Kriging and Alternatives
In Computer Experiments

C. F. Jeff Wu
ISYE, Georgia Institute of Technology

e Use kriging to build meta-models in computer
experiments, a brief review

* Numerical problems with kriging
e Alternatives to kriging:
- Regularized kriging, Hybrid kriging
- Overcomplete basis surrogate model (OBSM)
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Why computer experiments?

v/ No need for expensive lab equipments and materials, less
costly than physical experiments.

v/ Not affected by human and o’ Study dangerous or infeasible physical
environmental factors. experiments, such as ammunition
detonation.
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Some examples

Chemical & Biology:
nanoparticle and

polymer synthesis...

assembling. .. Z,
e ~  Computer
Cyinte & Experiments/
v Simulations

Houd Bolis-—-

Aerospace:
aicraft design.
dynamics. ..
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Statistical Meta-Modeling of Computer Experiments

Robustness. optimization

Surrogate model

(Kriging)

1
1
More FEA mns i
1
1

v

Computer modeling

(finite-element simulation)

Noise simulations.
eITor propagation

Physical experiment
or observations
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Kriging Models

 Ordinary Kriging
Y(X)=u+2Z(X)
Z(x) ~ N, (0, o’p(h))=GP(0, o’p(h))
e Correlation function
— 9(0)=1
— ¢(h) = p(-h), (symmetric function)
— @is a positive semi-definite function
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Correlation function
e Matérn
o(h) = —— (2Vvoln]) K, (2vvoln|)
r(v)2" Y
where K, is the modified Bessel function of order v
v > o, ¢(h) - exp(—6h?)
* Power exponential correlation

o(h) = exp(—e\h\q), 0<q<2 0<@

2 Gaussian correlation function (infinitely differentiate)
1

-
— Ornstein-Uhlenbeck process (v=1 in Matern)

e Linear, Cubic correlation
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Kriging predictor

e Best Linear Unbiased Predictor (BLUP)

n=1R'y/TR'1-

y(X;) = Y: aninterpolating property*

*required for deterministic simulations
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Recent work in kriging

e Calibration of computer model, Kriging with
calibration parameters (Kennedy-O’Hagan, 2001),
with tuning parameters (Santner et al., 2009)

e Computer simulations with different levels of
accuracy (Kennedy-O’Hagan, 2000; Qian et al.,
2006; Qian-Wu, 2008) ===

construction of nested space-filling (e.g., Latin
hypercube) designs (Qian-Ai-Wu, 2009, various
papers by Qian and others, 2009-date)
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Recent work in kriging (cont.)

e Kriging for multiple outputs and functional
response (Conti et al., 2009; Conti and O’Hagan,
2010)

 Treed Gaussian Process model (Gramacy and Lee,
2008).

e Kriging (i.e., GP model) with quantitative and
qualitative factors (Qian-Wu-Wu, 2008, Han et al.,

2009) w=)

construction of sliced space-filling (e.g., Latin
hypercube) designs (Qian-Wu, 2009, Qian, 2010)
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Maximum Likelihood Estimation

* Profile log-likelihood approach

Q(0) = nlog(c*(0)) + log
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Numerical Instability in R-1(06)

e R(®)is an nxn matrix, n=sample size

e |ts condition number (max e.v./min
e.v.) T as

|. Sample size n T
Il. Dimension of input vectors T
(Peng-Wu, 2010)
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Branin function
(Andre, Siarry and Dognon, 2001)

[lry,20) = | w9 — yRCLE + —1 - 6] +10(1— o cos(xy) + 10
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Log-likelihood function
(Regular grid: n = 72)
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Regularized Kriging

e Introducing a regularizing constant A into the
predictor

() = fix +7(x R@ — jix1)
where [i), = 1’(R®1y/1’(R®11

Peng and Wu (2010, submitted)

e Similar modification in estimation: maximizing
a regularized likelihood
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Kriging with nugget effects

* Model from spatial statistics

Y(x)=pu+ Z(x)+ e
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Algorithm (Ridge Trace)

e Root Mean Squared Prediction Error (RMSPE)

1< A
RMSPE = [— > (Y(x,)-Y (X))’

N i3

(1) Set A* as the lower bound and choose a grid point set for A, say, (Af,..., \x), and
let @ = 1.

(2) Use \; in regularized kriging to estimate 0.
(3) Compute the RMSPE. Let i =i+ 1.
(4) Repeat steps 2 and 3 until all £ grid points are exhausted.
(5) The final estimator é;\ is the one with the lowest RMSPE with \.
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Log-likelihood function, Branin
function, (Regular grid: n = 72)

Log-likelihood
n= 49 .lambda= 1e-04
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71‘1/2

A=
A1/2 — 1
O
—
A RMSPE
1071 6.1842
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10=2  1.5605 S
10~*  1.0706
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Overcomplete Basis Surrogate Model

e Use an overcomplete dictionary of basis
functions

e Use linear combinations of basis functions to
approximate unknown functions

e Use Matching Pursuit for fast (i.e. greedy)
computations

e Choice of basis functions to “mimic” the shape
of the surface

Chen, Wang, and Wu (2010, //IE Tran. Q&R)
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Surrogate Representation

e Surrogate model: use a linear combination of
pre-specified basis functions, i.e.,

fx)=2:¢c ox), x ex
—unitary norm llgll = 1
—basis dictionary, {¢j,j =1,.. Mj}

—no unknown parameter in ¢, only unknown
are the linear

e Overcomplete : M much larger than data size
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Surrogate Model (continued)

e Explored point set: Poo = ., .. xp}.
e Current responses:

o = () 105)
) Use chj¢j tO apprOX|mate VPexp;

* Two interesting questions:

e Choice of the basis functions?

* Estimation of the linear coefficients C,-?
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Coefficient Inference

 Matching Pursuit Algorithm (Mallat and Zhang,
1993): N
e Infer coefficients by minimizing || Voo — Z,-C,¢j I
e A greedy algorithm: at the jth iteration,
Let RU-1) be the current residual vector.
Selected a basis by ¢, , = arg maxi<R(”),%> :

_ (i-1)
Ciiy = Ca +<R ’¢<j)>’
() _ p(i-) _ /pGi-)  \7
R =R <R ’¢(j>>¢(j)-
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Response Surface for Bistable Laser Diodes

e The true surface over a pre-specified grid:
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e Search all positive Lyapunov exponents (PLE) (red area)
e PLE corresponds to chaotic light output.
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Gabor Functions

e Basis functions:

— n-dimensional Gabor function

X" MXx
g(X) =exp(- )expRAAX), X = (X, X,)"
— Two-dimensional Gabor function, i.e.n=2
1 1 2TU,
g(u,v) = Eexp —i(aufu? + (T,Ufng)] COS KU + cp] ;
w = wug+ x1cosl — xosinf
v = wg+axisinf — xocosh
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Plots of 2-D Gabor Function
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Overall Comparisons

Figure 6: Cumulative numbers of PLEs found by using different explored points in 21 x 21, 81 x 81,

and 161 x 161 gnds.
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Summary

e Computer experiments/simulations have
become popular in engineering and science

e Kriging is the most common method for
statistical meta-model building but is more
limited for large or complex problems

e Alternatives to kriging are being sought:

— Tweaking of kriging to achieve stability
(regularized, hybrid, tapering, reduced rank)

— Approximations with fast computations (OBSM,
RIDW): but lacking inferential capability
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Covariance Matrix Tapering

. Covariance tapering (Kaufman et al., 2008)

v" Covariance matrix is “tapered” or multiplied element
wise by a sparse matrix, to approximate the likelihood.

. Advantages:

v" Significant computational gains/stability.
v" Retain interpolating property.
v' Asymptotic convergence of the tamper estimator.

. But:

v'The tapering function is isotropic: OK for spatial statistic
problems, but not applicable to engineering problems.
v" The tapering radius needs to be determined.
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Rank Reduction

- Fixed rank kriging (Cressie-Johannesson, 2008)
v" A flexible family of non-stationary covariance function
Is defined by using a set of basis functions that are fixed
In number (smaller than the data size n).

. Advantage:
v" Reduce the computational cost of kriging to O(n).

. But:

v"How to choose the appropriate basis functions.
v"Not an interpolator.
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Upper bound

e Upper bound

D
Kh(R(O) + AL: X) < [] x + A, Dy)
=1

e The worst case of a correlation matrix
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Inverse Distance Weighting (IDW)

* Inverse Distance Weighting (Shepard. 1968):

- dz. ) = { i1 (5 — iﬂi,j)g}

_ 22:1 Wy (2 )Yy

2?21 w;(x)

1/2

—  Simple computation but poor prediction.
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e

Regression-Based Inverse Distance Weighting (RIDW)

*  Add regression part to IDW (Joseph and Kang. 2009):

§(w) = u(w; B) + HL LT

i—=1 Wi {Eﬂ}

— p(@p;B) = mean part: can be linear. nonlinear. nonparametric.

er = Y — @ B) = Yie — L.

— wi(e) = T {—d*(a, &)} (faster convergence than IDW)

d?(@x,x;)
= d(@, @) = \ /30, 65(x; — zi5)2
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Comparisons Between RIDW and Kriging

Standardized RMSPE CPU time in simulation
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Lower bound on A

e Lower bound

A = inf {)\

where
€ =252 2 9299%1016

ﬁ(l + /) < A}

k=1

(or unit round-off)

{Machine accuracy A — 1/(106) — 45 % 1014
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