Kriging and Alternatives in Computer Experiments

C. F. Jeff Wu ISyE, Georgia Institute of Technology

- Use kriging to build meta-models in computer experiments, a brief review
- Numerical problems with kriging
- Alternatives to kriging:
 - Regularized kriging, Hybrid kriging
 - Overcomplete basis surrogate model (OBSM)

Why computer experiments?

✓ No need for expensive lab equipments and materials, less costly than physical experiments.

✓ Not affected by human and environmental factors.

Study dangerous or infeasible physical experiments, such as ammunition detonation.

Some examples

Statistical Meta-Modeling of Computer Experiments

Kriging Models

Ordinary Kriging

$$Y(\mathbf{x}) = \mu + Z(\mathbf{x})$$

$$Z(\mathbf{x}) \sim N_n(\mathbf{0}, \ \sigma^2 \varphi(\mathbf{h})) \equiv GP(\mathbf{0}, \ \sigma^2 \varphi(\mathbf{h}))$$

Correlation function

$$- \varphi(\mathbf{0}) = 1$$

- $\varphi(\mathbf{h}) = \varphi(-\mathbf{h})$, (symmetric function)
- $-\varphi$ is a positive semi-definite function

Correlation function

Matérn

$$\varphi(h) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(2\sqrt{\nu}\theta |h| \right)^{\nu} K_{\nu} \left(2\sqrt{\nu}\theta |h| \right)$$

where K_{ν} is the modified Bessel function of order ν

$$v \to \infty$$
, $\varphi(h) \to \exp(-\theta h^2)$

• Power exponential correlation

$$\varphi(h) = \exp(-\theta |h|^q), \quad 0 < q \le 2, \quad 0 < \theta$$

- q = 2 Gaussian correlation function (infinitely differentiate)
- -q=1 Ornstein-Uhlenbeck process ($\nu=1$ in Matern)
- Linear, Cubic correlation

Kriging predictor

Best Linear Unbiased Predictor (BLUP)

$$\hat{y}(\boldsymbol{x}) = \hat{\mu} + r(\boldsymbol{x})' \boldsymbol{R}^{-1} (\boldsymbol{y} - \hat{\mu} \boldsymbol{1}),$$

$$r(\boldsymbol{x})' = (\varphi(\boldsymbol{x} - \boldsymbol{x}_1), \dots, \varphi(\boldsymbol{x} - \boldsymbol{x}_n)),$$

$$\hat{\mu} = \boldsymbol{1}' \boldsymbol{R}^{-1} \boldsymbol{y} / \boldsymbol{1}' \boldsymbol{R}^{-1} \boldsymbol{1},$$

$$\hat{y}(\boldsymbol{x}_i) = y_i \quad \text{an interpolating property*}$$

*required for deterministic simulations

Recent work in kriging

- Calibration of computer model, Kriging with calibration parameters (Kennedy-O'Hagan, 2001), with tuning parameters (Santner et al., 2009)
- Computer simulations with different levels of accuracy (Kennedy-O'Hagan, 2000; Qian et al., 2006; Qian-Wu, 2008)

construction of nested space-filling (e.g., Latin hypercube) designs (Qian-Ai-Wu, 2009, various papers by Qian and others, 2009-date)

Recent work in kriging (cont.)

- Kriging for multiple outputs and functional response (Conti et al., 2009; Conti and O'Hagan, 2010)
- Treed Gaussian Process model (Gramacy and Lee, 2008).
- Kriging (i.e., GP model) with quantitative and qualitative factors (Qian-Wu-Wu, 2008, Han et al., 2009)

construction of sliced space-filling (e.g., Latin hypercube) designs (Qian-Wu, 2009, Qian, 2010)

Maximum Likelihood Estimation

Profile log-likelihood approach

$$Q(\boldsymbol{\theta}) = n \log(\sigma^2(\boldsymbol{\theta})) + \log(\boldsymbol{R}(\boldsymbol{\theta}))$$

where
$$\sigma^2(\boldsymbol{\theta}) = \{\boldsymbol{y} - \hat{\mu}(\boldsymbol{\theta})\mathbf{1}\}/R^{-1}(\boldsymbol{\theta})\{\boldsymbol{y} - \hat{\mu}(\boldsymbol{\theta})\mathbf{1}\}/n$$

$$\hat{\mu}(\boldsymbol{\theta}) = \mathbf{1}'\boldsymbol{R}^{-1}(\boldsymbol{\theta})\boldsymbol{y}/\mathbf{1}'\boldsymbol{R}^{-1}(\boldsymbol{\theta})\mathbf{1}$$

Numerical Instability in $R^{-1}(\theta)$

- $R(\theta)$ is an $n \times n$ matrix, n = sample size
- Its condition number (max e.v./min e.v.) 个 as
 - I. Sample size *n* ↑
 - II. Dimension of input vectors 个 (Peng-Wu, 2010)

Branin function

(Andre, Siarry and Dognon, 2001)

$$f(x_1, x_2) = \left(x_2 - \frac{5 \cdot 1}{4\pi^2} x_1^2 + \frac{5}{\pi} x_1 - 6\right)^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos(x_1) + 10$$

Log-likelihood function (Regular grid: $n = 7^2$)

Regularized Kriging

Introducing a regularizing constant λ into the predictor

$$\hat{y}_{\lambda}(\boldsymbol{x}) = \hat{\mu}_{\lambda} + r(\boldsymbol{x})'(\boldsymbol{R} + \lambda \boldsymbol{I})^{-1}(\boldsymbol{y} - \hat{\mu}_{\lambda}\boldsymbol{1})$$

where
$$\hat{\mu}_{\lambda} = \mathbf{1}'(\mathbf{R} + \lambda \mathbf{I})^{-1}\mathbf{y}/\mathbf{1}'(\mathbf{R} + \lambda \mathbf{I})^{-1}\mathbf{1}$$

Peng and Wu (2010, submitted)

 Similar modification in estimation: maximizing a regularized likelihood

Kriging with nugget effects

Model from spatial statistics

$$Y(\boldsymbol{x}) = \mu + Z(\boldsymbol{x}) + \delta \boldsymbol{\epsilon}$$

BLUP

$$\hat{y}_{\delta}(\boldsymbol{x}) = \hat{\mu}_{\delta} + r(\boldsymbol{x})' \left(\boldsymbol{R} + \frac{\delta^{2}}{\sigma^{2}}\boldsymbol{I}\right)^{-1} (\boldsymbol{y} - \hat{\mu}_{\delta}\boldsymbol{1})$$

$$\hat{\mu}_{\delta} = \frac{\mathbf{1}' \left(\boldsymbol{R} + \frac{\delta^{2}}{\sigma^{2}}\boldsymbol{I}\right)^{-1} \boldsymbol{y}}{\mathbf{1}' \left(\boldsymbol{R} + \frac{\delta^{2}}{\sigma^{2}}\boldsymbol{I}\right)^{-1} \boldsymbol{1}}$$

Algorithm (Ridge Trace)

Root Mean Squared Prediction Error (RMSPE)

RMSPE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (Y(\mathbf{x}_i) - \hat{Y}(\mathbf{x}_i))^2}$$

- (1) Set λ^* as the lower bound and choose a grid point set for λ , say, $(\lambda_1, \ldots, \lambda_k)$, and let i = 1.
- (2) Use λ_i in regularized kriging to estimate $\boldsymbol{\theta}_{\lambda}$.
- (3) Compute the RMSPE. Let i = i + 1.
- (4) Repeat steps 2 and 3 until all k grid points are exhausted.
- (5) The final estimator $\hat{\boldsymbol{\theta}}_{\hat{\lambda}}$ is the one with the lowest RMSPE with $\hat{\lambda}$.

Log-likelihood function, Branin function, (Regular grid: $n = 7^2$)

Log-likelihood $49 \cdot lambda = 1e-04$ ∞ 9 9 10 10 θ_1

Georgia Inst

$$\lambda^* = \frac{n^{1/2}}{\Delta^{1/2} - 1} = 3.3 \times 10^{-7}$$

Regularized Kriging

 10^{-1} 6.1842

 10^{-2} 3.2085

 10^{-3} 1.5605

 10^{-4} 1.0706

 10^{-5} 1.7069

 10^{-6} 2.5104

 10^{-7} 3.2348

Overcomplete Basis Surrogate Model

- Use an overcomplete dictionary of basis functions
- Use linear combinations of basis functions to approximate unknown functions
- Use Matching Pursuit for fast (i.e. greedy) computations
- Choice of basis functions to "mimic" the shape of the surface

Chen, Wang, and Wu (2010, IIE Tran. Q&R)

Surrogate Representation

 Surrogate model: use a linear combination of pre-specified basis functions, i.e.,

$$f(\mathbf{x}) = \sum_{j} c_{j} \phi_{j}(\mathbf{x})$$
, $\mathbf{x} \in \mathbf{x}$

- unitary norm $\|\phi_j\| = 1$
- basis dictionary, $\{\phi_i, j = 1, ..., M\}$
- —no unknown parameter in ϕ_{j} , only unknown are the $linear\ c_{j}$
- Overcomplete: M much larger than data size

Surrogate Model (continued)

- Explored point set: $P_{exp} = \{x_1, ..., x_p\}$.
- Current responses:

$$V_{P \exp} = (f(x_1), ..., f(x_p))^{T}$$

- Use $\sum_{j} c_{j} \widetilde{\phi}_{j}$ to approximate $V_{P \exp}$, $\widetilde{\phi}_{i} = (\phi_{i}(x_{1}),...,\phi_{i}(x_{p}))^{T}$
- Two interesting questions:
 - Choice of the basis functions?
 - Estimation of the linear coefficients C_i ?

Coefficient Inference

- Matching Pursuit Algorithm (Mallat and Zhang, 1993):
 - ullet Infer coefficients by minimizing $\|V_{\scriptscriptstyle P\,
 m exp} \sum_{\scriptscriptstyle j} c_{\scriptscriptstyle j} \widetilde{\phi}_{\scriptscriptstyle j} \,\|$
 - A greedy algorithm: at the *j*th iteration, Let $R^{(j-1)}$ be the current residual vector.

Selected a basis by
$$\widetilde{\phi}_{(j)} = \arg\max_{i} \left\langle R^{(j-1)}, \widetilde{\phi}_{i} \right\rangle$$
:

$$c_{(j)} = c_{(j)} + \left\langle R^{(j-1)}, \widetilde{\phi}_{(j)} \right\rangle,$$

$$R^{(j)} = R^{(j-1)} - \left\langle R^{(j-1)}, \widetilde{\phi}_{(j)} \right\rangle \widetilde{\phi}_{(j)}.$$

Response Surface for Bistable Laser Diodes

• The true surface over a pre-specified grid:

- Search all positive Lyapunov exponents (PLE) (red area)
- PLE corresponds to chaotic light output.

Gabor Functions

- Basis functions:
 - n-dimensional Gabor function

$$g(x) = \exp(-\frac{x^{\mathsf{T}} M x}{2}) \exp(2\pi i A x), x = (x_1, ..., x_n)^{\mathsf{T}}$$

— Two-dimensional Gabor function, i.e. n = 2

$$g(u,v) = \frac{1}{Z} \exp\left[-\frac{1}{2}(\sigma_u u^2 + \sigma_v v^2)\right] \cos\left[\frac{2\pi u}{\lambda} + \varphi\right],$$

$$u = u_0 + x_1 \cos\theta - x_2 \sin\theta$$

$$v = v_0 + x_1 \sin\theta - x_2 \cos\theta$$

Plots of 2-D Gabor Function

Overall Comparisons

Figure 6: Cumulative numbers of PLEs found by using different explored points in 21×21 , 81×81 , and 161×161 grids.

Summary

- Computer experiments/simulations have become popular in engineering and science
- Kriging is the most common method for statistical meta-model building but is more limited for large or complex problems
- Alternatives to kriging are being sought:
 - Tweaking of kriging to achieve stability (regularized, hybrid, tapering, reduced rank)
 - Approximations with fast computations (OBSM, RIDW): but lacking inferential capability

Covariance Matrix Tapering

- Covariance tapering (Kaufman et al., 2008)
 - ✓ Covariance matrix is "tapered" or multiplied element wise by a sparse matrix, to approximate the likelihood.
- Advantages:
 - ✓ Significant computational gains/stability.
 - ✓ Retain interpolating property.
 - ✓ Asymptotic convergence of the tamper estimator.
- But:
 - ✓ The tapering function is isotropic: OK for spatial statistic problems, but not applicable to engineering problems.
 - ✓ The tapering radius needs to be determined.

Rank Reduction

- Fixed rank kriging (Cressie-Johannesson, 2008)
 - ✓ A flexible family of non-stationary covariance function is defined by using a set of basis functions that are fixed in number (smaller than the data size n).
- Advantage:
 - ✓ Reduce the computational cost of kriging to O(n).
- But:
 - ✓ How to choose the appropriate basis functions.
 - ✓ Not an interpolator.

Upper bound

Upper bound

$$\kappa_2^p(\boldsymbol{R}(\boldsymbol{\theta}) + \lambda \boldsymbol{I}_n; \boldsymbol{X}) \leq \prod_{\substack{k=1 \\ \exp(-\theta_k) = 1 \Leftrightarrow \theta_k = 0}}^p \kappa_2^1(\boldsymbol{R}(0) + \lambda \boldsymbol{I}_{n_k}; D_k)$$

The worst case of a correlation matrix

Inverse Distance Weighting (IDW)

Inverse Distance Weighting (Shepard, 1968):

$$\hat{y}(\boldsymbol{x}) = \frac{\sum_{k=1}^{n} w_k(\boldsymbol{x}) y_k}{\sum_{i=1}^{n} w_i(\boldsymbol{x})}.$$

-
$$w_i(x) = 1/d(x, x_i)^2$$
.

-
$$d(x, x_i) = \left\{ \sum_{j=1}^p (x_j - x_{i,j})^2 \right\}^{1/2}$$
.

Simple computation but poor prediction.

Regression-Based Inverse Distance Weighting (RIDW)

Add regression part to IDW (Joseph and Kang, 2009):

$$\hat{y}(\boldsymbol{x}) = \mu(\boldsymbol{x}; \boldsymbol{\beta}) + \frac{\sum_{k=1}^{n} w_k(\boldsymbol{x}) e_k}{\sum_{i=1}^{n} w_i(\boldsymbol{x})}$$

- $\mu(\boldsymbol{x}_k; \boldsymbol{\beta})$ = mean part; can be linear, nonlinear, nonparametric.
- $-e_k = y_k \mu(\mathbf{x}_k; \boldsymbol{\beta}) = y_k \mu_k.$
- $w_i(\boldsymbol{x}) = \frac{\exp\{-d^2(\boldsymbol{x}, \boldsymbol{x}_i)\}}{d^2(\boldsymbol{x}, \boldsymbol{x}_i)}.$ (faster convergence than IDW)
- $d(\boldsymbol{x}, \boldsymbol{x}_i) = \sqrt{\sum_{j=1}^p \theta_j (x_j x_{i,j})^2}.$

Comparisons Between RIDW and Kriging

Standardized RMSPE

CPU time in simulation

Lower bound on λ

Lower bound

$$\lambda^* = \inf \left\{ \lambda \middle| \prod_{k=1}^p (1 + n_k / \lambda) < \Delta \right\}$$

where

$$\epsilon = 2^{-52} \approx 2.22 \times 10^{-16}$$

Machine accuracy

(or unit round-off)

$$\Delta = 1/(10\epsilon) = 4.5 \times 10^{14}$$

