Among the things | learned as a student at Madison are
1) think as Bayesian -- George Box & George Tiao
2) think in function spaces -- Grace Wahba

Today’s talk will show that | haven’t forgotten these lessons

Optional Polya Tree & Bayesian
Inference



Example 1: modeling flow cytometry data by a density in RX
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Genotype of subject

Disease Status
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Example 2:

Modeling joint status of
markers by a 3¥ table



The Bayesian nonparametric problem

* X; X, ..Xx,areindependentr.v. on a space Q
e drawn from a common distribution Q on Q

 Qis unknown but assumed to have a prior
distribution 7.

Our task is to construct a class of priors for the
distribution Q so that Bayesian Inference on Q is
feasible

Want this to work well in moderate dimensions, e.g.
k=10



Ferguson’s conditions (1973)

e Support of mt should be large
 The corresponding posterior should be tractable

Dirichlet process prior with parameter a:

Q( ) is a stochastic process indexed by subsets of Q such
that for disjoint sets A’’s,

(Q(A), i=1,..k) ~ Dirichlet (a(A)), i=1,...k)
where a is a measure on Q.

Ferguson shows that this prior satisfies the two conditions.

However, when Q is Euclidean the random distribution Q
does not possess a density



Density is needed in many applications

e Estimating Kullback-Leibler divergence
[ log(g/f) f(x)dx

e Error distribution for regression
y. = g(x.; 0) + & where € has density q( )

Likelihood (8 | q) =TT aly;-g(x;; 8))



Partitioning scheme

Suppose Q can be partitioned in one of M ways:
Forj=1, 2, ..., M,

() = U Q) where 2 ’s are disjoint

Each level-1 elementary region Q’;i can be further

partitioned in one of several ways into level-2
elementary regions:

Let A" be the set of elementary regions with level =k,

A%) be the set of elementary regions with level < k



AL,

A2,

12
A21

12
A22

In general, A, = k" part of the j" way to partition A



Some Examples
EXAMPLE 1.

Q={xr=(21.....7,) :x; € {1,2}}
':{:Ir:arj:k}, k=1or?2

()12 S |
b2 = xy = ki aj, = ko), ete.

In this example, the number of ways to partition a level-£ elementary region
decreases as k 1ncreases.

EXAMPLE 2.
Q= {(ry,29,...,2,) :2; € [0, 1]} CR”

If Ais alevel-k elementary region (a rectangle) and m(A) is the midpoint
of the range of x; for A, weset Ay ={x € A:x; <m;(A)} and A; = A\ Ay.
There are exactly p ways to partition each A, regardless of its level.



Piecewise constant density

S &Ber (p), if S=1, QY & uniform on Q, stop.
Else,
draw J=j with probability=A,;

K7

use the jth partition of Q, i.e.,, Q=]
k=1

QW () < 8,
Q) ( | @) ¢ uniform



Plecewise constant density on
partitions of finite depth

Suppose we have drawn Q& supported on a partition
composing of regions from A®

For each region not yet stopped, repeat the
partitioning process

This gives a random distribution Q&1 with a density
g+ that is piecewise constant on a partition with
regions from Alk+1)

Note: this Is just a random recursive partitioning process



Definition of Optional Polya Tree (OPT)

THEOREM 1. Suppose there is a 60 > 0 such that with probability 1,
p(A) > 0 for any region A generated during any step in the recursive par-
titioning process. Then with probability 1, Q) converges in variational dis-
tance to a probability measure (Q that is absolutely continuous with respect
to .

i.e. P{]|gW—q|dx — 0 for some densityq } =1

This random probability measure Q is said to have an Optional
Polya Tree distribution with parameters p (stopping rule), 4
(selection probabilities) and a (probability assignment weights).



OPT prior has large support in L,

THEOREM 2. Let €2 be a bounded rectangle in RP. Suppose that the con-
dition of Theorem 1 holds and that the selection probabilities X\;(A), the
assignment probabilities o’ (A)/ (Zgaf (A)) for all i,j and A € A, are
uniformly bounded away from 0 and 1. Let ¢ = dQ /dy, then for any density
f and any 7 > 0, we have

P( [lat) = f@ldu < 7) >0

Remark: A useful choice for a is

n'f(;—l} = U (4;’) /;J(A) for A € A"



OPT prior Is conjugate
Theorem 3:

The posterior distribution z( Q | X4, ..X,, ) Is also OPT with
1. Stopping probability:

p(Alz) = p(A)Do(A)/D(A)

2. Selection probabilities:

, D(n/ + o’ : , |
P(J = jlz) x A <D(aj) )Hfb(ﬂ?) j=1,....M

3. Allocation of probability to subregions: the probabilities (;’f for subregion

Al i=1,...,K7 are drawn from Dirichlet (n’ + o’ ).

L B(A) = / ¢ (2(A)A) dra(q)

By(A) = u (x(A)|A)




Computation of ®(A) by recursion

- j ;
If A= il“ﬁ

then
M i ol K7
_ D(n/ + o’ j
D(A) = pdy(A) + (1 — p) Z Aj (D( 7) ) H ¢ (4{)
j=1 * =1

where  D(t) =T(t1)...D(tg)/T(t1 + - + 1)



Termination rule for Recursion (case of 2P table)

1. A contains no observation. In this case, ®(A) = 1.

2. Ais a single cell (in the 2P table) containing any number of observa-
tions. In this case, ®(A) = 1.

3. A contains exactly one observation and A is a region where M of the
p variables are still available for splitting. In this case,

o(A)= 27

Similarly, termination rules exist for the continuous case

Thus, Ferguson’s second condition 1s also satisfied.




OPT prior leads to asymptotically consistent inference

THEOREM 4. Let x1,x9,... be independent, identically distributed vari-
ables from a probability measure QQ, w(-) and w(-|xq,....: r,, ) be the prior and
posterior distributions for () as defined in Theorem 3. Then, for any Qg with

a bounded density. 1t holds with QE]X’] probability equal to 1 that
T(Ul.f'] ...... I'”) — 1

for all weak neighborhoods U of Q.

Remark 1: U = {(3: |/y,-{+)d(2 —f."h‘(')dlfjnl <€, 1=12,... .H}

where ¢;(+) 1s a bounded continuous function on €.

Remark 2: It should be possible to get rates in Hellinger distance



Example 1
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Example 2 (continued)
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Comparison of two samples

Xy is @ sample from distribution Q,

X, is @ sample from distribution Q,

The OPT can be used to derive tests statistics for
the equality of the two distributions.

This is not an easy problem in the multivariate
case



One approach based on OPT

Given x,, Q, has an OPT as it posterior

We want to learn a partition for Q, that tells us on
which parts of the sample space is Q, different from

Q,

When deciding whether to stop or continue to
divide A, replace ®,(A) = u(x,(A) |A) by
Do(Al%0)= fo(x,(A) 1A) Ta(da | Xo)

This can be computed by repeating the basic OPT
posterior computation twice



Two simulations of case-control samples

1. Xl, Xg, ce s ,Xlg ~iid. BBI‘HDUIIi(U.E})

2. X1, Xs,...Xgas a Markov Chain with X; ~ Bernoulli(0.5), and P(X; = X;_1|X;_1) =

0.7, while Xy, X1, ... X5 ~;:q Bernoulli(0.5) and are independent of X;,..., Xs.

r

Bernoulli(0.3) if X3 =1and X; =1
Y ~ 4 Bernoulli(0.2) if X; =0 and X;0 =0

Bernoulli(0.1) otherwise

.



True rejection rate

True rejection rate
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For more examples,
go to Li Ma’s oral,
May 19, 2010



An example of partition learned from data

X;=0 X, =1
©=0.032,=059 ©=0.004,=100
=0 Ay =1 A3 =0 A5 =1

o=0%4 £=0296 ©£=03%6 ©£=0298
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