QTL Model Selection

Bayesian strategy
Markov chain sampling
sampling genetic architectures
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criteria for model selection
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QTL model selection: key players

* observed measurements
— y = phenotypic trait
- iln :Iomarke)r,sfJ & linkage map observed m o
— i=individual index (1,...,n)
e missing data
— missing marker data P
— = QT genotypes missing @
« alleles QQ, Qq, or qq at locus

* unknown quantities

— 1 =QT locus (or loci)
—  u = phenotype model parameters ~ UNknown
— y=QTL model/genetic architecture

e pr(qlm,4,») genotype model
— grounded by linkage map, experimental cross
— recombination yields multinomial for g given m

e pr(y|q,. ) phenotype model
— distribution shape (assumed normal here)

— unknown parameters g (could be non-parametric) after

Sen Churchill (2001)
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QTL mapping (from ZB Zeng)

Trait Phenotypic Values: Y ‘

f 1
phenotype model pr(y|q,.47)
| |
— Q Q, Qut Q.
genotypesQ ‘> vV o
pr(glm,4,7) i ———————————— A\
markers M E= M, eeeeeennas Mo, M, My, eeeaes M, “\_\\\.\\\
Homologous Chromosomes
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classical likelihood approach

 genotype model pr(q|m,4,»)

— missing genotypes g depend on observed markers
M across genome

 phenotype model pr(y|d,.7)
— link phenotypes y to genotypes q

LOD(A) = log,,{max , pr(y | m, u, A)}+c
likelihood mixes over missing QTL genotypes:
pr(y|m, 4, 2) =2 pr(yld, s)pr(a|m,A)
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EM approach

* lterate E and M steps
— expectation (E): geno prob’s pr(q|m,4,7)
— maximization (M): pheno model parameters
* mean, effects, variance

— careful attention when many QTL present
» Multiple papers by Zhao-Bang Zeng and others

— Start with simple initial model
» Add QTL, epistatic effects sequentially
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classic model search

initial model from single QTL analysis
search for additional QTL

search for epistasis between pairs of QTL
— Both in model? One in model? Neither?
Refine model

— Update QTL positions

— Check if existing QTL can be dropped

» Analogous to stepwise regression
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comparing models (details later)

 balance model fit against model complexity
— want to fit data well (maximum likelihood)
— without getting too complicated a model

smaller model  bigger model
fit model miss key features fits better
estimate phenotype may be biased no bias
predict new data may be biased no bias

interpret model easier more complicated
estimate effects low variance high variance
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1. Bayesian strategy for QTL study

« augment data (y,m) with missing genotypes ¢
« study unknowns (z,4,7) given augmented data (y,m,q)
— find better genetic architectures y
— find most likely genomic regions = QTL = 4
— estimate phenotype parameters = genotype means = u
« sample from posterior in some clever way
— multiple imputation (Sen Churchill 2002)

— Markov chain Monte Carlo (MCMC)
* (Satagopan et al. 1996; Yi et al. 2005, 2007)

likelihood * prior

posterior =
constant

_ phenotype likelihood *[prior for g, 1,4, 7]

posterior for g, u, A,y
constant

pr(y [ a, s ) *pr(qlm, 4, 7)pr(x|y)pr(A1m, 7)pr(y)]
pr(y|m)
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pr(g, i, A,y |y,m) =




Bayes posterior for normal data
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Posterior on genotypic means?
phenotype model pr(y|q,.)

data means prior mean data mean

)

posterior means

n large

|
T
I
6 8 10 12 14 16

a4 Qq y = phenotype values QQ
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Bayes posterior QTL means

posterior centered on sample genotypic mean
but shrunken slightly toward overall mean

Hq V(yla)=o’

phenotype mean: E(yla)

genotypic prior: E (/lq) Y. \% (/lq) = ko’

posterior E(u, 1Y) = b)Y, +(-b)7. V(g |y)=bo/n,
N, = count{q, = q} Yo =sumy, /n,
shrinkage: b — KN, S1
a xn, +1
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pr(g|m,A) recombination model
pr(q|m,4) = pr(geno | map, locus) =~
pr(geno | flanking markers, locus)

m m ? m m m m
L q 3 4markers > 6

ﬂ, distance along chromosome
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what are likely QTL genotypes q7?

how does phenotype y improve guess?

D4AMit41
D4Mit214

o < what are probabilities
7 for genotype g
between markers?

recombinants AA:AB

all 1:1 if ignore y
and if we use y?

Genotype
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posterior on QTL genotypes q

« full conditional of g given data, parameters
— proportional to prior pr(g | m, A)
« weight toward g that agrees with flanking markers

— proportional to likelihood pr(y | g, x)
 weight toward g with similar phenotype values

— posterior recombination model balances these two
* this is the E-step of EM computations

1y Pry1a. &) pr(a|m. )

pr(aly,m, u,
pry [m, u,4)
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Where are the loci A on the genome?

* prior over genome for QTL positions
— flat prior = no prior idea of loci
— or use prior studies to give more weight to some regions
 posterior depends on QTL genotypes g
pr(A| m,q) = pr(4) pr(g | m,2) / constant
— constant determined by averaging
« over all possible genotypes g

« over all possible loci A on entire map

* no easy way to write down posterior
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what is the genetic architecture »?

 which positions correspond to QTLs?
— priors on loci (previous slide)
» which QTL have main effects?

— priors for presence/absence of main effects
* same prior for all QTL
* can put prior on each d.f. (1 for BC, 2 for F2)
» which pairs of QTL have epistatic interactions?

— prior for presence/absence of epistatic pairs
« depends on whether 0,1,2 QTL have main effects
« epistatic effects less probable than main effects
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epistatic pairs of QTL
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Bayesian priors & posteriors

augmenting with missing genotypes q

— prior is recombination model

— posterior is (formally) E step of EM algorithm
sampling phenotype model parameters u

— prior is “flat” normal at grand mean (no information)

— posterior shrinks genotypic means toward grand mean

— (details for unexplained variance omitted here)
sampling QTL loci A

— prior is flat across genome (all loci equally likely)
sampling QTL genetic architecture model »

— number of QTL

* prior is Poisson with mean from previous IM study

— genetic architecture of main effects and epistatic interactions
* priors on epistasis depend on presence/absence of main effects
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2. Markov chain sampling

« construct Markov chain around posterior

— want posterior as stable distribution of Markov chain
— in practice, the chain tends toward stable distribution
* initial values may have low posterior probability
* burn-in period to get chain mixing well

» sample QTL model components from full conditionals

— sample locus A given g,y (using Metropolis-Hastings step)
— sample genotypes g given A4,.,y,y (using Gibbs sampler)
— sample effects x given q,y, (using Gibbs sampler)

— sample QTL model ygiven A,.4y,q (using Gibbs or M-H)

(4,9, 1,7) ~ pr(4,d, s, 7 | y,m)

(ﬂ«,q,ﬂ,]/)l—)(ﬂ,q,ﬂ,]/)z _)"'_>(Z’quu’7/)N
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MCMC sampling of unknowns (q,u,4)
for given genetic architecture y

» Gibbs sampler q~pr(q|y,m,uA)
— genotypes q
Blioty Pl )
— not loci 2 pr(y|q)
L pr(@lm,2)pr(2|m)
pr(a[m)

» Metropolis-Hastings sampler
— extension of Gibbs sampler
— does not require normalization

« pr(q|m)=sum, pr(q|m, ) pr(1)
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Gibbs sampler

for two genotypic means

< want to study two correlated effects
— could sample directly from their bivariate distribution
— assume correlation p is known
 instead use Gibbs sampler:
— sample each effect from its full conditional given the other
— pick order of sampling at random
— repeat many times

-6 %)

1 ~Npu, 1- p?)
1, ~N(ow 1~ p?)
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Gibbs sampler samples: p=0.6

N = 200 samples

N = 50 samples

o -

Gibbs: mean 1
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full conditional for locus

 cannot easily sample from locus full conditional
pr(4 ly,mpa) =pr( 4| ma)
=pr(q|m,A)pr(1)/constant
« constant is very difficult to compute explicitly
— must average over all possible loci A over genome
— must do this for every possible genotype q

 Gibbs sampler will not work in general
— but can use method based on ratios of probabilities
— Metropolis-Hastings is extension of Gibbs sampler
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Metropolis-Hastings idea

« want to study distribution (1) S - f(4)
— take Monte Carlo samples 7

« unless too complicated

— take samples using ratios of f |

» Metropolis-Hastings samples: =

— propose new value A*
* near (?) current value 4
« from some distribution g

0.2

0

— accept new value with prob a S e
s it ] 9(4-1)
» Gibbs sampler: a = 1 always
* * g |
m@w] B
f (l)g (l -4 ) S T \ \ \
-4 2 0 2 a4
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Metropolis-Hastings samples

N = 200 samples N = 1000 samples
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3. sampling genetic architectures

* search across genetic architectures y of various sizes
— allow change in number of QTL
— allow change in types of epistatic interactions
* methods for search
— reversible jump MCMC
— Gibbs sampler with loci indicators
» complexity of epistasis
— Fisher-Cockerham effects model
— general multi-QTL interaction & limits of inference
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reversible jump MCMC

« consider known genotypes q at 2 known loci 4
— models with 1 or 2 QTL

* M-H step between 1-QTL and 2-QTL models
— model changes dimension (via careful bookkeeping)
— consider mixture over QTL models H

C =1QTL:Y = B, +5(q,) +e
=2QTL:Y = B, +B,(a,) + B,(a,) +e
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geometry of reversible jump

Move Between Models Reversible Jump Sequence

[c0)

<8

(o]

Q-

c21=0.7

<

S

m=2 ~

o

,,,,,,,,,,,,,,,,,, 2-
T T m:1 T T T T T T T
00 02 04 06 0.8 00 02 04 06 0.8

B Py

Model Selection Seattle SISG: Yandell © 2012 30




geometry allowing g and A to change

a short sequence first 2000 with m<3
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collinear QTL = correlated effects

4-week 8-week

0.0
I
0.0
I

cor=-0.81

0.2
|
01
|

effect 2

02
|

effect 2

0.6
-0.3

T T T T T
-0.6 -0.4 -0.2 0.0 02 -0.2 -0.1 0.0 0.1 02

effect 1 efféét 1

* linked QTL = collinear genotypes
» correlated estimates of effects (negative if in coupling phase)
» sum of linked effects usually fairly constant
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sampling across QTL models y

0 M Ay o Ay L
i} i i i}
action steps: draw one of three choices
» update QTL model ywith probability 1-b(3)-d(»)
— update current model using full conditionals
— sample QTL loci, effects, and genotypes
 add a locus with probability b(»)
— propose a new locus along genome
— innovate new genotypes at locus and phenotype effect
— decide whether to accept the “birth” of new locus
 drop a locus with probability d(y)
— propose dropping one of existing loci
— decide whether to accept the “death” of locus
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Gibbs sampler with loci indicators

 consider only QTL at pseudomarkers
— every 1-2cM
— modest approximation with little bias
« use loci indicators in each pseudomarker
— y=1if QTL present
— y=0ifno QTL present
» Gibbs sampler on loci indicators y
— relatively easy to incorporate epistasis

— Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)
* (see earlier work of Nengjun Yi and Ina Hoeschele)

Hy = u+yB(A)+7,8,(d,), 7, =01
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Bayesian shrinkage estimation

» soft loci indicators
— strength of evidence for 4; depends on y
— 0<y <1 (greyscale)
— shrink most 45 to zero
» Wang et al. (2005 Genetics)
— Shizhong Xu group at U CA Riverside

Hy = By +1,8,(0,) +7,5,(0y), 0<y, <1
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other model selection approaches

include all potential loci in model

assume “true” model is “sparse” in some sense
Sparse partial least squares

— Chun, Keles (2009 Genetics; 2010 JRSSB)

LASSO model selection

— Foster (2006); Foster Verbyla Pitchford (2007 JABES)

— Xu (2007 Biometrics); Yi Xu (2007 Genetics)
— Shi Wahba Wright Klein Klein (2008 Stat & Infer)
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4. criteria for model selection
balance fit against complexity

» classical information criteria
— penalize likelihood L by model size |#)

—IC =-21log L(y|y) + penalty(»)
— maximize over unknowns

» Bayes factors
— marginal posteriors pr(y | »)
— average over unknowns
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classical information criteria

» start with likelihood L(y|y, m)

— measures fit of architecture () to phenotype (y)
« given marker data (m)

— genetic architecture () depends on parameters
« have to estimate loci (1) and effects (1)

» complexity related to number of parameters

— || = size of genetic architecture
« BC: |y|=1+nagtl+naqtl(nqgtl-1)=1+4+12=17
* F2:  |y|=1+2nqtl +4n.qtl(n.qtl-1) =1+ 8 + 48 =57
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classical information criteria

* construct information criteria
— balance fit to complexity
— Akaike AIC =-2log(L) + 2 |/
- Bayes/Schwartz BIC = -2 log(L) + |4 log(n)
— Broman BIC; =-2log(L) + &4 log(n)
— general form: 1C =-2 log(L) + |/ D(n)
e compare models
— hypothesis testing: designed for one comparison

* 21og[LR(71, 7)1 = L(yIm, 75) = L(ylm, )
— model selection: penalize complexity

* 1C(51, 7) = 2109[LR (71, 7)1 + (I72] = I741) D(n)
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information criteria vs. model size

e WIinQTL 2.0 3 d/
« SCD data on F2 / 2
— 8o 2/
e A=AIC 83 d/
. 1=BIC(1) 2 c/ )
. 2=BIC(2) sgf ¥
. d=BIC At 2/
=BIC(9) = A 11— 1
* models o
~ 12340QTL \lA N
. 245+9+2 A AR A—A
— epistasis ' ; :1 ; é ; s; sla
*« 2.22AD model parameters p

epistasis
Model Selection Seattle SISG: Yandell © 2012 40




Bayes factors

* ratio of model likelihoods
— ratio of posterior to prior odds for architectures
— averaged over unknowns

g Praly.m/pr(y,[y,m) _ pr(y|m,y)
N pr(r,)/pr(z,) pr(y(m,y,)
 roughly equivalent to BIC

— BIC maximizes over unknowns
— BF averages over unknowns

~2log(B,,) = ~2log(LR) - (|7, |- |,  log(n)
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2logBF
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Issues in computing Bayes factors

» BF insensitive to shape of prior on y
— geometric, Poisson, uniform
— precision improves when prior mimics posterior
» BF sensitivity to prior variance on effects &
— prior variance should reflect data variability

— resolved by using hyper-priors
* automatic algorithm; no need for user tuning

 easy to compute Bayes factors from samples
— sample posterior using MCMC
— posterior pr(y |y, m) is marginal histogram
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Bayes factors & genetic architecture y

* || =number of QTL
— prior pr(y) chosen by user

— posterior pr(y|y,m)
» sampled marginal histogram
» shape affected by prior pr(A)

_ prizly.m)/pr(,)

2 pr(ydy,m)/pr(y,)

* pattern of QTL across genome
* gene action and epistasis
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BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior

hyper-prior density 2*Beta(a,b)

insensitivity to hyper-prior
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