6. Model Selection for Multiple QTL

reality of multiple QTL
* selecting a class of QTL models
« comparing QTL models
— QTL model selection criteria
« assessing performance of model selection
* issues of detecting epistasis
» searching through QTL models: ch 7
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what is the goal of QTL study?

* uncover underlying biochemistry

— identify how networks function, break down

— find useful candidates for (medical) intervention

— epistasis may play key role

— statistical goal: maximize number of correctly identified QTL
+ basic science/evolution

— how is the genome organized?

— identify units of natural selection

— additive effects may be most important (Wright/Fisher debate)

— statistical goal: maximize number of correctly identified QTL

* select “elite” individuals

— predict phenotype (breeding value) using suite of characteristics
(phenotypes) translated into a few QTL

— statistical goal: mimimize prediction error
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6.1 reality of multiple QTL

* cvaluate objective
— likelihood or posterior
« search over “space” of genetic architectures
— number and positions of loci
— gene action: additive, dominance, epistasis
— how to efficiently search the model space?
 select “best” or “better” model(s)
— what criteria to use? where to draw the line?
* estimate “features” of model
— means, variances & covariances, confidence regions
— marginal or conditional distributions
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advantages of multiple QTL approach

* improve statistical power, precision
— increase number of QTL detected
— Dbetter estimates of loci: less bias, smaller intervals
* improve inference of complex genetic architecture
— patterns and individual elements of epistasis
— appropriate estimates of means, variances, covariances
+ asymptotically unbiased, efficient
— assess relative contributions of different QTL
* improve estimates of genotypic values
— less bias (more accurate) and smaller variance (more precise)

— mean squared error = MSE = (bias)? + variance
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limits of estimation for QTL?

» marker assisted selection (Bernardo 2001 Crop Sci)
— 10 QTL ok, 50 QTL are too many
* phenotype better predictor than genotype when too many QTL
* increasing sample size does not give multiple QTL any advantage
— hard to select many QTL simultaneously
« 3™ possible genotypes to choose from
— sampling & chance variation: only see some patterns
+ genetic linkage = multi-collinearity (multiple regression)
— collinearity leads to correlated estimates of gene effects
— precision of each effect drops as more predictors are added
+ want to balance bias and variance
— afew QTL can dramatically reduce bias
— many predictors (QTL) can increase variance
* depends on sample size, heritability, environmental variation
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QTL below limits of detection?

 problem of selection bias
— QTL of modest effect detected sometimes
— their effects are biased upwards when detected

* how can we avoid sharp in/out dichotomy?
— caution about only examining the “best” model
— consider probability that a QTL is in the model

* Dbuild m = number of QTL detected into QTL model
— directly allow uncertainty in genetic architecture
— model selection over number of QTL, architecture

ch. 6 © 2003 Broman, Churchill, Yandell, Zeng

6.2 selecting a class of QTL models

* number of QTL
— single QTL
— multiple QTL: known or unknown number
* location of QTL
— known locations
— widely spaced (no 2 in marker interval) or arbitrarily close
* gene action
— additive (A) and/or dominance (D) effects
— epistatic effects
« statistical hierarchy (AA, AD, DA, DD)
* tree-structured contrasts (qqqg/qqq vs. other 8 genotypes)
— phenotype distribution (normal, binomial, Poisson, ...)
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normal phenotype

* trait = mean + genetic + environment

 pr( trait Y | genotype Q, effects &)

8 9 10 11 12 13 14 15 16 17 18 19 20
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typical assumptions

* normal environmental variation
— residuals e (not ¥!) have bell-shaped histogram

* genetic value G, is composite of m QTL

- Q = (Qla QZ:"'>Qm)

 genetic effect uncorrelated with environment
—_ 2
Y=u+G,+ee~N(0,07)

E(Y|0,0)=u+Gy,vaY |0,60)=0"
0= (,u,GQ,UZ) effects
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F2 intercross phenotype model

here assume only one QTL

genotypes QQ, Qq, qq
genotypic values G, Gogr Gyg

» decompose as additive, dominance effects

genotype: Q = QQ Qq qq
general form UtCy UtE,, HUTE,
Mather-Jinx: G, = U+a U+o  u-a

Fisher- Cockerham: G, = ura-< u+s pu-a-4
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partitioning multiple QTL

Y =l+G, te,var(e) = o’
* partition of genotypic value (no epistasis)

Gy = Oy + oy 7+ + by OF Gy =sUM,; G,
* partition of genetic variance
— 2 — 2 2 —
var(G,) =0 =sum, 0, ., 0, = var(f, )

* partition of heritability /42
2 2

Jg  _ 96

2 ; —Sum; =3 2
o.+0 o, +0
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6.3 comparing QTL models

« residual sum of squares

* information criteria
— Bayes information criteria (BIC)

* Bayes factors
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residual sum of squares

+ residual sum of squares = RSS
— imagine dense marker map, or only examine markers
— (deviation of phenotype from genotypic value)?
— RSS =sum, (¥, - 4~ Gy,
— RSS never increases as model grows in size
— goal: small RSS with "simple" model

 degrees of freedom

— model degrees of freedom p

» p =m for backcross with m QTL

* p =2m for F2 intercross with m QTL

» more model df when epistasis allowed
— error degrees of freedom dfe =n —p
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classical linear models criteria

* mean squared error = MSE
— MSE = RSS/dfe = (bias)? + variance
— bias/variance tradeoft is key issue!
* classical linear models criteria
— Mallow's C,= RSS(p)/MSE(full) — (n — 2p)
* balances bias with increased variance
* sensitive to estimate of MSE for "fullest" model

— adjusted R?=1—(1 —R?>)(n—1)(n—p)
» common practice to adjust for optimistic explained variation

— both may yield too large a model
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resampling approaches

bootstrap

— resample with replacement from data
cross-validation

— repeatedly divide data into estimation and test sets
sequential permutation tests

— condition on QTL already in model

— stop when added QTL is not significant

disadvantage for model selection
— focus on best prediction of phenotype
— computationally expensive
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information criteria: RSS

» maximum likelihood with a penalty
— penalize model "complexity" (many parameters)
— balance fit (likelihood) with model complexity
— normal data: likelihood = (n/2)log[RSS(p)]
« common information criteria:
— Akaike AIC =10g[RSS(p)]+2p/n
— Bayes/Schwartz BIC = log[RSS(p)] + p log(n) / n
— BIC-delta BIC;=10g[RSS(p)] + Op log(n) / n
— Hannon-Quinn HQIC = log[RSS(p)] + p log[log(n)] / n
— general form: IC =1log[RSS(p)] + p D(n) /n
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rationale/intuition

« minimizing IC = using threshold on LOD
— LOD = (n/2) log,, [RSS(p,)/RSS(p,)]
* p, =df for larger model; p, = df for reduced model
— threshold = (p,—p,) D(n) / 2 log(10)

* Broman-Speed (2002) recommendation
— pick D(n) = threshold / 2 log(10)
+ 0 =2 threshold / log,,(n)

— threshold = 2.5 for genome-wide 5% level
e 5=2.56,2.10, 1.85 for n = 100, 250, 500
* BIC; =1og[RSS(p)] +2.56 p log(n)/n when n =100
« BIC; =log[RSS(p)]+11.5p/n
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recall: from RSS to LR to LOD

* normal data at a marker
— RSS(p) = sum, (¥; — p— GQi)2
+ depends on data and model with p parameters

— LR = ratio of likelihoods for two models
* p, = df for larger model; p, = df for reduced model

— 2 1log(LR) = nlog [RSS(p,)/RSS(p,)]
— LOD =log,, (LR) =log(LR)/10og(10)
» normal data for interval mapping

— likelihoods are more complicated
» mixture of RSS across possible genotypes
+ same relationship of LR to LOD

» non-normal data: RSS replaced by deviance (later)
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information criteria: likelihoods

» L(p) = likelihood for model with p parameters

* common information criteria:
— Akaike AIC =2 log[L(p)]+2p
— Bayes/Schwartz BIC = -2 log[L(p)] + p log(n)
— BIC-delta BIC;=-2 log[L(p)] + Jp log(n)
~ Hamnon-Quinn HQIC = -2 log[L(p)] + p log[log(n)]
— general form: IC =-2 log[L(p)] + p D(n)
» comparison of models

— LR(p,,p,) = L(p,) / L(p,)
— 1C(py,py) = 2 1og[LR(p,,p,)] + (p, — p1) D(n)
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information criteria vs. model size

d
. e
+ WinQTL 2.0 8 - d
« SCD data on F2 / 2
e A=AIC gg_ d/z
. 1=BIC(1) 2 (/ ,
- 2=BIC(2) By, —w
« d=BIC()) g |2 2 R
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P
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Bayes factors

Which model (1 or 2 or 3 QTLs?) has higher probability
of supporting the data?

— ratio of posterior odds to prior odds

— ratio of model likelihoods

_ pr( model, | Y)/pr( model, | Y) _ pr(Y | model,)

B pr( model, )/ pr( model,) pr(Y | model,)
BF(1:2) 2log(BF) evidence for 1st
<1 <0 negative
1to3 Oto?2 negligible
3to12 2to5 positive
12to 150 5to10 strong
> 150 > 10 very strong
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Bayes factors & likelihood ratio

_ pr( model, | Y)/pr( model, |Y) _ pr(Y | model,)

B
2 pr( model, )/ pr( model,) pr(Y | model,)

 equivalent to LR statistic when
— comparing two nested models
— simple hypotheses (e.g. 1 vs 2 QTL)

* Bayes Information Criteria (BIC) in general
— Schwartz introduced for model selection
— penalty for different number of parameters p

- 2log(B,,) = =2log(LR) - (p, - p,) log(n)
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QTL Bayes factors

« compare models
— by number of QTL m
— by pattern of QTL across genome

 need prior and posterior for models}§ ] \ - P‘:m“
— prior pr(m) chosen by user §§ | ‘:><p P
— posterior pr(m|Y,X) gofu-p- -u-g\u_u
» sampled marginal histogram 8% / AN

* shape affected by prior pr(m)
— prior for patterns more complicate

0.00

___ pr(m|Y,X)/pr(m)
" or(m +1)Y, X) fpr(m +1)
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computing marginal means
pr(Y |model, ) = Ipr(Y | 8,, model, )pr(8, | model, )d6,

+ very difficult based on separate model runs
— run MCMC for model &
— average pr(Y|8,) across model parameters 6,

* arithmetic mean
— can be inefficient if prior differs from posterior

» weighted harmonic mean
— more efficient but less stable
* stabilized harmonic mean (SHM)
— average over “nuisance parameters” (e.g. variance)
— more work, but estimate is more stable (Satagopan et al. 2000)
+ easy when model itself is a parameter
— reversible jump-MCMC: marginal summaries of number of QTL
— sampling across models of different sizes (tricky--later)
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computing QTL Bayes factors

* easy to compute Bayes factors from samples
— sample posterior using MCMC
Y, X) is marginal histogram

|=P— Poisson

e
8 —— exponential
3

—— uniform

— posterior pr(m
— posterior affected by prior pr(m)

>

it

* BF insensitive to shape of prior S
— geometric, Poisson, uniform o
— precision improves when prior mimics posterior

 BF sensitivity to prior variance on effects 0
— prior variance should reflect data variability

— resolved by using hyper-priors
* automatic algorithm; no need for user tuning
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partitioning multiple QTL prior

* partition of genotypic value (no epistasis)

Y =u+G, te,var(e) =0’
* partition of genetic variance

Gy =6y + iz
* partition of heritability 42

G, ~N(0,0;),6,;, ~ N(0,a; / m)

+...+@Q(m)

()
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multiple QTL phenotype model

* phenotype influenced by genotype & environment
pr(Y10,6) ~ NM(G,, 0%), or Y= i+ G, + environment
* partition mean into separate QTL effects
G, = main effects + epistatic interactions
Gp=6pt...+ 6, +...
+ priors on mean and effects

M~ Ny, Ky0?) grand mean
G, ~ N, K,0%) model independent genotypic effect
8y ~ N, K,0%m) effects down-weighted by m
* determine hyper-parameters via Empirical Bayes
2 2
= g
U, =Y andk, = ——=—C
‘ "=t ot
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phenotype posterior mean

 phenotype influenced by genotype & environment
pr(¥10,6) ~ MG, 0%), or Y = i+ G, + environment
« relation of posterior mean to LS estimate

G, |Y,m~ N(B,G,,B,C,0")
=N(G C,0 %)

LSestlmateG ZZ o Zw

variance V(GQ) = ZWiQU = CQU

shrinkage B, =k /(K +C,) - 1
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BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior

hyper-prior density 2*Beta(a,b) insensitivity to hyper-prior
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B. napus 8-week vernalization

whole genome study
+ 108 plants from double haploid

— similar genetics to backcross: follow 1 gamete
— parents are Major (biennial) and Stellar (annual)

* 300 markers across genome
— 19 chromosomes
— average 6¢cM between markers
* median 3.8cM, max 34cM

— 83% markers genotyped
* phenotype is days to flowering
— after 8 weeks of vernalization (cooling)
— Stellar parent requires vernalization to flower
* Ferreira et al. (1994); Kole et al. (2001); Schranz et al. (2002)
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Bayesian model assessment

QTL posterior Bayes factor ratios
row 1: # QTL .gg £ |
row 2: pattern :ég ég | s
Bzl A gm: . v'r‘gderati
col 1: posterior o L el e cdg A 1]
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note error bars on bf
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Bayesian estimates of loci & effects

napus8 summaries with pattern 1,1,2,3 and m 24

(S}
histogram of loci £x
blue line is density &S
red lines at estimates 2y

3o
estimate additive effects
(red circles) i
grey points sampled g
from posterior % y |
blue line is cubic spline &% |
dashed line for 2 SD 2]
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Bayesian model diagnostics

Al
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6.4 assessing performance of

model selection procedures
* Broman Speed (2002) article

— http://www.biostat.jhsph.edu/~kbroman/presentations/rss_ho.pdf
— focuses on sparse marker map, no missing data
— marker-based MCMC is different!
* include/exclude markers in model
» model selection on “continuous” genome
— infinity of possible predictors
— uncertainty in position now more important

— backward elimination requires some care
« cannot include everything!
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6.5 1ssues of detecting epistasis

two QTL with epistasis

partition into additive and dominance

— Fisher-Cockerham model

multiple QTL and higher order epistasis

tree-structured phenotype models
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two QTL with epistasis

» same phenotype model overview
Y =u+G,+evar(e)=0°
* partition of genotypic value with epistasis

GQ = 6Q(1) + gQ(z) + HQ(L2)

* partition of genetic variance

2 _ 2 2 2
Var(GQ) =05 =054, 1050 T 051
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Fisher-Cockerham interaction

* two QTL
* here show 3 of 9 genotypes (vary QTL 1)
 four interactions: aa, ad, da, aa

o 3, . iy Qg i
QlQleQz /'1+a1_71+02——2+1aa—”_d—ﬂ+ﬂ

s 2 5220
+ 1+ __2_@
quleQz H 2 2 5 4

o, O, . Ly iy 0
q,9,Q,Q, ,U—O/I—?l+a2—72—laa+7d—%+%
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genotype effect coefficients

genotype a, o, a, O, i, i, i, iy
QQQQ +1 -1 +1 -1 41 -1 -1 41
QQRQ 0 3 +1 -3 0 0 +§ -
Q@qQQ -1 -1 +1 -1 -1 +1 -1 41
QQQq +1 -4+ 0 +1 0 +1 0 -1
QQq 0 +1 0 +1 0 0 0 +4
9qQq -1 -1 0 +L 0o -1 o -!
QQqq +1 -1 -1 -1 -1 -1 +1 -1
Qqq 0 L -1 -1 0 0 -1 +1
qqqq -1 -+ -1 -3 +1 +3 +1 +;
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epistasis (Doebley Stec Gustus 1995)

trait 1

8 BB| s AA
o |
81 81 Aa| = \ \
) )
)
3 K 4
S Bb |> o
1O o — — — —
%! bb - B
= = =
o o [
3 o aa 5
) ) o
o | o | 8 1
< < 3
o | 24
N i
AA bb Bb BB atl di a2 d2 iaa iad ida idd
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epistasis (Doebley Stec Gustus 1995)

trait 4

0 ©
< <
o o © |
< < o
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Q .Q :'
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o o
0 | |
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epistasis (Doebley Stec Gustus 1995)
trait 9

6
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A
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multiple QTL with epistasis

summation form of linear model

Gy =sum, 6,

now include 2-QTL interactions

G, =sum, §, +sum, 6, ,

extra subscript keeps track of order of term

B0 =G0 = O 03 Jiodo =L m

partition of genetic variance
2 . 2 2 2 2 2
0G =0y + 05,0, =sum, 0,0y = var(G,)
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higher order epistasis

sum over order and over QTL index

G, =sum, sum; g,
* extra subscript keeps track of order of term
Eio =i oire

partition of genetic variance

2 2 2 2 2
O, =sumy O,;,0;; =sum; O,..,0.; = var(f,,)

would need large sample size to estimate!
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tree-structured phenotype model

 genotypic values divide into groups
— Gqq» Ggq = high mean phenotype
— Gy, = low mean phenotype
 extend idea to multiple QTL
—2QTL in F2
* up to 9 groups based on genotype
* only 4 groups if full dominance

* only 2 groups if double recessive is distinct
» other possibilities that do not build on hierarchy
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tree-structured epistasis

BB b bb
L L L

£ $4
2 2
BB Bb bb BB Bb bb BB Bb bb
2 2
2 2
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model selection with epistasis

* epistasis adds 1-4 model degrees of freedom
— BC: 1, F2: 4 (AA, AD, DA, DD)
« always include epistasis?
— BC: add 1 (no epistasis) or m+1 (all epistasis) df
* epistasis between significant QTL
— check all possible pairs
— include higher order epistasis?
* epistasis with non-significant QTL
— whole genome paired with significant QTL
— pairs of non-significant QTL
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