
Sparse modeling:

some unifying theory and ”word-imaging”

Bin Yu

UC Berkeley
Departments of Statistics, and EECS

Based on joint work with: Sahand Negahban (UC Berkeley)
Pradeep Ravikumar (UT Austin)
Martin Wainwright (UC Berkeley)

B. Gawalt, J. Jia, L. Miratrix, L. El Ghouai
S. Clavier (International Relations, SFSU)



IT Revolution → Data Revolution

Modern data problems in science and engineering (p and n large)

Examples:
! genomics
! remote sensing
! imaging science (e.g., medicine, astronomy etc.)
! neuroscience

Modern data problems in social sciences (p and n large)

Examples:
! document clustering
! natural language processing
! social networks (e.g FEC (Federal Election Campaign) data)
! Word-imaging: how is ”China” portrayed in NYT international section?



A Tidy Model of How the World Works



Standards and Practices

• To be persuasive we
must be believable;
to be believable we
must be credible; to
be credible we must
be truthful.

• Edward R.

Murrow

... versus...

• You supply the
photographs, and I’ll
supply the war.

• William

Randoph Hearst



Improve News Media Analysis, Improve News
Media, Improve How the World Works

• Holes in current approach
• Time and labor constraints
• Case study approach too prone to bias

• Statistical machine learning techniques
• Fast, scale well
• Reproducible results
• Designed around predictive tasks

• Harness machine learning to power media studies
• New predictive framework needed for media study
• New design guidelines and metrics needed for machine learning



Our application: word image in the New York
Times

• Word Image: a small set of words describing/distinguishing a
topic

• As a predictive problem:
• Predict appearance of a query word q in a document from the

document’s use of other words

• Predictive model must be interpretable
• Predictor weights must directly and simply drive label
• No. of predictors used must be few: sparse model

approximation
• The faster predictors can be computed, the better

• Chosen predictor words form a set known as the Word Image for
q

• Word image must be evaluated two ways:
• Can labels (appearance indicator for q) be effectively predicted?
• Are the chosen words meaningful w.r.t. q?



Solving a modern data problem (word-imaging)

Data processing (much work, done by EE collaborators)

Subject knowledge (political scientist, international relation expert)

Methodology or algorithms (!1 logistic regression)

Theory (understanding sparse methods in idealized situations to build
intuition in high-dim space)

Validation (human experiments)



Recent lessons from high-dim (p large) theory

Low dimensional structures are needed for meaningful information
extraction on parameters (”consistency” and ”rates”)

! when p ! n, require additional constraints on structure/complexity
" sparsity
" low-rank matrices
" manifold

Sparse structures are well suited for interpretation, visualization, and
computation/transmission/storage.

! Pursuit of ”simplicity” – modern model selection
! Sparsity holds well for some problems and necessary for others.
! Much research on sparse modeling lately...



Remainder of the talk

Unified analysis on !2 estimation error for M-estimation with
decomposable regularizers in high-dim (p large)

”Word-imaging” through sparse predictive modeling and human
validation



Loss functions and regularization

Model class: parameter space Ω ⊂ Rp, and set of probability
distributions {Pθ | θ ∈ Ω}

Data: samples Xn
1 = (xi, yi), i = 1, . . . , n are drawn from unknown Pθ∗

Estimation: Minimize loss function plus regularization term:

θ̂λn︸︷︷︸
Estimate

∈ arg min
θ∈Rp

{
Ln(θ;Xn

1 )
︸ ︷︷ ︸

Loss function

+ λn r(θ)
︸ ︷︷ ︸

Regularizer

}
.

Analysis: Given some loss d(·) (e.g., !2 norm), bound d(θ̂λn
− θ∗) under

high-dimensional scaling (n, p) → +∞.



Example: Sparse linear regression

= +n
S

wy X θ∗

Sc

n × p

Set-up: noisy observations y = Xθ∗ + w with sparse θ∗

Estimator: Lasso program

θ̂λn
∈ arg min

θ

1

n

n∑

i=1

(yi − xT
i θ)2 + λn

p∑

j=1

|θj |

Some past work: Tibshirani, 1996; Chen et al., 1998; Donoho/Huo, 2001; Tropp, 2004;

Fuchs, 2004; Efron et al., 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho,

2005; Zhao & Yu, 2006; Zou, 2006; Wainwright, 2006; Koltchinskii, 2007; Tsybakov et al.,

2007; van de Geer, 2007; Bickel et al., 2008 ....



Example: Structured (inverse) covariance matrices

Zero pattern of inverse covariance

1 2 3 4 5

1

2

3

4

5

1 2

3

4
5

Set-up: Samples from random vector with sparse covariance Σ or sparse
inverse covariance Θ∗ ∈ Rp×p.

Estimator:

Θ̂ ∈ arg min
Θ

〈〈
1

n

n∑

i=1

xix
T
i , Θ〉〉 − log det(Θ) + λn

∑

i$=j

|Θij |1

Some past work: Yuan & Lin, 2006; d’Asprémont et al., 2007; Bickel & Levina, 2007; El

Karoui, 2007; Rothman et al., 2007; Zhou et al., 2007; Friedman et al., 2008; Ravikumar et

al., 2008, Lam and Fan, 2009, Cai and Zhou, 2009



Unified analysis

many high-dimensional models and associated results case by case

is there a core set of ideas that underlie these analyses?

Two key properties
! decomposability of regularizer r
! restricted strong convexity of loss function L

Main theorem

Some consequences



Important properties of regularizer/loss

Strong convexity of cost (curvature captured in Fisher Info when p fixed):

δL

θ̂θ

∆

δL

θ̂θ

∆

(a) High curvature: easy to estimate (b) Low curvature: harder



Important properties of regularizer/loss

1 Restricted strong convexity (RSC) (courtesy of high-dim):

! loss functions are often flat in many
directions in high dim

! “curvature” needed only for
directions ∆ ∈ C in high dim

! loss function Ln(θ) := Ln(θ;Xn
1 ) satisfies

Ln(θ∗ + ∆) − Ln(θ∗)
| {z }

Excess loss

− 〈∇Ln(θ∗)
| {z }

score
function

, ∆〉 ≥ γ(L) d2(∆)
| {z }
squared
error

for all ∆ ∈ C.
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2 Decomposability of regularizers
makes C small in high-dim:

! for subspace pairs (A, B⊥)
where A represents model
constraints:

r(u+v) = r(u)+r(v) for all u ∈ A and v ∈ B⊥

! forces error ∆ = bθλn − θ∗ to C

C



Main theorem
Estimator

θ̂ ∈ arg min
θ∈Rp

{
Ln(θ;Xn

1 ) + λnr(θ)
}
.

Subspace pair: (A, B⊥), where A represents model constraints.

Theorem (Negahban, Ravikumar, W., & Yu, 2009)

Say θ∗ belongs to the subspace A, and regularizer decomposes across pair
(A, B⊥) with A ⊆ B. With regularization constant chosen such that

λn ≥ 2r∗(∇L(θ∗;Xn
1 )), then any solution θ̂ satisfies

d(θ̂ − θ∗) ≤
1

γ(L)

[
Ψ(B) λn

]
.

Quantities that control rates:

restricted strong convexity parameter: γ(L)

dual norm of regularizer: r∗(v) := sup
r(u)=1

〈v, u〉.

optimal subspace const.: Ψ(B) = sup
θ∈B\{0}

r(θ)/d(θ)



Theorem (Negahban, Ravikumar, Wainwright & Y. 2009)

Say regularizer decomposes across pair (A,B⊥) with A ⊆ B, and restricted
strong convexity holds for (A,B⊥) and over C. With regularization constant

chosen such that λn ≥ 2r∗(∇L(θ∗;Xn
1 )), then any solution θ̂λn

satisfies

d(θ̂λn
− θ∗) ≤

1

γ(L)

[
Ψ(B)λn

]
+

√

2
λn

γ(L)
r(πA⊥(θ∗))

Estimation error Approximation error

Quantities that control rates:

restricted strong convexity parameter: γ(L)

dual norm of regularizer: r∗(v) := sup
r(u)=1

〈v, u〉.

optimal subspace const.: Ψ(B) = sup
θ∈B\{0}

r(θ)/d(θ)



Summary of unified analysis
! decomposability of regularizer r leads to ”small” constraint set in high-dim
! restricted strong convexity (RSC) of loss functions needed on small set

actual rates determined by:
! noise measured in dual function r∗

! subspace constant Ψ in moving from r to error norm d
! restricted strong convexity constant

recovered some known results as corollaries:
! sparse linear regression with Lasso
! multivariate group Lasso
! inverse covariance matrix estimation

derived some new results on:
! low-rank matrix estimation
! weak sparsity and generalized linear models
! other models?



Our application: word image in the New York
Times

• Word Image: a small set of words describing/distinguishing a
topic

• As a predictive problem:
• Predict appearance of a query word q in a document from the

document’s use of other words

• Predictive model must be interpretable
• Predictor weights must directly and simply drive label
• No. of predictors used must be few: sparse model

approximation
• The faster predictors can be computed, the better

• Chosen predictor words form a set known as the Word Image for
q

• Word image must be evaluated two ways:
• Can labels (appearance indicator for q) be effectively predicted?
• Are the chosen words meaningful w.r.t. q?



l1 Regularized Logistic Regression (L1LR)

LL1LR(β) = −
m

∑

i=1

log
(

1 + exp(−yi(β0 + xT
i β))

)

+ λ

n
∑

j=1

|βj | (1)

• L1LR loss function encourages fitting to the data, discourages
non-zero values of β

• As λ → ∞, βj → 0 ∀j = 1, . . . , n

• By binary search, isolate value of λ which leaves ∼ 15 nonzero
predictors

• Greater computational complexity than previous four methods,
but still solved efficiently



Selected features: “CHINA”

COOC DTF BNS CHI L1LR
year killing [not] recur recurring korea
chinas institutions [not] recurring purified united
north view [not] stalins [not] nazis north
beijing larger [not] kenya marches global
government history [not] marches [not] holocaust countries
states outside [not] eradicate [not] perpetrators russia
mr place [not] victims eradicate states
united death [not] goldhagen [not] kenya chinas
chinese russia [not] holocaust stalins beijing
said world [not] killing goldhagen chinese



Predictive Performance Results

• L1LR, CHI, and DTF
do not have significant
differences from each
other

• L1LR, CHI, and DTF
all perform
significantly better
than both COOC and
BNS



Human Reader Survey

(Few questions were misidentified in part B)



Human Survey Results

Scheme a Scheme b % a n p1 %∆a,b p2 −log B p-value
L1LR COOC 70 23 0.115 9 0.300 3.4 0.151
L1LR DTF 60 22 0.503 31 0.000 8.3 0.002

L1LR CHI 95 26 0.000 46 0.000 17.1 0.000

L1LR BNS 94 21 0.000 50 0.000 15.8 0.000

COOC DTF 62 25 0.383 11 0.257 2.3 0.327
COOC CHI 95 27 0.000 26 0.001 17.0 0.000

COOC BNS 75 24 0.077 43 0.000 10.2 0.000

DTF CHI 67 26 0.302 25 0.001 8.1 0.003

DTF BNS 79 26 0.057 26 0.001 9.8 0.001

CHI BNS 80 28 0.109 -2 0.785 2.5 0.297

• L1LR significantly bests all but COOC

• COOC not significantly preferred over cousin DTF

• CHI and BNS roundly rejected, except between each other



Summary and future directions

L1LR success indicates effectiveness of sophistication in ML approaches

Traditional ML practices wouldn’t yield these images – new design
criteria were applied

Scale and complexity can be easily accomodated (used BBR from
Madigan group)

Posing journalism analysis problems in a predictive framework in a way
that takes advantage of these and future tools should be encouraged

Dynamic word-imaging (was ”China” portrayed differently last year?)

Evidence for increased political polarization based on parties’ platforms?

Website up and running soon for collaborators?

Building semantics into penalty for better word-images?


