 1 (i) The T_c in (2) consists of rows and columns of permutations of the 2^c elements $1, \ldots, 2^c$, up to sign changes.

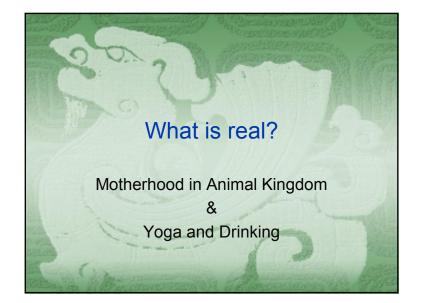
..., 2 , up to sign changes.

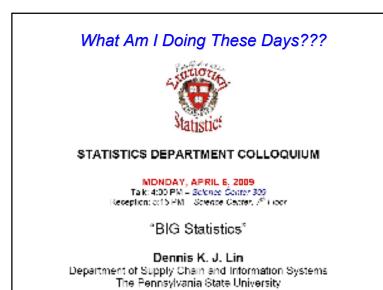
(ii) The L_c in (3) is a Latin hypercube design $L(2^{c+1} + 1, 2^c)$ with properties (a) and (b).

(a) each column is orthogonal to the others in the design;


(b) the elementwise square of each column and the elementwise product of every two columns are orthogonal to all columns in the design.


THEOREM 3. If $L(n,k) = (l_{ij})$ is a centered Latin hypercube design with properties (a) and (b), then $k \leq \lfloor n/2 \rfloor$, where $\lfloor x \rfloor$ is the integer part of x.


Orthogonal Latin Hypercube (n=2^c+1 or 2^c)


Design	Ye (1998) _{JASA}	C&L (2007) Technometrics	S&L (2006) Biometrika	PLL (2009) Sinica	SLL (2009) Biometrika	
No. of Factor	2(c-1)	c(c-1)/2+1	c[(n-1)/c]	c[(n-1)/c/(q-1)]	2 c-1	
c=4 c=8 c large	6 14	7 29	12 -	12 -	8 256	
Main Orthog	Yes	Yes	Yes	Yes	Yes	
Second- Order Othog	Yes	yes	No	No	Yes	
			1023	沒有發展現 (的方面)	W.Baway	

Send \$500 to

- Dennis Lin University Distinguished Professor 317 Thomas Building Department of Statistics Penn State University
- +1 814 865-0377 (phone)
- +1 814 863-7114 (fax)
- DKL5@psu.edu

(Customer Satisfaction or your money back!)

