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6. Model Selection for Multiple QTL

• reality of multiple QTL
• selecting a class of QTL models
• comparing QTL models

– QTL model selection criteria
• assessing performance of model selection 
• issues of detecting epistasis
• searching through QTL models: ch 7
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what is the goal of QTL study?
• uncover underlying biochemistry

– identify how networks function, break down
– find useful candidates for (medical) intervention
– epistasis may play key role
– statistical goal: maximize number of correctly identified QTL

• basic science/evolution
– how is the genome organized?
– identify units of natural selection
– additive effects may be most important (Wright/Fisher debate)
– statistical goal: maximize number of correctly identified QTL

• select “elite” individuals
– predict phenotype (breeding value) using suite of characteristics 

(phenotypes) translated into a few QTL
– statistical goal: mimimize prediction error
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6.1 reality of multiple QTL
• evaluate objective

– likelihood or posterior
• search over “space” of genetic architectures

– number and positions of loci
– gene action: additive, dominance, epistasis
– how to efficiently search the model space?

• select “best” or “better” model(s)
– what criteria to use? where to draw the line?

• estimate “features” of model
– means, variances & covariances, confidence regions
– marginal or conditional distributions
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advantages of multiple QTL approach
• improve statistical power, precision

– increase number of QTL detected
– better estimates of loci: less bias, smaller intervals

• improve inference of complex genetic architecture
– patterns and individual elements of epistasis
– appropriate estimates of means, variances, covariances

• asymptotically unbiased, efficient
– assess relative contributions of different QTL

• improve estimates of genotypic values
– less bias (more accurate) and smaller variance (more precise)
– mean squared error = MSE = (bias)2 + variance
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limits of estimation for QTL?
• marker assisted selection (Bernardo 2001 Crop Sci)

– 10 QTL ok, 50 QTL are too many
• phenotype better predictor than genotype when too many QTL
• increasing sample size does not give multiple QTL any advantage

– hard to select many QTL simultaneously
• 3m possible genotypes to choose from

– sampling & chance variation: only see some patterns
• genetic linkage = multi-collinearity (multiple regression)

– collinearity leads to correlated estimates of gene effects
– precision of each effect drops as more predictors are added

• want to balance bias and variance
– a few QTL can dramatically reduce bias
– many predictors (QTL) can increase variance

• depends on sample size, heritability, environmental variation
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QTL below limits of detection?

• problem of selection bias
– QTL of modest effect detected sometimes
– their effects are biased upwards when detected

• how can we avoid sharp in/out dichotomy?
– caution about only examining the “best” model
– consider probability that a QTL is in the model

• build m = number of QTL detected into QTL model
– directly allow uncertainty in genetic architecture
– model selection over number of QTL, architecture
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6.2 selecting a class of QTL models
• number of QTL

– single QTL
– multiple QTL: known or unknown number

• location of QTL
– known locations
– widely spaced (no 2 in marker interval) or arbitrarily close

• gene action
– additive (A) and/or dominance (D) effects
– epistatic effects

• statistical hierarchy (AA, AD, DA, DD)
• tree-structured contrasts (qqq/qqq vs. other 8 genotypes)

– phenotype distribution (normal, binomial, Poisson, …)
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normal phenotype
• trait = mean + genetic + environment
• pr( trait Y | genotype Q, effects θ )
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typical assumptions
• normal environmental variation

– residuals e (not Y!) have bell-shaped histogram

• genetic value GQ is composite of m QTL
– Q = (Q1, Q2,…,Qm)

• genetic effect uncorrelated with environment
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F2 intercross phenotype model
• here assume only one QTL
• genotypes QQ, Qq, qq
• genotypic values GQQ, GQq, Gqq

• decompose as additive, dominance effects
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partitioning multiple QTL

• partition of genotypic value (no epistasis)

• partition of genetic variance

• partition of heritability h2
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6.3 comparing QTL models

• residual sum of squares
• information criteria

– Bayes information criteria (BIC)
• Bayes factors
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residual sum of squares
• residual sum of squares = RSS

– imagine dense marker map, or only examine markers
– (deviation of phenotype from genotypic value)2

– RSS = sumi (Yi – µ – GQi)2

– RSS never increases as model grows in size
– goal: small RSS with "simple" model

• degrees of freedom
– model degrees of freedom p

• p = m for backcross with m QTL
• p = 2m for F2 intercross with m QTL
• more model df when epistasis allowed

– error degrees of freedom dfe = n – p
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classical linear models criteria

• mean squared error = MSE
– MSE = RSS/dfe = (bias)2 + variance
– bias/variance tradeoff is key issue!

• classical linear models criteria
– Mallow's Cp = RSS(p)/MSE(full) – (n – 2p)

• balances bias with increased variance
• sensitive to estimate of MSE for "fullest" model

– adjusted R2 = 1 – (1 – R2)(n – 1)(n – p)
• common practice to adjust for optimistic explained variation

– both may yield too large a model
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resampling approaches
• bootstrap

– resample with replacement from data
• cross-validation

– repeatedly divide data into estimation and test sets
• sequential permutation tests

– condition on QTL already in model
– stop when added QTL is not significant

• disadvantage for model selection
– focus on best prediction of phenotype
– computationally expensive
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information criteria: RSS
• maximum likelihood with a penalty

– penalize model "complexity" (many parameters)
– balance fit (likelihood) with model complexity
– normal data: likelihood = (n/2)log[RSS(p)]

• common information criteria:
– Akaike AIC = log[RSS(p)] + 2 p / n
– Bayes/Schwartz BIC = log[RSS(p)] + p log(n) / n
– BIC-delta BICδ = log[RSS(p)] + δ p log(n) / n
– Hannon-Quinn HQIC = log[RSS(p)] + p log[log(n)] / n
– general form: IC = log[RSS(p)] + p D(n) /n
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rationale/intuition
• minimizing IC ≈ using threshold on LOD

– LOD = (n/2) log10 [RSS(p2)/RSS(p1)]
• p2 = df for larger model; p1 = df for reduced model

– threshold = (p1–p2) D(n) / 2 log(10)
• Broman-Speed (2002) recommendation

– pick D(n) = threshold / 2 log(10)
• δ = 2 threshold / log10(n)

– threshold ≈ 2.5 for genome-wide 5% level
• δ = 2.56, 2.10, 1.85 for n = 100, 250, 500
• BICδ ≈ log[RSS(p)] + 2.56 p log(n) / n when n = 100
• BICδ ≈ log[RSS(p)] + 11.5 p / n
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recall: from RSS to LR to LOD
• normal data at a marker

– RSS(p) = sumi (Yi – µ – GQi)2

• depends on data and model with p parameters
– LR = ratio of likelihoods for two models

• p2 = df for larger model; p1 = df for reduced model
– 2 log(LR) = n log [RSS(p2)/RSS(p1)]
– LOD = log10 (LR) = log(LR)/log(10)

• normal data for interval mapping
– likelihoods are more complicated

• mixture of RSS across possible genotypes
• same relationship of LR to LOD

• non-normal data: RSS replaced by deviance (later)
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information criteria: likelihoods
• L(p) = likelihood  for model with p parameters
• common information criteria:

– Akaike AIC = –2 log[L(p)] + 2 p
– Bayes/Schwartz BIC = –2 log[L(p)] + p log(n)
– BIC-delta BICδ = –2 log[L(p)] + δ p log(n)
– Hannon-Quinn HQIC = –2 log[L(p)] + p log[log(n)]
– general form: IC = –2 log[L(p)] + p D(n)

• comparison of models
– LR(p1,p2) = L(p2) / L(p1)
– IC(p1,p2) = 2 log[LR(p1,p2)] + (p2 – p1) D(n)
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information criteria vs. model size

• WinQTL 2.0
• SCD data on F2
• A=AIC
• 1=BIC(1)
• 2=BIC(2)
• d=BIC(δ)
• models

– 1,2,3,4 QTL
• 2+5+9+2

– epistasis
• 2:2 AD

epistasis
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Bayes factors
Which model (1 or 2 or 3 QTLs?) has higher probability 
of supporting the data?

– ratio of posterior odds to prior odds
– ratio of model likelihoods
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Bayes factors & likelihood ratio

• equivalent to LR statistic when
– comparing two nested models
– simple hypotheses (e.g. 1 vs 2 QTL)

• Bayes Information Criteria (BIC) in general
– Schwartz introduced for model selection
– penalty for different number of parameters p
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QTL Bayes factors
• compare models

– by number of QTL m
– by pattern of QTL across genome

• need prior and posterior for models
– prior pr(m) chosen by user
– posterior pr(m|Y,X)

• sampled marginal histogram
• shape affected by prior pr(m)

– prior for patterns more complicate
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computing marginal means

• very difficult based on separate model runs
– run MCMC for model k
– average pr(Y|θk) across model parameters θk

• arithmetic mean
– can be inefficient if prior differs from posterior

• weighted harmonic mean
– more efficient but less stable

• stabilized harmonic mean (SHM)
– average over “nuisance parameters” (e.g. variance)
– more work, but estimate is more stable (Satagopan et al. 2000)

• easy when model itself is a parameter
– reversible jump-MCMC: marginal summaries of number of QTL
– sampling across models of different sizes (tricky--later)

kkkkkk dYY θθθ∫= )model(pr)model,|(pr)model|(pr  | 
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computing QTL Bayes factors
• easy to compute Bayes factors from samples

– sample posterior using MCMC
– posterior pr(m|Y,X) is marginal histogram
– posterior affected by prior pr(m)

• BF insensitive to shape of prior
– geometric, Poisson, uniform
– precision improves when prior mimics posterior

• BF sensitivity to prior variance on effects θ
– prior variance should reflect data variability
– resolved by using hyper-priors

• automatic algorithm; no need for user tuning
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partitioning multiple QTL prior

• partition of genotypic value (no epistasis)

• partition of genetic variance

• partition of heritability h2
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• phenotype influenced by genotype & environment
pr(Y|Q,θ) ~  N(GQ , σ2), or Y = µ + GQ + environment

• partition mean into separate QTL effects
GQ = main effects + epistatic interactions
GQ = θ1Q + . . . + θmQ + . . . 

• priors on mean and effects
µ ~  N(µ0, κ0σ2) grand mean

GQ ~  N(0, κ1σ2) model independent genotypic effect
θjQ ~  N(0, κ1σ2/m) effects down-weighted by m

• determine hyper-parameters via Empirical Bayes

multiple QTL phenotype model
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• phenotype influenced by genotype & environment
pr(Y|Q,θ) ~  N(GQ , σ2), or Y = µ + GQ + environment

• relation of posterior mean to LS estimate
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BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior
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B. napus 8-week vernalization
whole genome study

• 108 plants from double haploid
– similar genetics to backcross: follow 1 gamete
– parents are Major (biennial) and Stellar (annual)

• 300 markers across genome
– 19 chromosomes
– average 6cM between markers

• median 3.8cM, max 34cM
– 83% markers genotyped

• phenotype is days to flowering
– after 8 weeks of vernalization (cooling)
– Stellar parent requires vernalization to flower

• Ferreira et al. (1994); Kole et al. (2001); Schranz et al. (2002)
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Bayesian model assessment 

row 1: # QTL
row 2: pattern

col 1: posterior
col 2: Bayes factor
note error bars on bf
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Bayesian estimates of  loci & effects

histogram of loci
blue line is density
red lines at estimates

estimate additive effects
(red circles)

grey points sampled
from posterior

blue line is cubic spline
dashed line for 2 SD
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Bayesian model diagnostics 
pattern: N2(2),N3,N16
col 1: density
col 2: boxplots by m

environmental variance
σ2 = .008, σ = .09

heritability
h2 = 52%

LOD = 16
(highly significant)

but note change with m
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6.4 assessing performance of 
model selection procedures

• Broman Speed (2002) article
– http://www.biostat.jhsph.edu/~kbroman/presentations/rss_ho.pdf

– focuses on sparse marker map, no missing data
– marker-based MCMC is different!

• include/exclude markers in model

• model selection on “continuous” genome
– infinity of possible predictors
– uncertainty in position now more important
– backward elimination requires some care

• cannot include everything!
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6.5 issues of detecting epistasis

• two QTL with epistasis
• partition into additive and dominance

– Fisher-Cockerham model
• multiple QTL and higher order epistasis
• tree-structured phenotype models
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• same phenotype model overview

• partition of genotypic value with epistasis

• partition of genetic variance
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Fisher-Cockerham interaction
• two QTL
• here show 3 of 9 genotypes (vary QTL 1)
• four interactions: aa, ad, da, aa
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genotype effect coefficients
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epistasis (Doebley Stec Gustus 1995)
trait 1
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epistasis (Doebley Stec Gustus 1995)
trait 4
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epistasis (Doebley Stec Gustus 1995)
trait 9
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multiple QTL with epistasis
• summation form of linear model

• now include 2-QTL interactions

• extra subscript keeps track of order of term

• partition of genetic variance
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higher order epistasis
• sum over order and over QTL index

• extra subscript keeps track of order of term

• partition of genetic variance

• would need large sample size to estimate!
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tree-structured phenotype model
• genotypic values divide into groups

– GQQ, GQq = high mean phenotype
– Gqq = low mean phenotype

• extend idea to multiple QTL
– 2 QTL in F2

• up to 9 groups based on genotype
• only 4 groups if full dominance
• only 2 groups if double recessive is distinct
• other possibilities that do not build on hierarchy
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tree-structured epistasis
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model selection with epistasis
• epistasis adds 1-4 model degrees of freedom

– BC: 1, F2: 4 (AA, AD, DA, DD)

• always include epistasis?
– BC: add 1 (no epistasis) or m+1 (all epistasis) df

• epistasis between significant QTL
– check all possible pairs
– include higher order epistasis?

• epistasis with non-significant QTL
– whole genome paired with significant QTL
– pairs of non-significant QTL


