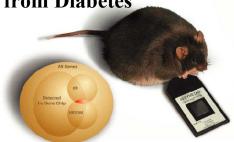
Gene Mapping for High Throughput Expression Profiles: Lessons from Diabetes



Brian S. Yandell
University of Wisconsin-Madison
www.stat.wisc.edu/~yandell/statgen

26 February 2003

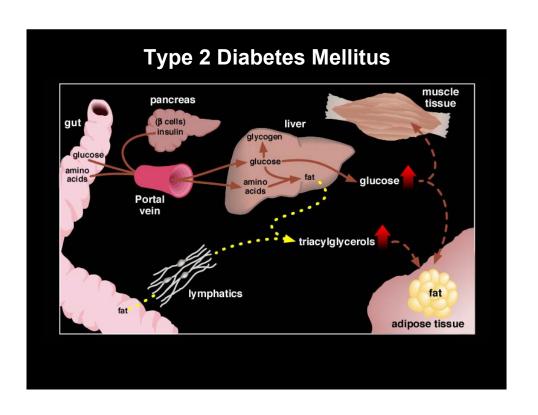
Genetics @ Brian S. Yandell

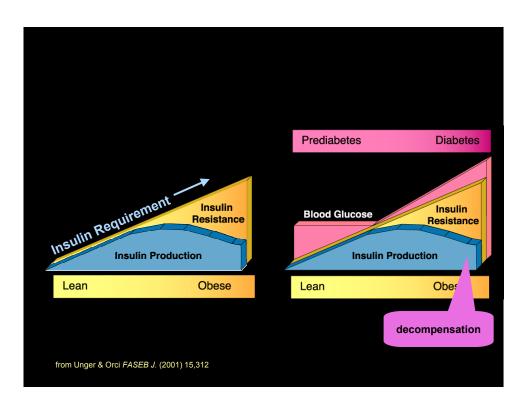
Outline

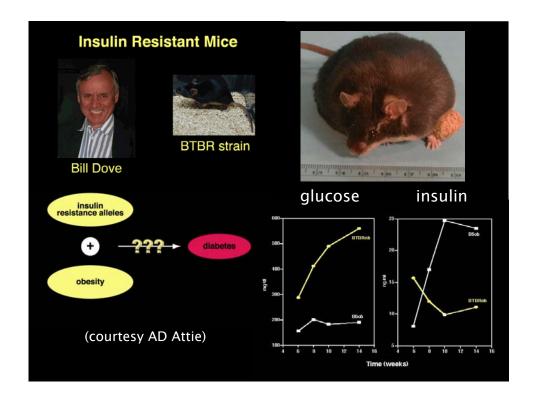
- why study diabetes in a mouse model?
- why map gene expression?
- what are QTL?
 - why multiple QTL?
 - how to select genetic architecture?
- how to map massive gene expression?
- preliminary results

26 February 2003

Genetics © Brian S. Yandell







studying diabetes in an F2

- segregating cross of inbred lines
 - B6.ob x BTBR.ob \rightarrow F1 \rightarrow F2
 - selected mice with ob/ob alleles at leptin gene (chr 6)
 - measured and mapped body weight, insulin, glucose at various ages (Stoehr et al. 2000 Diabetes)
 - sacrificed at 14 weeks, tissues preserved
- gene expression data
 - Affymetrix microarrays on parental strains, F1
 - key tissues: adipose, liver, muscle, β -cells
 - novel discoveries of differential expression (Nadler et al. 2000 PNAS; Lan et al. 2002 in review; Ntambi et al. 2002 PNAS)
 - RT-PCR on 108 F2 mice liver tissues
 - 15 genes, selected as important in diabetes pathways
 - SCD1, PEPCK, ACO, FAS, GPAT, PPARgamma, PPARalpha, G6Pase, PDL...

why map gene expression as a quantitative trait?

- *cis* or *trans*-action?
 - does gene control its own expression?
 - evidence for both modes (Brem et al. 2002 Science)
- mechanics of gene expression mapping
 - measure gene expression in intercross (F2) population
 - map expression as quantitative trait (QTL technology)
 - adjust for multiple testing via false discovery rate
- research groups working on expression QTLs
 - review by Cheung and Spielman (2002 Nat Gen Suppl)
 - Kruglyak (Brem et al. 2002 Science)
 - Doerge et al. (Purdue); Jansen et al. (Waginingen)
 - Williams et al. (U KY); Lusis et al. (UCLA)
 - Dumas et al. (2000 J Hypertension)

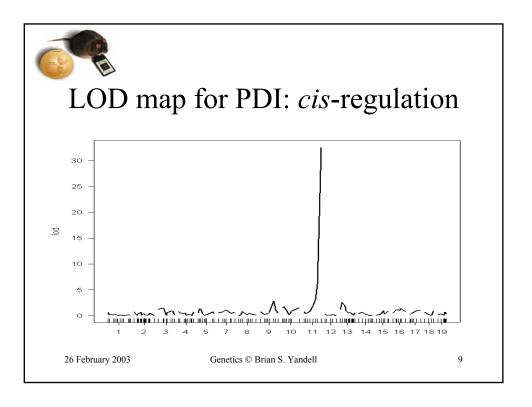
26 February 2003

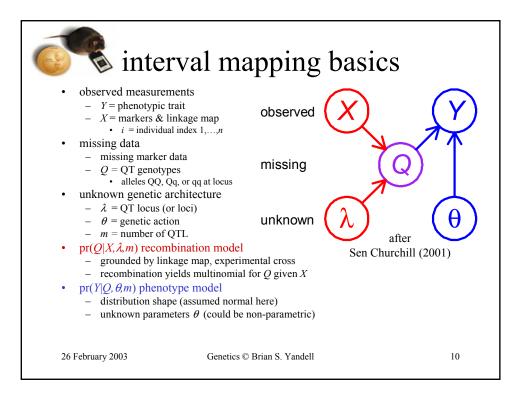
Genetics © Brian S. Yandell

7

What is a QTL?

- QTL = quantitative trait locus (or loci)
 - trait = phenotype = characteristic of interest
 - quantitative = measured somehow
 - qualitative traits can often be directly mapped
 - quantitative traits not readily mapped
 - locus = location in genome affecting trait
 - gene or collection of tightly linked genes
 - some physical feature of genome





interval mapping details and interpretation

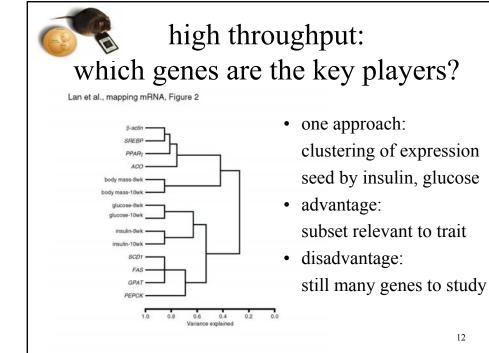
- likelihood models relation of data to unknown architecture
 - $-L(\lambda,\theta|m)$ $= pr(Y|X,\lambda,\theta,m)$
 - = product_i [sum_Q pr($Q|X_i,\lambda,m$) pr($Y_i|Q,\theta,m$)]
 - complicated to evaluate: product of sum of products
- classical interval mapping: maximize LOD
 - $LOD(\lambda) = \max_{\theta} \log_{10} L(\lambda, \theta | Y, m) / L(\mu | Y)$
 - · scan loci systematically across genome
 - threshold for testing presence vs. no QTL
 - unknown · theory for single QTL (Lander Botstein 1989; Dupuis Siegmund 1999 Genetics)
 - · permutation tests for more general setting (Churchill Doerge 1994; Doerge Churchill 1996 Genetics)
- study genetic architecture
 - assess with Bayesian Information Criteria (BIC)

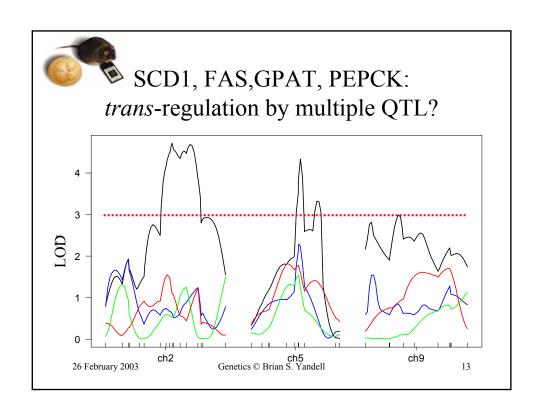
26 February 2003

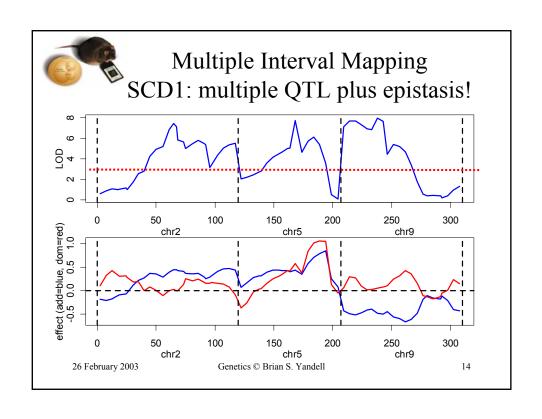
Genetics © Brian S. Yandell

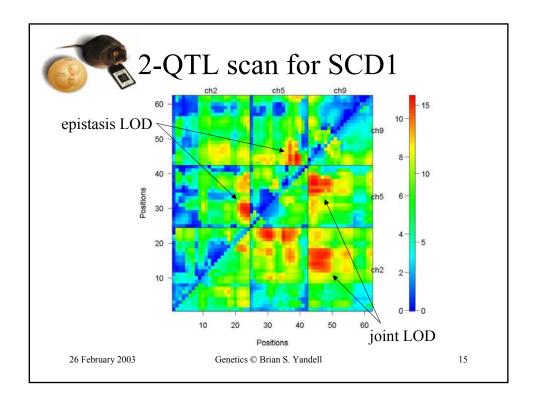
11

missing



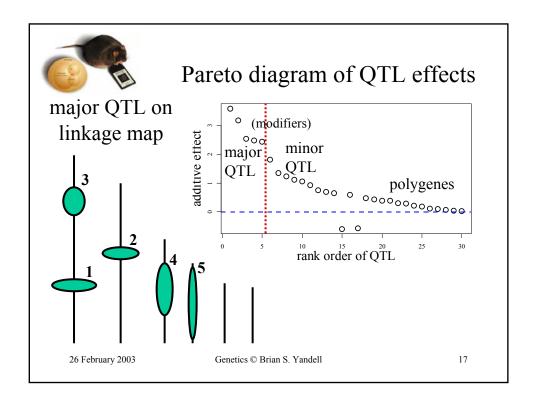






multiple QTL & gene expression

- does one locus affect expression of many genes?
 - is this a controlling locus?
 - is there coordinated expression across many genes?
- multiple QTL affecting gene expression?
 - multiple controlling loci for key pathways?
 - single QTL approach would be inadequate
- multiple QTL literature
 - multiple interval mapping (Kao, et al. 1999 Genetics; Zeng et al. 2000 Genetics; Broman Speed 2002 JRSSB)
 - Bayesian interval mapping (Satagopan et al. 1996 Genetics; Satagopan Yandell 1996; Stevens Fisch 1998 Biometrics; Silanpää Arjas 1998, 1999 Genetics; Sen Churchill 2001 Genetics; Gaffney 2001; Yi Xu 2002 Genetics)

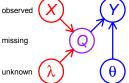


how many (detectable) QTL?

- many, many QTL may affect most any trait
 - how many QTL are detectable with these data?
 - limits to useful detection (Bernardo 2000)
 - depends on sample size, heritability, environmental variation
 - consider probability that a QTL is in the model
 - · avoid sharp in/out dichotomy
 - major QTL usually selected, minor QTL sampled infrequently
- build *m* = number of QTL detected into QTL model
 - directly allow uncertainty in genetic architecture
 - model selection over number of QTL, architecture
 - use Bayes factors and model averaging
 - to identify "better" models

Bayesian interpretation

- consider likelihood of data augmented by QTL genotypes
 - $\operatorname{pr}(Y,Q|X,\lambda,\theta,m) = \operatorname{product}_{i} \operatorname{pr}(Q|X_{i},\lambda,m) \operatorname{pr}(Y_{i}|Q,\theta,m)$
- reinterpret likelihood as posterior for architecture
 - $\operatorname{pr}(\lambda, Q, \theta, m | Y, X) = [\operatorname{product}_{i} \operatorname{pr}(Q_{i} | X_{i}, \lambda, m) \operatorname{pr}(Y_{i} | Q_{i}, \theta, m)] [\operatorname{pr}(\lambda, \theta | X, m) \operatorname{pr}(m)]$ = $[\operatorname{augmented likelihood}] \times [\operatorname{prior}]$
- examine posterior of architecture given data
 - controlling loci λ and gene action θ
 - $\operatorname{pr}(\lambda, \theta | Y, X, m) = \operatorname{sum}_{Q} \operatorname{pr}(\lambda, Q, \theta | Y, X, m)$ with m fixed
 - average over missing QTL genotypes
 - number of QTL m
 - $\operatorname{pr}(m|Y,X) = \operatorname{sum}_{(\lambda,\theta)} \operatorname{pr}(\lambda,\theta|Y,X,m)\operatorname{pr}(m)$
 - average over possible m-QTL architectures



- assess using Bayes factors
 - extends Bayes Information Criterion to compare any 2 models

26 February 2003

Genetics © Brian S. Yandell

19

Bayes factors to assess models

- Bayes factor: which model best supports the data?
 - ratio of posterior odds to prior odds
 - ratio of model likelihoods
- equivalent to LR statistic when
 - comparing two nested models
 - simple hypotheses (e.g. 1 vs 2 QTL)
- related to Bayes Information Criteria (BIC)
 - Schwartz introduced for model selection in general settings
 - penalty to balance model size (p = number of parameters)

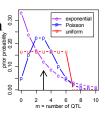
$$BF = \frac{\text{pr}(\ m \mid Y, X) / \text{pr}(m+1 \mid Y, X)}{\text{pr}(m) / \text{pr}(m+1)} = \frac{\text{pr}(Y \mid m, X)}{\text{pr}(Y \mid m+1, X)}$$
$$-2\log(BF) = -2\log(LR) - 2\log(n) = BIC$$

26 February 2003

Genetics © Brian S. Yandell

computing QTL Bayes factors

- · easy to compute Bayes factors from samples
 - sample posterior using MCMC
 - posterior pr(m|Y,X) is marginal histogram
 - posterior affected by prior pr(m)



- BF insensitive to shape of prior
 - geometric, Poisson, uniform
 - precision improves when prior mimics posterior
- BF sensitivity to prior variance on effects θ
 - prior variance should reflect data variability
 - resolved by using hyper-priors
 - automatic algorithm; no need for user tuning

26 February 2003

Genetics © Brian S. Yandell

21

multiple QTL phenotype model

- $Y = \mu + G_O + \text{environment}$
- partition genotypic effect into separate QTL effects

$$G_Q = \text{main QTL effects}$$
 + epistatic interactions
 $G_O = \theta_{1O} + \ldots + \theta_{mO}$ + $\theta_{12O} + \ldots$

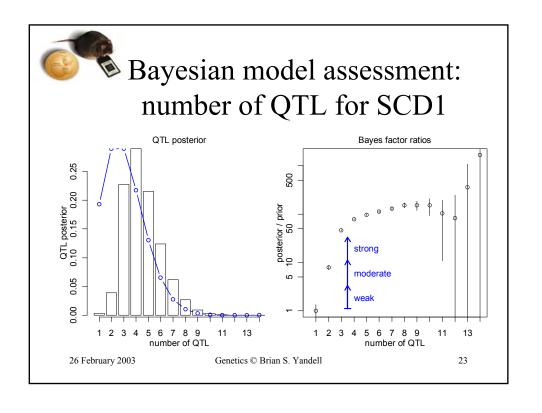
• priors on mean and effects

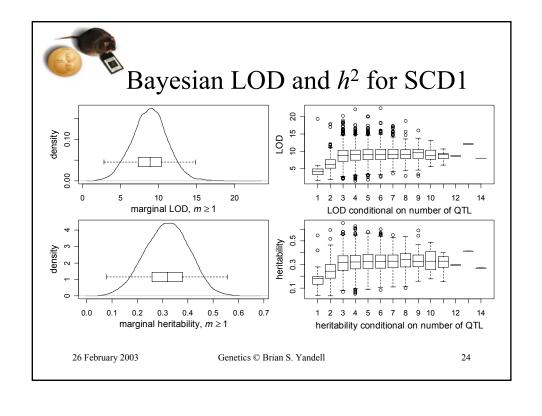
 $G_O \sim N(0, h^2 s^2)$ model independent genotypic prior

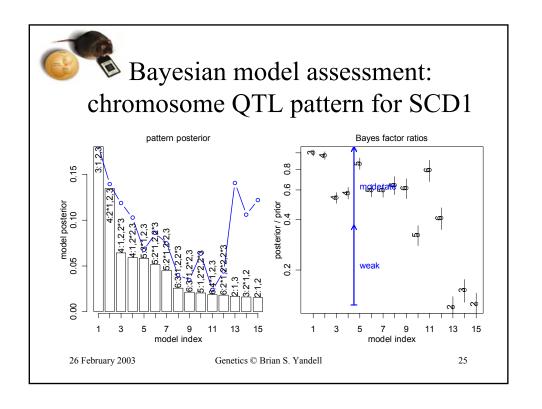
 $\theta_{jQ} \sim N(0, \kappa_1 s^2/m.)$ additive effects (down-weighted)

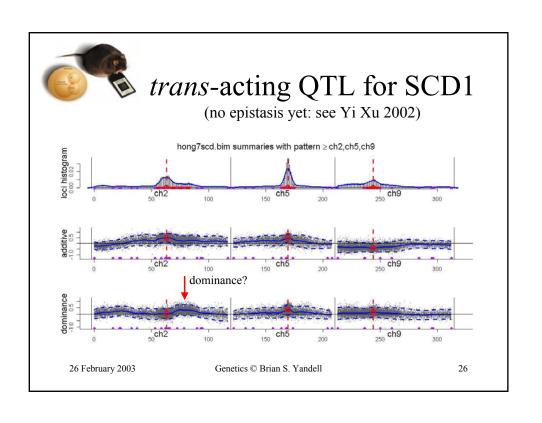
 $\theta_{j2Q} \sim N(0, \kappa_2 s^2/m.)$ epistatic interactions (down-weighted)

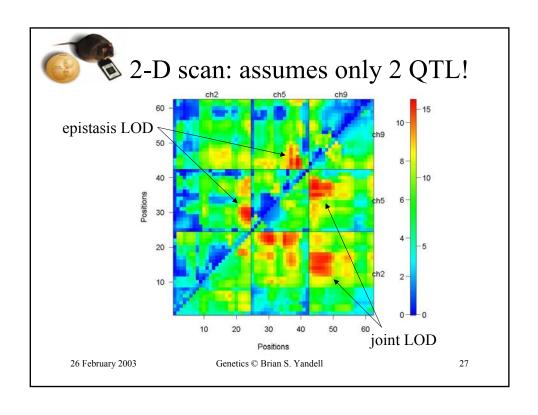
- hyper-parameters (to reduce sensitivity of Bayes factors to prior)
 - s^2 = total sample variance
 - $m = m + m_2$ = number of QTL effects and interactions
 - $h^2 = (m\kappa_1 + m_2\kappa_2)/m$ = unknown heritability, $h^2/2 \sim \text{Beta}(a,b)$

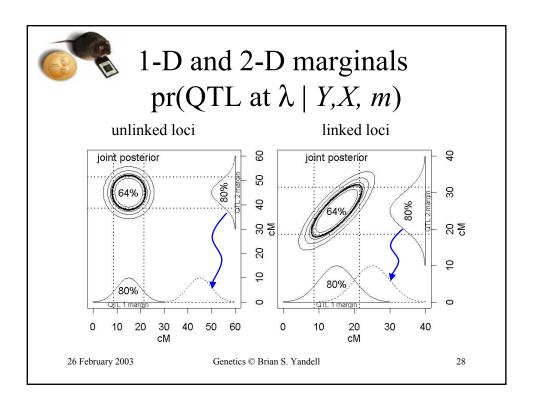












false detection rates and thresholds

- multiple comparisons: test QTL across genome
 - size = pr(LOD(λ) > threshold | no QTL at λ)
 - threshold guards against a single false detection
 - · very conservative on genome-wide basis
 - difficult to extend to multiple QTL
- positive false discovery rate (Storey 2001)
 - pFDR = pr(no QTL at $\lambda \mid LOD(\lambda) > threshold$)
 - Bayesian posterior HPD region based on threshold
 - $\Lambda = {\lambda \mid LOD(\lambda) > threshold} \approx {\lambda \mid pr(\lambda \mid Y, X, m) large}$
 - extends naturally to multiple QTL

26 February 2003

Genetics © Brian S. Yandell

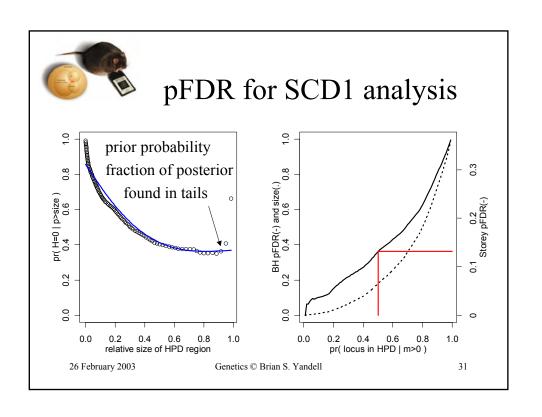
29

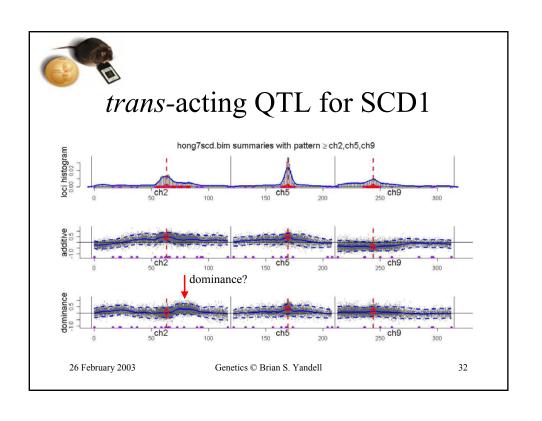
pFDR and QTL posterior

- positive false detection rate
 - pFDR = pr(no QTL at $\lambda \mid Y, X, \lambda$ in Λ)
 - $pFDR = \underbrace{pr(H=0)*size}_{pr(m=0)*size+pr(m>0)*power}$
 - power = posterior = $pr(QTL \text{ in } \Lambda \mid Y, X, m>0)$
 - size = (length of Λ) / (length of genome)
- extends to other model comparisons
 - -m = 1 vs. m = 2 or more QTL
 - pattern = ch1,ch2,ch3 vs. pattern > 2*ch1,ch2,ch3

26 February 2003

Genetics © Brian S. Yandell



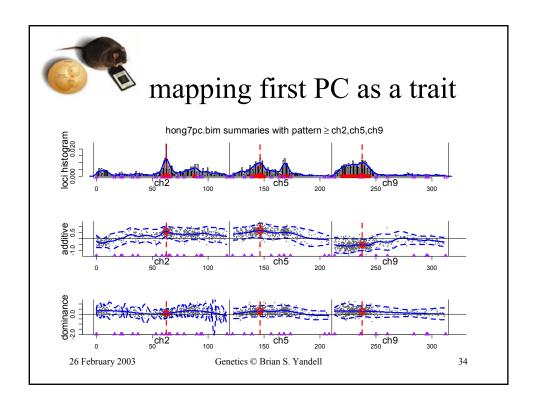


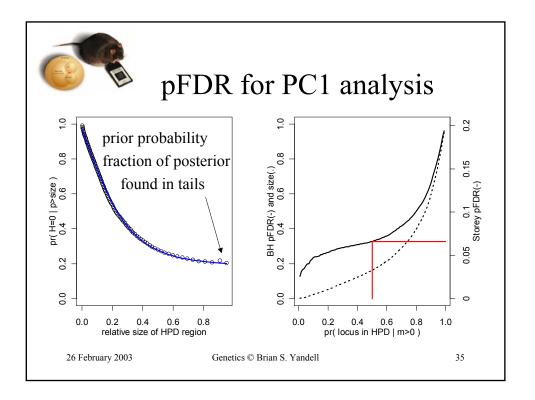
high throughput dilemma

- want to focus on gene expression network
 - ideally capture pathway in a few dimensions
 - allow for complicated genetic architecture
- may have multiple controlling loci
 - could affect many genes in coordinated fashion
 - could show evidence of epistasis
 - quick assessment via interval mapping may be misleading
- mapping principle component as quantitative trait
 - multiple interval mapping with epistatic interactions
 - Liu et al. (1996 Genetics); Zeng et al. (2000 Genetics) Mahler et al. (2002 Genomics)
 - elicit biochemical pathways (Henderson et al. Hoeschele 2001; Ong Page 2002)

26 February 2003

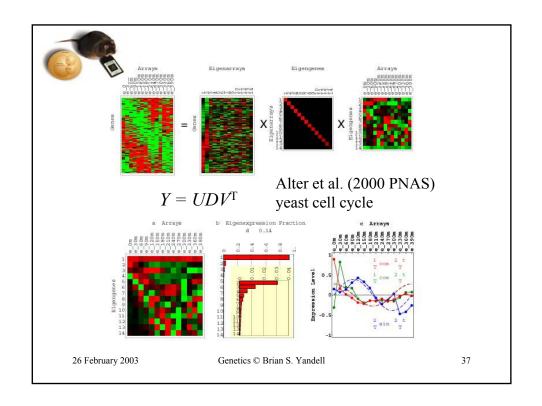
Genetics © Brian S. Yandell

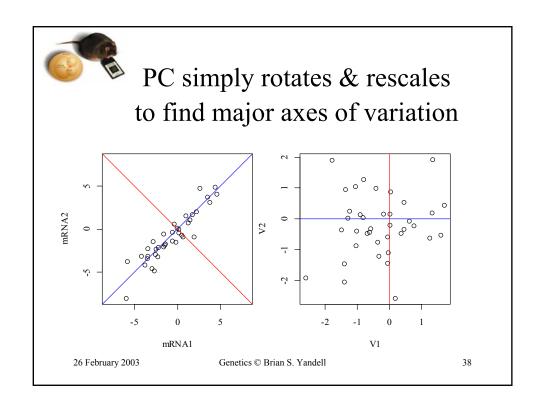


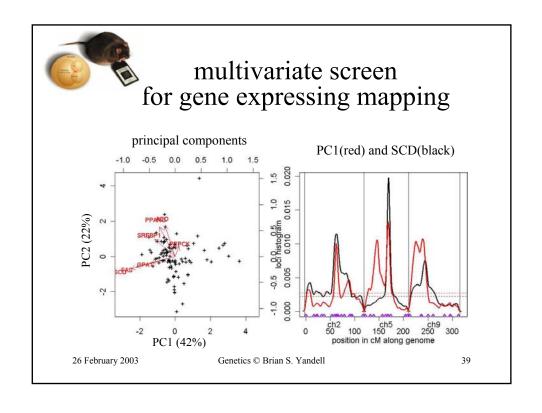


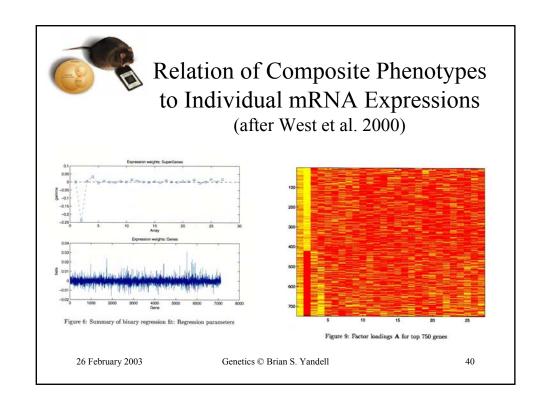
mapping controlling loci via PC

- Y = expression data from chips for F2 population
 - principle components (singular value decomposition)
 - $Y = UDV^{T}$
 - V has eigen-genes as rows, individuals as columns
 - Hilsenbeck et al. (1999); Alter et al. (2000); West et al. (2000)
- V = combined expression of coordinated genes
 - map V_1 , V_2 as quantitative traits
 - identify mRNA with strong correlation: coordinated expression?









SVD Pros and Cons

- advantages
 - superphenotypes V_1 , V_2 , ... are orthogonal
 - may only need a few
 - how fast do eigen-values D drop?
 - can dramatically increase power to detect QTL
- disadvantages
 - less efficient if many large eigen-values
 - may be difficult to interpret some superphenotypes
 - PCs may not reflect genetic differential expression
 - could iterate on putative QTL to improve discrimination

26 February 2003

Genetics © Brian S. Yandell

41

Ongoing & Future Work

- fine mapping via congenic lines
 - ongoing for physiological traits
 - candidate genes emerging
- new F2 population focusing on islets
 - expression mapping on a large scale (100-200 mice)
 - development of new methodology (Jin, Yang, Lan)
- model selection for genetic architecture
 - fast computation for multiple QTL (Yi, Gaffney)
 - high throughput model assessment

26 February 2003

Genetics © Brian S. Yandell

Summary

- · mouse model for diabetes
 - studying pathways via gene expression
 - massive number of phenotypes: expression arrays
- model selection for multiple QTL
 - Bayes factors for model assessment
 - posteriors can reveal subtle hints of QTL
 - multiple trait mapping...
- dimension reduction to elicit pathways
 - study genetic architecture of "supergenes"
 - unravel correlation with individual mRNA
- connection to false discovery rate
 - whole genome evaluation
 - calibrate posterior region with pFDR

26 February 2003 Genetics © Brian S. Yandell

Collaborators

www.stat.wisc.edu/~yandell/statgen

Alan D. Attie³ Yi Lin¹

Hong Lan³ Christina Kendziorski⁴

Yang Song¹
Samuel T. Nadler³
Fei Zou⁵

Pat Gaffney⁶

Jaya Satagopan⁷

³UW-Madison Biochemistry

¹UW-Madison Statistics

⁴UW-Madison Biostatistics

⁵UNC Biostatistics

⁶Lubrizol

⁷Memorial Sloan Kettering

26 February 2003 Genetics © Brian S. Yandell

44

software

- www.stat.wisc.edu/~yandell/qtl/software/Bmapqtl
 - module using QtlCart format
 - compiled in C for Windows/NT
 - extensions in progress
 - R post-processing graphics
 - library(bim) is cross-compatible with library(qtl)
- Bayes factor and reversible jump MCMC computation
- · enhances MCMCQTL and revjump software
 - initially designed by JM Satagopan (1996)
 - major revision and extension by PJ Gaffney (2001)
 - · whole genome
 - multivariate update of effects; long range position updates

45

- · substantial improvements in speed, efficiency
- pre-burnin: initial prior number of QTL very large

26 February 2003 Genetics © Brian S. Yandell