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Positron Emission Tomography (PET)  BASICS

Data ~ Poisson(S+ARλ)
λ is the target isotope emission distribution (where the tracer ends up)

R (Radon Transform); A (Attenuation); S (Scatter)

Dose Limited Resolution -> Statistical Aspects are Important 
(Vardi et al,…Nychka, Wahba…Leahy..)

Imaging Model



CLINICAL PET IMAGING
Scanner (PET/CT)
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Metabolic State of Cancer?

Normal Glucose (FDG) Pattern Source: Radiological Society of North America



PET Scans used  in Cancer Medicine

• Diagnosis/Staging

• Treatment Response

• Recurrence Assessment

Increasing Emphasis on Clinical Validation:  
PET measurements      Patient Outcomes [Survival, Disease Progression,Morbibity ] 

18 year PET-FDG study at UW ~ 900 Sarcoma patients (scans and outcome data)



Human Sarcoma

• Class of malignant tumors affecting soft conjonctive tissue, cartilage and bone

• Can arise anywhere in the body, frequently hidden deep in the limbs

• Represents ~1% of adult cancers, more prevalent with children (~15-20%), 
~10% of all cancers overall

• 5-year mean survival rate: 
~90% (stage 1), ~75% (stage 2), ~54% (Stage 3) [statistics for the USA]

• Soft tissue sarcomas usually appear as a lump or mass, rarely cause pain, 
swelling, or other symptoms. Often misdiagnosed. Sometimes thought to be 
sports injuries. 

• “Late detection” is not unusual   → potentially advanced stage of development
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Heterogeneity Measurement 
Evaluate Conformity to a Pattern in the Spatial 
Distribution of the Metabolically Active Elements.
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Ellipsoidal Model for Homogeneous Tumor
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Heterogeneity
Measurements
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Heterogeneity

and 

Patient Outcome

Predictor
Variable (X)

Scale %Change in Risk(unit
change in X)

95%
C.I.

P-value

AGE
(years)

16.8 34 (-12,101) 0.150

SUV(max)
(ml/gm)

6.14 -38 (-60,-29) 0.037

Heterogeneity 7.4% 87 (35,160) 0.0002



Roose, Chapman and Maini, SIAM Review, 2008.
Cristini, Gatenby, Sutherland, Casciari, Rasey, Krohn 1986...2010

Necrosis

Necrotic
Center



Tumor Synthesis (Growth Pattern)
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Chemotherapy Response

MODEL:
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Dynamic PET Studies: Scans after Tracer Input



Quantitative Data Analysis:
Separate Delivery and  Retention 
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Residue

AIF

•Parametric (compartmental)

•Non-Parametric (non-compartmental)
O’Sullivan et al. JASA (2009)

•Directly Sampled

•Image Extracted (Statistically Guided)
O’Sullivan et al. IEEE-TMI (2010)

Data



Quantitative Analysis of Dynamic PET Data

BLOOD

FDG

TISSUE

FDG FDG-6-P

0.0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120
Time (minutes)

 Cp FLT  Cp metArterial Input (AIF)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 30 60 90 120

Time (minutes)

Tumor BrainTissue Data     

Residue
(Impulse 
Response)

0
( )( () ) ( )T B P

t
PC t V Ct s sC dRt s= −∆ + −∆− ⋅∫

Flux Flow

VD Extraction

Functionals



Nonparametric Residue Analysis
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Meier and Zierler (1954), Bassingthwaighte (1971),  Ostergaard et al. (1996)

Estimation based  a cross-validated regularization procedure involving 
Positivity/Monotonicity and Smoothness Constraints.
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Most Widely Used Compartmental Model for PET
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Implies a  Residence Density of the form:



PET FDG  Data from Normal Brain ROIs

Nonparametric and Compartmental Analysis
[ A formal statistical test rejects the compartmental model, p-value=0.046 ]

Cerebellum ROI



Nonparametric Residue Analysis
vs Parametric Compartment Model

120 TACs:10 Brain Regions and 12 Subjects

(analysis uses a reference distribution constructed by simulation –
c.f. Cox, Wahba, Yandell, Wang, Li, Raz etc)



Adaptation for Parametric Mapping

Tissue Concentration Model (voxel x and time t)

Mixture Analysis of Residence Density

Residue Function



Residue Analysis of Segment Time Course Patterns

A        

Residence

Residence

Time-Course

Time-Course

B  



RMS
Data

Residual
PCA

RMS
Residual

Temporal

Spatial

Diagnostic 
Assessment:

Voxel-Level 
Residuals



m
l/gm

l/g

m
l/g

/m
in

K VD VP

m
l/1

0g
/m

in

m
in

Flux MTT Ext
0.0

0.0 0.0 0.0

0.00.0

0.5

0.52.0

0.60.3

0.5



Th
ym

id
in

e
Ve

ra
pa

m
il

m
L

/g
/m

in

0.0

W
at

er
0.025

0.0

0.20

Uptake

Uptake

Uptake

m
L

/g

0.0

2.21

m
L

/g
/m

in

0.0

0.37

2.60

K

K

K

m
L

/g
/m

in
m

L
/g

/m
in

m
L

/g

0.0

0.13

VP

VD

Flux



Variance of Residues

(Greenwood’s Formula)

Approximation:

Flow AIFMean

-> Variation in Functionals by the Delta-Method



Regional
Voxel-Level
Residues and
Flow 
Distribution

Standardized
Voxel-Level
Residues
(Measured)



Some Analysis

Poisson with mean 

Asymptotic Variance of MLEs



Summary

• PET in Cancer Imaging  
Diagnosis/Staging
Response Assessment
Treatment Planning

• Spatial and Temporal Aspects of PET Data Important

• Detailed Measurement and Modeling of the 
Disease Process is key to adaptive treatment

Statistics (Wisconsin style) has much to offer.
(Please keep it going for another 50… at least!) 
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