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8. QTL for Multiple Crosses

• QTL for multiple crosses
– four-way cross 
– BC1, BC2, F2 with same inbred parents
– general crosses of inbred parents

• QTL for outbred pedigrees
– mixed (effects) model for genotypic effect
– linkage disequilibrium & inheritance vectors
– mapping issues for pedigrees
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4-way cross: outbred parents
• form “F1” from 2 outbred parents
• up to 4 possible alleles per locus

– fully informative, heterozygous for one or both parents
• phase (coupling, repulsion) uncertain

– resolve via parents and ancestors? (pedigree)
– resolve via linkage (linkage map)

x
↓

infer parental haplotypes
from grandparents and/or
offspring

2 outbred parents

F1 offspring
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likelihood-based outmapping
• Butcher et al. (2000)

– OutMap software based on Ling (1999) thesis
– R/qtl software incorporates these features

• variant of Lander-Green (1997)
– ML for recombination rates along linkage group
– extended from inbred lines to outbred (Ling 1999)
– hidden Markov models

• caution on using only pair-wise linkage
– JoinMap (Stam 1993) for arbitrary crosses

• only need pairwise recombination rates
– not optimal—not maximum likelihood
– subtle marker order issues difficult to resolve
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4-way cross: 4 inbred parents
• Xu (1996)
• cross in pairs to form 2 distinct F1s

– cross F1s to get offspring
• phase known from grandparents

– haplotypes of F1 parents derived from inbreds

x
↓

x
↓

x
↓

4 inbred lines

2 F1 heterozygotes

F2 offspring
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QTL for multiple crosses
• separate analysis by cross

– simple but inefficient (less power)
• multiple crosses with different parents

– more power
• more individuals, more informative markers

– effect of QTL in different backgrounds
• genotype * cross, epistatic interactions

• combined analysis over crosses
– allegedly identical parent stock?

• crosses created or evaluated at different times
– relate multiple projects in team
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multiple related crosses
• L inbred lines (Liu Zeng 2000)

– F2, BC1, BC2 based on 2 inbreds
– Xu’s (1996) 4-way cross
– diallele cross: all possible crosses of L parents

• full-diallele: each parent as both male & female

• advantages
– unravel epistasis
– increase efficiency of QTL study

• more alleles = more informative loci
• increase sample size across multiple crosses (BC1, BC2, F2)

• disadvantage: more complicated, fewer packages
– related crosses are correlated…
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combining BC1, BC2, F2

x

x
↓

2 inbred lines
AA and BB

F1 heterozygote
AB

BC2 offspring
AB, BB

BC1 offspring
AA, AB

F2 offspring
AA, AB, BA, BB

x
↓

x

recombination model
differs by cross

phenotype model
common overall
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how to combine crosses?
• founders unrelated between crosses

– naïve sum of separate LODs by cross
• different gene action in different crosses

– combined analysis of independent crosses
• common gene action: one phenotype model pr( Y | Q,θ )

• genetic relationships within & between crosses
– constant genetic covariance within cross

• all individuals have same genetic relationship
• no effect on single cross analysis (compound symmetry)

– genetic covariance differs between crosses
• depends on expected number of alleles shared IBD

– covariance across multiple crosses is NOT constant
– “polygenes" usually assumed “independent” of QTL
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simple fix for multiple crosses
• introduce blocking factor for crosses

– addresses constant covariance within each cross 
and different covariances between crosses

– block is random effect for genetic relationship
• appropriate recombination model for cross

– relation of recombination rate to distance
• common phenotype model across all crosses

– could allow cross x genetic effect interactions
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genetic covariance for BC, F2

BC1

F2

BC2

x

x
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x
↓

x

BC1

F2

BC2
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review of quantitative genetics
• genotypic effect is sum of many small effects

– independent "polygenes" spread over genome
– no effects localized to any region

• partition of variance of phenotype
– sum over all polygenic effects
– partition into additive, dominance, epistatic
– analyze variance components, not effects
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relating fixed to random effects
• consider one locus, 2 alleles
• pQ = frequency of Q allele, pq = 1 – pQ
• a = additive effect per copy of Q allele
• d = dominance effect of Q over q allele
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identity by descent (IBD)
• individuals are genetically related

– measured as correlation or covariance
– depends directly on degree of genetic relatedness

• IBD allele sharing is key to relatedness
– IBD = identity by descent (common ancestor)
– IBS = identity by state (same allele, different sources)
– IBD = IBS for many inbred crosses (distinct founders)

• variance component or mixed model analysis
– allow for correlation in mixed model
– estimate variance components, not effects

• how variable is additive component? 
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IBD and QTL covariance
• consider a particular locus (not necessarily 

QTL) and two individuals Y1,Y2, related in 
some fashion

• kj = pr(Y1,Y2 share j alleles IBD), j = 0,1,2
• π= k2+ k1/2 = coefficient of relationship 

= pr( random allele is IBD at locus )
• genetic covariance from m QTL

– additive depends on coefficient of relationship
– dominance depends on both alleles
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IBD and polygenic covariance
• polygenic covariance depends on expection 

– average over all polygenic loci in genome
– polygenic genotype typically unknown
– (what if you have complete genomic sequence 

by individual? how could you improve this?)

• E(π) = expected coefficient of relationship
• E(k2) = expected coefficient of double

coancestry
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IBD and polygenic covariance
• E(π) = expected coefficient of relationship

– 0.5 for F1, 0.75 for BC, 0.625 for F2
– 0.625 for F2 & BC, 0.5 for BC1 & BC2

• E(k2) = expected coefficient of double 
coancestry
– 1 for F1, 0.5 in BC, 0.375 for F2
– 0.375 for F2 & BC, 0.25 for BC1 & BC2

F2for  

BCfor  

][)(),cov(

2
8
32

8
5

2
2
12

4
3

2
2

2
21

DA

DA

DA kEEYY

σσ
σσ

σσπ

+=

+=

+=



ch. 8 © 2003 Broman, Churchill, Yandell, Zeng 17

combining QTL and polygenes
• assume QTL and polygenes are independent
• combine in variance component model
• likelihood-based analysis

– can extend to Bayesian analysis with priors
• null: no QTL effect (QTL variances = 0)
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genetic covariance for BC, F2
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EM approach for multiple crosses
• keep track of parental haplotypes with L inbreds

– follow each allelic contribution separately
– mostly known phase with inbred founders

• recall unknown phase in F2: AB/ab vs. Ab/aB

• use in EM or other estimation procedure
– E step: estimate posterior genotypes pr(Q | Yi, Xi,θ, λ )

• relation of recombination to distance
• depends on type of cross for each individual

– M steps: maximize likelihood to update effects θ
• additive, dominance, variance in phenotype model pr( Y | Q,θ )
• phenotypic covariance within and between crosses

• LOD (or LR) for your favorite hypothesis test
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issues in combining crosses
• ignoring polygenic effects can bias results

– additive effect biases
– detect dominance when none exists
– variance increased: less efficient, less power
– location estimate OK

• increase power by combining crosses
– important when several related crosses created
– best power found with F2 alone

• threshold idea for testing and loci intervals
– extends naturally to multiple crosses (Zou Fine Yandell 2001)

– permutation based tests possible …
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general pedigrees
• combine QTL and polygenic effects

– mixed model (variance components) approach
– complicated covariance matrix (see above)

• many possible alleles
– shift from fixed to random effects θ
– keep track of parental haplotypes (inheritance vectors)

• ambiguities in haplotypes
– alleles IBD or IBS? sort out using pedigrees & marker linkage
– many missing values, loops in pedigrees

• calculations can be very complicated
– software more complicated (SOLAR; Almasy Blangero 199)
– less progress on QTL analysis than with inbreds

• Haley-Knott regression common
• single vs. multiple QTL implementation (Yi Xu 2000)

ch. 8 © 2003 Broman, Churchill, Yandell, Zeng 22

diversity of pedigree studies
• one or a few large pedigrees

– common in animal science (cow, pig)
• 1000 to 100,000 in a single pedigree
• markers for founders often known

– similar methods to those described already
• many small pedigrees

– common in human studies
• multi-generational; many founders may have died
• missing marker and phenotype data through pedigree

– insufficient power to examine only 1 pedigree
– exceptions: large pedigree studies

• Iceland, Hutterites, Finland
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half-grand avuncular pairs

• founders: 1,2,3,6,8
– assumed unrelated

• 4&9 may share 0,1 alleles IBD
– E(π) = 1/16
– pr(share 1 allele) = 1/8

• what is prob for pair of linked loci?
– relate to recombination rate r
– p11 = (1 – r)2 [r2 + (1 – r)2] / 8

Almasy Blangero (1999)
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sorting out missing data
• missing marker j for individual i?

– chromosome peeling: use flanking markers
• almost same idea as for inbreds
• but relation of probability to r depends on pedigree
• meiosis sampler (Thompson Heath)

– pedigree peeling: use parents & offspring
• predict from known marker j of parents & offspring
• single-locus peeling sampler (Thompson Heath)
• descent graph sampling of alleles (Thompson 1994)

• problem: many missing data!
– solution: use MCMC to repeatedly fill in gaps
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genotype (probability) peeling
• find nuclear families

– depend on 2 individuals
• find peeling sequence

– follow nuclear families
– simplify chain rule

pr(A,B,C) = pr(A)pr(B|A)pr(C|A,B)

– use Bayes rule
pr(A|B) = c x pr(A)pr(B|A)
pr(Q4|Q3,Q6) = c x pr(Q4)pr(Q6|Q3, Q4)

• use phenotype to improve
– posterior for genotype

pr(Q4|Q3,Q6 ,Y4) =
c x pr(Q4)f(Y4|Q4) pr(Q6|Q3, Q4)

3 41 2

5 6

7
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double-second cousins
loops in pedigrees!

(Almasy Blangero 1999)
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ambiguities in genotype phase
(Hoeschele 2001)

AC

BC

AA A?

A?

BC

AA

?C ?C

AB CC
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decent graph sampling
(Thompson 1994)

• follow alleles
– decent through pedigree
– which grandparent?

• decent graph synonyms
– segregation patterns
– meiosis indicators
– inheritance vectors

• several allele descent 
graphs may be possible for 
genetic descent states 

AC

BC

AA A?

A? AA
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fine mapping sketch of idea

• identify small genomic region with QTL
– ideally less than 1cM or 1M base pairs

• develop advanced intercross lines
– follow segregation of phenotype & genotype
– reduce to 100K base pairs via congenics

• identify genes (& pseudo-genes) in region
– hunt literature, genbank, ncgr, …

• sequence for polymorphisms
– exons, introns, promoter region,…
– comparative genomics

• create transgenics to prove function
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Fine Mapping & Linkage Disequilibrium

• fine mapping with current recombinations
– QTL localized to 5-20cM: few recombinations nearby
– additional markers to refine subinterval (Hoeschele 2001)

• haplotype groups based on recombinant events
• need highly heritable trait

• fine mapping with historic recombinations
– linkage (gametic phase) disequilibrium
– used extensively for qualitative traits
– influenced by selection, mutation, migration,…
– assume allele introduced once (e.g. by mutation)
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linkage disequilibrium
• phenotypes & markers for current generation(s)
• no pedigree information back to founders
• phenotype model implementation

– single markers regression (until recently)
– multiple linked markers (1995-2000)
– multiple QTL (Wu Zeng 2001; Wu Ma Casella 2002)

• population history
– allow some haplotypes to be more recently related
– assume rapid population growth, young & rare disease
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basic idea of linkage disequilibrium
affecteds

wild type
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natural population
• historic recombination predominates

– distant relationships between most individuals
– assume panmixis: random mating in population

• Hardy-Weinberg equilibrium
– genotype frequency = product of gamete frequency
– disequilibrium: selection (e.g. affecteds)

• linkage equilibrium
– genotype frequencies uncorrelated

• frequency for pair of markers = product of separate frequencies
– except at very close range or due to selection

• linkage disequilibrium
– some correlation, usually quite local
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why linkage disequilibrium?
• selection, mutation, drift, admixture
• co-segregation over multiple generations

– physical proximity (linkage)
– epistatic interactions (selection)
– recent occurrence (mutation, migration)

• linkage disequilibrium decays with time
– no LD beyond 5-10cM except due to epistasis
– ideal for fine mapping
– models of evolution
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mechanism of LD?

• nuclear families
– (e.g. humans, domestic animals)
– transmission/disequilibrium test (TDT)

• natural populations
– TDT cannot be applied
– dioecious vs. monoecious species

• dioecious: animals, outbred plants
• monoecious: inbred plants that self
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transmission disequilibrium test (TDT)
(Spielman et al. 1993)

• consider offspring with disease (qualitative)
• what allele did a parent transmit?
• M,m = alleles at a marker locus
• a,b,c,d = counts of families
• E(b) = E(c) if no linkage

– E (b – c) = (1 – 2r)A
– r = recombination with disease locus
– A = constant depending on penetrance

and haplotype frequencies
• likelihood-based test (beyond our scope)
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multiple QTL using linkage & LD
(Wu Zeng 2001; Wu Ma Casella 2002)

• 2 loci: random sample from panmictic population
– recombination rate r
– linkage disequilibrium Dij

• LD: pij = pi pj + Dij

• open-pollinated progeny of sample
– male gametes spread across population

• LD: qij = pi pj + (1 – r) Dij

– female gametes harvested from parent as seeds
• LD depends on maternal genotype (see next page)
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linkage & LD for 2 biallelic loci
(Wu Zeng 2001)
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on to QTL with linkage & LD
• Wu Zeng (2001)

– extend from 2 loci to 3 to marker map
– consider marker order

• Wu Ma Casella (2002)
– use recombination model above

• restrict to biallelic codominant loci
• extendible to mutiallelic, missing data

– single QTL phenotype model
– simulation example
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linkage & LD in general pedigree
(Hoeschele 2001)

• ideas gleaned from several paper
• quantitative vs. qualitative trait

– location r and effect size a are confounded
– recall single marker regression: (1 – 2r) a

• small close QTL ≈ large far QTL

– need multilocus approach (multipoint mapping)

• likelihood and/or Bayesian approach
– combine linkage & LD: ideas in infancy
– Yi Xu (2000); Sillanpaa et al. (2003)
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diallele cross (Jannick Jansen 2001)
• does QTL effect depend on genetic background?

– epistatic interaction with other QTL
– common environment eliminates QTL x environment

• diallele cross with s inbred parents
– A,B,C inbred parents (actually DH lines)

• F1s from AxB, AxC, BxC
• DH progeny from F1s

– CIM (=MQM) model
• cofactor (other QTL) effects differ by cross

• test if QTL effect same or different by cross
– scan genome to identify QTL with epistatic effects
– follow up with 2-QTL analysis (2-step testing)
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power to detect QTL deviation
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mixed model idea for outbreds
• model components

– phenotype = design + QTLs + polygenes + env
– Y = µ + GQ + g + e
– Yi = µ + G(Qi)+ gi + ei, i = 1,…,n

• QTL effects: fixed or random
• random polygenic effects

– usually assumed normal
– correlation depends on genetic relationship A
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design components
• individual reference µi = Xiβ

– blocking & local environment
– (fixed) treatments

• soil amendments, diet, drugs, shade
– covariates: individual non-genetic effects

• sex, age, parity, historical factors
• other phenotypic traits possibly affected by genotype

– remove design effect & analyze residuals?
• design x genotype interactions

– separate analysis by factor levels (e.g. sex)
– joint analysis (next chapter)


