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15: Systems Genetics

for Experimental Crosses

Brian S. Yandell, UW-Madison
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Real knowledge is to know the extent of one’s ignorance.
Confucius (on a bench in Seattle)

SysGen: Overview Seattle SISG: Yandell © 2012 1
Daily Schedule

Monday

8:30-10 Introductions; Overview of System Genetics 1-50
10:30-12 QTL Model Selection 51-100
1:30-3 Gene Mapping for Multiple Correlated Traits 101-150
3:30-5 Hands On Lab: R/qtl 151-200
Tuesday

8:30-10 Permutation Tests for Correlated Traits 201-250
10:30-12 Scanning the Genome for Causal Architecture 251-300
1:30-3 Causal Phenotype Models Driven by QTL 301-350
3:30-5 Hands On Lab: R/qtlhot, R/qtlnet 351-400
Wednesday

8:30-10 Incorporating Biological Knowledge 401-450
10:30-12 Platforms for eQTL Analysis 451-500
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Overview of Systems Genetics

Big idea: how do genes affect organisms?
* Measuring system(s) state(s) of an organism

QTL mapping as tool toward goal

Making sense of multiple traits

Connecting traits to biochemical pathways

Putting it all together: workflows
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How do genes affect organisms?

* Dogma (with exceptions)

— DNA -> RNA -> protein -> phenotype

— redundancy/overlap of biochemical pathways
» System state of organism

— accumulated effects over time of many genes

— environmental influences
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www.accessexcellence.org/RC/VL/GG/central.php
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Biochemical Pathways chart, Gerhard Michal, Beohringer Mannheim
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systems genetics approach

* study genetic architecture of quantitative traits
— in model systems, and ultimately humans

* interrogate single resource population for variation
— DNA sequence, transcript abundance, proteins, metabolites
— multiple organismal phenotypes
— multiple environments

* detailed map of genetic variants associated with
— each organismal phenotype in each environment

« functional context to interpret phenotypes

— genetic underpinnings of multiple phenotypes
— genetic basis of genotype by environment interaction

Sieberts, Schadt (2007 Mamm Genome); Emilsson et al. (2008 Nature)
Chen et al. 2008 Nature); Ayroles et al. MacKay (2009 Nature Genetics)
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Measuring an organism

Phenotype measurement is challenging!

Cannot measure exactly what is important

Instead measure multiple related traits

Multiple traits at one time

Same trait measured over time
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QTL as tool toward goal

Identifying important genomic region(s)

But they may contain many genes

Journey from QTL to gene
— References...

Corroborative evidence from multiple traits
— Reassurance

— Increased power?

— Evidence at a system level (pathways, etc.)?
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cross two inbred lines
— linkage disequilibrium
— associations

— linked segregating QTL

(after Gary Churchill) QTL
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Making sense of multiple traits

Aligning QTL mapping results

Mapping correlated traits

Inferring hot spots where many traits map

Organizing traits into correlated sets
— Function, clustering, QTL alignment

Inferring (causal) networks
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Genetic architecture of gene expression in 6 tissues.

A Tissue-specific panels illustrate the relationship between the genomic location of a gene (y-axis) to where that gene’s mRNA shows
an eQTL (LOD > 5), as a function of genome position (x-axis). Circles represent eQTLs that showed either cis-linkage (black) or trans-
linkage (colored) according to LOD score. Genomic hot spots, where many eQTLs map in trans, are apparent as vertical bands that
show either tissue selectivity (e.g., Chr 6 in the islet, V) or are present in all tissues (e.g., Chr 17, V). B The total number of eQTLs
identified in 5 cM genomic windows is plotted for each tissue; total eQTLs for all positions is shown in upper right corner for each
panel. The peak number of eQTLs exceeding 1000 per 5 cM is shown for islets (Chrs 2, 6 and 17), liver (Chrs 2 and 17) and kidney (Chr
17).
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Figure 4 Tissue-specific hotspots with eQTL and SNP architecture
forChrs 1,2 and 17.

The number of eQTLs for each tissue (left axis) and the number of SNPs between B6 and BTBR (right axis) that were identified within
a 5 ¢cM genomic window is shown for Chr 1 (A), Chr 2 (B) Chr 17 (C). The location of tissue-specific hotspots are identified by their
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Connecting to biochemical pathways

» Gene ontology (GO)

— Functional groups

— Gene enrichment tests
« KO, PPI, TF, interactome databases

— Networks built from databases

— Hybrid networks using QTL and databases
» Proof of concept experiments

— Do findings apply to your organisms?
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KEGG pathway: pparg in mouse

AR SIGHALING PATHWAY

SN gt
—— ] } :

P g,
WEAID

Prebmwd 0=

T Ay et

- —
SysGen: Overview Seattle SISG: Yandell © 2012 19
O
N
s & S
o & <& C‘)rO Traits
SNP [ i i 1 ' | with QTL QTL
Local eQTL [ [ T ] T | 2,294 2294
Distant eQTL [ — : : ] 2,807 3,190
pQTL o 1 253 273
gemsQTL K O - I 5678 9,850
lemsQTL [ : a | o ] 936 1,547
nmrQTL T : - - : X | 544 1,172
v L ' v v . w
phQTL WZ H Ei} H T I 116 344
1 2 3 4 5
Genome

SysGen: Overview

Fu et al. Jansen (2009 Nature Genetics)

Seattle SISG: Yandell © 2012

20




Putting it all together: workflows

* Ideally have all tools & data connected
— Reduce duplication of copies, effort

— Reduce errors, save time

» Make tools more broadly available

— User-friendly interfaces

— Documentation & examples

* Enable comparison of methods

— Reduce start-up time & translation errors

SysGen: Overview
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what is the goal of QTL study?

* uncover underlying biochemistry

— identify how networks function, break down

— find useful candidates for (medical) intervention

— epistasis may play key role

— statistical goal: maximize number of correctly identified QTL
* basic science/evolution
how is the genome organized?
identify units of natural selection
— additive effects may be most important (Wright/Fisher debate)
statistical goal: maximize number of correctly identified QTL
* select “elite” individuals

— predict phenotype (breeding value) using suite of characteristics
(phenotypes) translated into a few QTL

— statistical goal: mimimize prediction error
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problems of single QTL approach

» wrong model: biased view
— fool yourself: bad guess at locations, effects
— detect ghost QTL between linked loci
— miss epistasis completely
* low power
* bad science
— use best tools for the job
— maximize scarce research resources
— leverage already big investment in experiment
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advantages of multiple QTL approach

» improve statistical power, precision
— increase number of QTL detected
— Dbetter estimates of loci: less bias, smaller intervals
» improve inference of complex genetic architecture
— patterns and individual elements of epistasis
— appropriate estimates of means, variances, covariances
 asymptotically unbiased, efficient
— assess relative contributions of different QTL
* improve estimates of genotypic values
— less bias (more accurate) and smaller variance (more precise)
— mean squared error = MSE = (bias)? + variance
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Gene Action and Epistasis

additive, dominant, recessive, general effects
of a single QTL (Gary Churchill)
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additive effects of two QTL
(Gary Churchill)
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Epistasis (Gary Churchill)
The allelic state at one locus can mask or

uncover the effects of allelic variation at another.

- W. Bateson, 1907.
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epistasis in parallel pathways (GAC)

* Z keeps trait value low X
\ ]
* neither E, nor E, is rate Y/Ezv
limiting

* loss of function alleles are
segregating from parent A at
E, and from parent B at E,

B
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epistasis in a serial pathway (GAC)

E.1 R E.2 .
* Z keeps trait value high X > Y > Z

« either E, or E, is rate limiting

* loss of function alleles are
segregating from parent B at
E, or from parent A at E,
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3. Bayesian vs. classical QTL study

 classical study
— maximize over unknown effects
—  test for detection of QTL at loci
— model selection in stepwise fashion
* Bayesian study
— average over unknown effects
— estimate chance of detecting QTL
— sample all possible models
* both approaches
— average over missing QTL genotypes
— scan over possible loci
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Bayesian 1dea

» Reverend Thomas Bayes (1702-1761)
— part-time mathematician
— buried in Bunhill Cemetary, Moongate, London
— famous paper in 1763 Phil Trans Roy Soc London
— was Bayes the first with this idea? (Laplace?)
* basic idea (from Bayes’ original example)
— two billiard balls tossed at random (uniform) on table

— where is first ball if the second is to its left?
* prior: anywhere on the table
* posterior: more likely toward right end of table
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QTL model selection: key players

*  observed measurements
— Y = phenotypic trait observed m
— m=markers & linkage map

— i =individual index (1,...,n)

* missing data
— missing marker data missing
— = QT genotypes

« alleles QQ, Qq, or qq at locus

* unknown quantities
— A =QT locus (or loci) unknown
— 4 = phenotype model parameters

— 7= QTL model/genetic architecture
*  pr(q|m,4,») genotype model
— grounded by linkage map, experimental cross
— recombination yields multinomial for g given m

* pr(y9,447) phenotype model

— distribution shape (assumed normal here) after

Sen Churchill (2001)

— unknown parameters # (could be non-parametric)
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Bayes posterior vs. maximum likelihood

» LOD: classical Log ODds

— maximize likelihood over effects 4

— R/qtl scanone/scantwo: method = “em”
» LPD: Bayesian Log Posterior Density

— average posterior over effects
— R/gtl scanone/scantwo: method = “imp

LOD(4) = log,, {max , pr(y |m, z,A)} +¢C
LPD(4) =log,, {pr(4| m)j pr(y [m, s, A)pr(u)du}+C

likelihood mixes over missing QTL genotypes:

pr(y|m, u, )= pr(y|d, 4)pr(d|m, 1)
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marginal LOD or LPD

+ compare two genetic architectures (,,7;) at each locus
— with () or without (7,) another QTL at locus 4
+ preserve model hierarchy (e.g. drop any epistasis with QTL at 1)
— with (3) or without (3,) epistasis with QTL at locus A
— 7, contains y; as a sub-architecture
* allow for multiple QTL besides locus being scanned
— architectures , and » may have QTL at several other loci
— use marginal LOD, LPD or other diagnostic
— posterior, Bayes factor, heritability

LOD(1y,)—LOD(11y,)
LPD(4 |y,)—LPD(4 |y,)
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lod.phenotype

LPD: 1 QTL vs. multi-QTL
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substitution effect: 1 QTL vs. multi-QTL
single QTL effect vs. marginal effect from QTL at A
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why use a Bayesian approach?

« first, do both classical and Bayesian

— always nice to have a separate validation

— each approach has its strengths and weaknesses
» classical approach works quite well

— selects large effect QTL easily

— directly builds on regression ideas for model selection
» Bayesian approach is comprehensive

— samples most probable genetic architectures

— formalizes model selection within one framework

— readily (!) extends to more complicated problems

QTL 2: Overview Seattle SISG: Yandell © 2010 41

comparing models

 balance model fit against model complexity
— want to fit data well (maximum likelihood)
— without getting too complicated a model

smaller model  bigger model
fit model miss key features fits better
estimate phenotype may be biased  no bias
predict new data  may be biased  no bias
interpret model easier more complicated
estimate effects low variance high variance
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QTL software options

* methods
— approximate QTL by markers
— exact multiple QTL interval mapping
* software platforms
— MapMaker/QTL (obsolete)
— QTLCart (statgen.ncsu.edu/qtlcart)
— R/qtl (www.rqtl.org)
— R/qtlbim (www.qtlbim.org)
— Yandell, Bradbury (2007) book chapter
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QTL software platforms

* QTLCart (statgen.ncsu.edu/qtlcart)
— includes features of original MapMaker/QTL
* not designed for building a linkage map
— easy to use Windows version WinQTLCart
based on Lander-Botstein maximum likelihood LOD
+ extended to marker cofactors (CIM) and multiple QTL (MIM)
* epistasis, some covariates (GXE)
+ stepwise model selection using information criteria
some multiple trait options
— OK graphics
* R/qtl (www.rqtl.org)
— includes functionality of classical interval mapping
— many useful tools to check genotype data, build linkage maps
— excellent graphics
— several methods for 1-QTL and 2-QTL mapping
* cpistasis, covariates (GxE)
— tools available for multiple QTL model selection
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QTL Model Selection

Bayesian strategy
Markov chain sampling
sampling genetic architectures

-l A

criteria for model selection

Model Selection Seattle SISG: Yandell © 2012 1

QTL model selection: key players

* observed measurements
— y = phenotypic trait
- iln :Iomarke)r,sfJ & linkage map observed m o
— i=individual index (1,...,n)
e missing data
— missing marker data P
— = QT genotypes missing @
« alleles QQ, Qq, or qq at locus

* unknown quantities

— 1 =QT locus (or loci)
—  u = phenotype model parameters ~ UNknown
— y=QTL model/genetic architecture

e pr(qlm,4,») genotype model
— grounded by linkage map, experimental cross
— recombination yields multinomial for g given m

e pr(y|q,. ) phenotype model
— distribution shape (assumed normal here)

— unknown parameters g (could be non-parametric) after

Sen Churchill (2001)

Model Selection Seattle SISG: Yandell © 2012 2




QTL mapping (from ZB Zeng)

Trait Phenotypic Values: Y ‘

f 1
phenotype model pr(y|q,.47)
| |
— Q Q, Qut Q.
genotypesQ ‘> vV o
pr(glm,4,7) i ———————————— A\
markers M E= M, eeeeeennas Mo, M, My, eeeaes M, “\_\\\.\\\
Homologous Chromosomes
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classical likelihood approach

 genotype model pr(q|m,4,»)

— missing genotypes g depend on observed markers
M across genome

 phenotype model pr(y|d,.7)
— link phenotypes y to genotypes q

LOD(A) = log,,{max , pr(y | m, u, A)}+c
likelihood mixes over missing QTL genotypes:
pr(y|m, 4, 2) =2 pr(yld, s)pr(a|m,A)

Model Selection Seattle SISG: Yandell © 2012 4




EM approach

* lterate E and M steps
— expectation (E): geno prob’s pr(q|m,4,7)
— maximization (M): pheno model parameters
* mean, effects, variance

— careful attention when many QTL present
» Multiple papers by Zhao-Bang Zeng and others

— Start with simple initial model
» Add QTL, epistatic effects sequentially

Model Selection Seattle SISG: Yandell © 2012

classic model search

initial model from single QTL analysis
search for additional QTL

search for epistasis between pairs of QTL
— Both in model? One in model? Neither?
Refine model

— Update QTL positions

— Check if existing QTL can be dropped

» Analogous to stepwise regression

Model Selection Seattle SISG: Yandell © 2012




comparing models (details later)

 balance model fit against model complexity
— want to fit data well (maximum likelihood)
— without getting too complicated a model

smaller model  bigger model
fit model miss key features fits better
estimate phenotype may be biased no bias
predict new data may be biased no bias

interpret model easier more complicated
estimate effects low variance high variance
SysGen: Overview Seattle SISG: Yandell © 2012 7

1. Bayesian strategy for QTL study

« augment data (y,m) with missing genotypes ¢
« study unknowns (z,4,7) given augmented data (y,m,q)
— find better genetic architectures y
— find most likely genomic regions = QTL = 4
— estimate phenotype parameters = genotype means = u
« sample from posterior in some clever way
— multiple imputation (Sen Churchill 2002)

— Markov chain Monte Carlo (MCMC)
* (Satagopan et al. 1996; Yi et al. 2005, 2007)

likelihood * prior

posterior =
constant

_ phenotype likelihood *[prior for g, 1,4, 7]

posterior for g, u, A,y
constant

pr(y [ a, s ) *pr(qlm, 4, 7)pr(x|y)pr(A1m, 7)pr(y)]
pr(y|m)
Model Selection Seattle SISG: Yandell © 2012 8

pr(g, i, A,y |y,m) =




Bayes posterior for normal data
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Posterior on genotypic means?
phenotype model pr(y|q,.)

data means prior mean data mean

)

posterior means

n large

|
T
I
6 8 10 12 14 16

a4 Qq y = phenotype values QQ
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Bayes posterior QTL means

posterior centered on sample genotypic mean
but shrunken slightly toward overall mean

Hq V(yla)=o’

phenotype mean: E(yla)

genotypic prior: E (/lq) Y. \% (/lq) = ko’

posterior E(u, 1Y) = b)Y, +(-b)7. V(g |y)=bo/n,
N, = count{q, = q} Yo =sumy, /n,
shrinkage: b — KN, S1
a xn, +1
QTL 2: Bayes Seattle SISG: Yandell © 2010 11

pr(g|m,A) recombination model
pr(q|m,4) = pr(geno | map, locus) =~
pr(geno | flanking markers, locus)

m m ? m m m m
L q 3 4markers > 6

ﬂ, distance along chromosome

Model Selection Seattle SISG: Yandell © 2012 12
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what are likely QTL genotypes q7?

how does phenotype y improve guess?

D4AMit41
D4Mit214

o < what are probabilities
7 for genotype g
between markers?

recombinants AA:AB

all 1:1 if ignore y
and if we use y?

Genotype
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posterior on QTL genotypes q

« full conditional of g given data, parameters
— proportional to prior pr(g | m, A)
« weight toward g that agrees with flanking markers

— proportional to likelihood pr(y | g, x)
 weight toward g with similar phenotype values

— posterior recombination model balances these two
* this is the E-step of EM computations

1y Pry1a. &) pr(a|m. )

pr(aly,m, u,
pry [m, u,4)

Model Selection Seattle SISG: Yandell © 2012 15

Where are the loci A on the genome?

* prior over genome for QTL positions
— flat prior = no prior idea of loci
— or use prior studies to give more weight to some regions
 posterior depends on QTL genotypes g
pr(A| m,q) = pr(4) pr(g | m,2) / constant
— constant determined by averaging
« over all possible genotypes g

« over all possible loci A on entire map

* no easy way to write down posterior

Model Selection Seattle SISG: Yandell © 2012 16




what is the genetic architecture »?

 which positions correspond to QTLs?
— priors on loci (previous slide)
» which QTL have main effects?

— priors for presence/absence of main effects
* same prior for all QTL
* can put prior on each d.f. (1 for BC, 2 for F2)
» which pairs of QTL have epistatic interactions?

— prior for presence/absence of epistatic pairs
« depends on whether 0,1,2 QTL have main effects
« epistatic effects less probable than main effects

Model Selection Seattle SISG: Yandell © 2012 17

epistatic pairs of QTL

m s
v = genetic architecture: | Hjl 0
_ooea 0
Meussnsls
loct: FEE -
main QTL uDi I_I_IIJI_E 000 :=i
epistatic pairs BeSfcinifcecoaitN
o 00000 O
REISS eSS =CcExaaa § |
JOO0000n 00000 O
AREHEEEA - g I
effects: ] 00000 O
IR 6 6 O oo
add, dom L mm m
OfOOOOOmMO000000000000 o Lt-
aa. ad. dd DORCO0000R000000000R000000N main QTL
n 2 I =% =0 E
g
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Bayesian priors & posteriors

augmenting with missing genotypes q

— prior is recombination model

— posterior is (formally) E step of EM algorithm
sampling phenotype model parameters u

— prior is “flat” normal at grand mean (no information)

— posterior shrinks genotypic means toward grand mean

— (details for unexplained variance omitted here)
sampling QTL loci A

— prior is flat across genome (all loci equally likely)
sampling QTL genetic architecture model »

— number of QTL

* prior is Poisson with mean from previous IM study

— genetic architecture of main effects and epistatic interactions
* priors on epistasis depend on presence/absence of main effects

Model Selection Seattle SISG: Yandell © 2012
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2. Markov chain sampling

« construct Markov chain around posterior

— want posterior as stable distribution of Markov chain
— in practice, the chain tends toward stable distribution
* initial values may have low posterior probability
* burn-in period to get chain mixing well

» sample QTL model components from full conditionals

— sample locus A given g,y (using Metropolis-Hastings step)
— sample genotypes g given A4,.,y,y (using Gibbs sampler)
— sample effects x given q,y, (using Gibbs sampler)

— sample QTL model ygiven A,.4y,q (using Gibbs or M-H)

(4,9, 1,7) ~ pr(4,d, s, 7 | y,m)

(ﬂ«,q,ﬂ,]/)l—)(ﬂ,q,ﬂ,]/)z _)"'_>(Z’quu’7/)N

Model Selection Seattle SISG: Yandell © 2012
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MCMC sampling of unknowns (q,u,4)
for given genetic architecture y

» Gibbs sampler q~pr(q|y,m,uA)
— genotypes q
Blioty Pl )
— not loci 2 pr(y|q)
L pr(@lm,2)pr(2|m)
pr(a[m)

» Metropolis-Hastings sampler
— extension of Gibbs sampler
— does not require normalization

« pr(q|m)=sum, pr(q|m, ) pr(1)

Model Selection Seattle SISG: Yandell © 2012 21

Gibbs sampler

for two genotypic means

< want to study two correlated effects
— could sample directly from their bivariate distribution
— assume correlation p is known
 instead use Gibbs sampler:
— sample each effect from its full conditional given the other
— pick order of sampling at random
— repeat many times

-6 %)

1 ~Npu, 1- p?)
1, ~N(ow 1~ p?)

Model Selection Seattle SISG: Yandell © 2012 22




Gibbs sampler samples: p=0.6

N = 200 samples

N = 50 samples

o -

Gibbs: mean 1

20 30 40 50

50 100 150 200

T
3

0 10 0
Markov chain index
0

Markov chain index
8
o

2 -1 0 1 2
Gibbs: mean 1
o 2o

i ] ‘
s kg

So
T T

T T T
0 10 20 30 40 50
Markov chain index

2 0 50 100 150 200

2 1 0 1 1 2 1 0 1 2
Gibbs: mean 1 Markov chain index Gibbs: mean 1
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full conditional for locus

 cannot easily sample from locus full conditional
pr(4 ly,mpa) =pr( 4| ma)
=pr(q|m,A)pr(1)/constant
« constant is very difficult to compute explicitly
— must average over all possible loci A over genome
— must do this for every possible genotype q

 Gibbs sampler will not work in general
— but can use method based on ratios of probabilities
— Metropolis-Hastings is extension of Gibbs sampler

Model Selection Seattle SISG: Yandell © 2012 24




Metropolis-Hastings idea

« want to study distribution (1) S - f(4)
— take Monte Carlo samples 7

« unless too complicated

— take samples using ratios of f |

» Metropolis-Hastings samples: =

— propose new value A*
* near (?) current value 4
« from some distribution g

0.2

0

— accept new value with prob a S e
s it ] 9(4-1)
» Gibbs sampler: a = 1 always
* * g |
m@w] B
f (l)g (l -4 ) S T \ \ \
-4 2 0 2 a4
Model Selection Seattle SISG: Yandell © 2012 25
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Metropolis-Hastings samples

N = 200 samples N = 1000 samples
narrow g wide g narrow g wide g
8 - 8 A g S 3 [ B —
(= of = 2 0¥ co | co | o B =
seq ¢ SE 88 88 =l
g ] & 2 2] 2.7 wrge
@ Z »g B8 1 g o e
0o _| o oo | o< o< % ;@“ i
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S 7 < o < 5 < o
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3. sampling genetic architectures

* search across genetic architectures y of various sizes
— allow change in number of QTL
— allow change in types of epistatic interactions
* methods for search
— reversible jump MCMC
— Gibbs sampler with loci indicators
» complexity of epistasis
— Fisher-Cockerham effects model
— general multi-QTL interaction & limits of inference

Model Selection Seattle SISG: Yandell © 2012 28




reversible jump MCMC

« consider known genotypes q at 2 known loci 4
— models with 1 or 2 QTL

* M-H step between 1-QTL and 2-QTL models
— model changes dimension (via careful bookkeeping)
— consider mixture over QTL models H

C =1QTL:Y = B, +5(q,) +e
=2QTL:Y = B, +B,(a,) + B,(a,) +e

Model Selection Seattle SISG: Yandell © 2012 29
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geometry of reversible jump
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geometry allowing g and A to change

a short sequence first 2000 with m<3

I
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s
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collinear QTL = correlated effects

4-week 8-week

0.0
I
0.0
I

cor=-0.81

0.2
|
01
|

effect 2

02
|

effect 2

0.6
-0.3

T T T T T
-0.6 -0.4 -0.2 0.0 02 -0.2 -0.1 0.0 0.1 02

effect 1 efféét 1

* linked QTL = collinear genotypes
» correlated estimates of effects (negative if in coupling phase)
» sum of linked effects usually fairly constant
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sampling across QTL models y

0 M Ay o Ay L
i} i i i}
action steps: draw one of three choices
» update QTL model ywith probability 1-b(3)-d(»)
— update current model using full conditionals
— sample QTL loci, effects, and genotypes
 add a locus with probability b(»)
— propose a new locus along genome
— innovate new genotypes at locus and phenotype effect
— decide whether to accept the “birth” of new locus
 drop a locus with probability d(y)
— propose dropping one of existing loci
— decide whether to accept the “death” of locus

Model Selection Seattle SISG: Yandell © 2012 33

Gibbs sampler with loci indicators

 consider only QTL at pseudomarkers
— every 1-2cM
— modest approximation with little bias
« use loci indicators in each pseudomarker
— y=1if QTL present
— y=0ifno QTL present
» Gibbs sampler on loci indicators y
— relatively easy to incorporate epistasis

— Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)
* (see earlier work of Nengjun Yi and Ina Hoeschele)

Hy = u+yB(A)+7,8,(d,), 7, =01
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Bayesian shrinkage estimation

» soft loci indicators
— strength of evidence for 4; depends on y
— 0<y <1 (greyscale)
— shrink most 45 to zero
» Wang et al. (2005 Genetics)
— Shizhong Xu group at U CA Riverside

Hy = By +1,8,(0,) +7,5,(0y), 0<y, <1

Model Selection Seattle SISG: Yandell © 2012 35

other model selection approaches

include all potential loci in model

assume “true” model is “sparse” in some sense
Sparse partial least squares

— Chun, Keles (2009 Genetics; 2010 JRSSB)

LASSO model selection

— Foster (2006); Foster Verbyla Pitchford (2007 JABES)

— Xu (2007 Biometrics); Yi Xu (2007 Genetics)
— Shi Wahba Wright Klein Klein (2008 Stat & Infer)

Model Selection Seattle SISG: Yandell © 2012 36




4. criteria for model selection
balance fit against complexity

» classical information criteria
— penalize likelihood L by model size |#)

—IC =-21log L(y|y) + penalty(»)
— maximize over unknowns

» Bayes factors
— marginal posteriors pr(y | »)
— average over unknowns

Model Selection Seattle SISG: Yandell © 2012 37

classical information criteria

» start with likelihood L(y|y, m)

— measures fit of architecture () to phenotype (y)
« given marker data (m)

— genetic architecture () depends on parameters
« have to estimate loci (1) and effects (1)

» complexity related to number of parameters

— || = size of genetic architecture
« BC: |y|=1+nagtl+naqtl(nqgtl-1)=1+4+12=17
* F2:  |y|=1+2nqtl +4n.qtl(n.qtl-1) =1+ 8 + 48 =57
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classical information criteria

* construct information criteria
— balance fit to complexity
— Akaike AIC =-2log(L) + 2 |/
- Bayes/Schwartz BIC = -2 log(L) + |4 log(n)
— Broman BIC; =-2log(L) + &4 log(n)
— general form: 1C =-2 log(L) + |/ D(n)
e compare models
— hypothesis testing: designed for one comparison

* 21og[LR(71, 7)1 = L(yIm, 75) = L(ylm, )
— model selection: penalize complexity

* 1C(51, 7) = 2109[LR (71, 7)1 + (I72] = I741) D(n)

Model Selection Seattle SISG: Yandell © 2012 39

information criteria vs. model size

e WIinQTL 2.0 3 d/
« SCD data on F2 / 2
— 8o 2/
e A=AIC 83 d/
. 1=BIC(1) 2 c/ )
. 2=BIC(2) sgf ¥
. d=BIC At 2/
=BIC(9) = A 11— 1
* models o
~ 12340QTL \lA N
. 245+9+2 A AR A—A
— epistasis ' ; :1 ; é ; s; sla
*« 2.22AD model parameters p

epistasis
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Bayes factors

* ratio of model likelihoods
— ratio of posterior to prior odds for architectures
— averaged over unknowns

g Praly.m/pr(y,[y,m) _ pr(y|m,y)
N pr(r,)/pr(z,) pr(y(m,y,)
 roughly equivalent to BIC

— BIC maximizes over unknowns
— BF averages over unknowns

~2log(B,,) = ~2log(LR) - (|7, |- |,  log(n)

Model Selection Seattle SISG: Yandell © 2012 41
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Issues in computing Bayes factors

» BF insensitive to shape of prior on y
— geometric, Poisson, uniform
— precision improves when prior mimics posterior
» BF sensitivity to prior variance on effects &
— prior variance should reflect data variability

— resolved by using hyper-priors
* automatic algorithm; no need for user tuning

 easy to compute Bayes factors from samples
— sample posterior using MCMC
— posterior pr(y |y, m) is marginal histogram

Model Selection Seattle SISG: Yandell © 2012 43

Bayes factors & genetic architecture y

* || =number of QTL
— prior pr(y) chosen by user

— posterior pr(y|y,m)
» sampled marginal histogram
» shape affected by prior pr(A)

_ prizly.m)/pr(,)

2 pr(ydy,m)/pr(y,)

* pattern of QTL across genome
* gene action and epistasis

0.30
|

e
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BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior

hyper-prior density 2*Beta(a,b)

insensitivity to hyper-prior
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Multiple Correlated Traits

Pleiotropy vs. close linkage

Analysis of covariance
— Regress one trait on another before QTL search

Classic GXE analysis
Formal joint mapping (MTM)
Seemingly unrelated regression (SUR)

Reducing many traits to one
— Principle components for similar traits

Correlated Traits SISG (c) Yandell 2012

co-mapping multiple traits

* avoid reductionist approach to biology

— address physiological/biochemical mechanisms
— Schmalhausen (1942); Falconer (1952)

* separate close linkage from pleiotropy
— 1 locus or 2 linked loci?

« 1identify epistatic interaction or canalization
— influence of genetic background

* establish QTL x environment interactions
» decompose genetic correlation among traits
* increase power to detect QTL

Correlated Traits SISG (c) Yandell 2012




Two types of data
* Design I: multiple traits on same individual

— Related measurements, say of shape or size
— Same measurement taken over time

— Correlation within an individual

* Design II: multiple traits on different individuals
— Same measurement in two crosses
— Male vs. female differences
— Different individuals in different locations

— No correlation between individuals

Correlated Traits SISG (c) Yandell 2012 3

interplay of pleiotropy & correlation

Y - , §y=0 5,70 , 1, %0 °
ey
] D | G
Iy—dx :,/’\,x/ ) (;”Ex/
x X x
pleiotropy only correlation only both

Korol et al. (2001)

Correlated Traits SISG (c) Yandell 2012 4




Brassica napus: 2 correlated traits

* 4-week & 8-week vernalization effect
— log(days to flower)
+ genetic cross of
— Stellar (annual canola)
— Major (biennial rapeseed)
105 F1-derived double haploid (DH) lines
— homozygous at every locus (QQ or gq)
* 10 molecular markers (RFLPs) on LG9
— two QTLs inferred on LG9 (now chromosome N2)
— corroborated by Butruille (1998)
— exploiting synteny with Arabidopsis thaliana

Correlated Traits SISG (c) Yandell 2012

QTL with GXE or Covariates

adjust phenotype by covariate

— covariate(s) = environment(s) or other trait(s)
additive covariate

— covariate adjustment same across genotypes

— “usual” analysis of covariance (ANCOVA)

* interacting covariate

— address GXE

— capture genotype-specific relationship among traits
another way to think of multiple trait analysis
— examine single phenotype adjusted for others

Correlated Traits SISG (c) Yandell 2012




R/qtl & covariates

» additive and/or interacting covariates
+ test for QTL after adjusting for covariates

## Get Brassica data.

library(gtlbim)

data(Bnapus)

Bnapus <- calc.genoprob(Bnapus, step = 2, error

0.01)

## Scatterplot of two phenotypes: 4wk & 8wk flower time.
plot(Bnapus$pheno$logl0flower4,Bnapus$pheno$loglOflowers)

## Unadjusted IM scans of each phenotype.
18 <- scanone(Bnapus,, find.pheno(Bnapus, "logl0flower8'))
fl4 <- scanone(Bnapus,, find.pheno(Bnapus, "loglOflower4'))

plot(fl4, f18, chr = "N2", col = rep(1,2), Ity = 1:2,
main = "solid = 4wk, dashed = 8wk"™, Iwd = 4)
Correlated Traits SISG (c) Yandell 2012 7

lag10(8 week lower)

solid = 4wk, dashed = 8wk

14 16 40 60 80

Map position (cM)

SISG (c) Yandell 2012 8

log10(4 week flower)
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R/qtl & covariates

» additive and/or interacting covariates
+ test for QTL after adjusting for covariates

## IM scan of 8wk adjusted for 4wk.

## Adjustment independent of genotype

f18.4 <- scanone(Bnapus,, find.pheno(Bnapus, "loglOflower8™"),
addcov = Bnapus$pheno$logl0flower4)

## IM scan of 8wk adjusted for 4wk.

## Adjustment changes with genotype.

f18.4 <- scanone(Bnapus,, Ffind.pheno(Bnapus, "loglO0flower8™"),
intcov = Bnapus$pheno$logl0flower4)

plot(f18, fl8.4a, flI8.4, chr = "N2",
main = "solid = 8wk, dashed = addcov, dotted = intcov')

Correlated Traits SISG (c) Yandell 2012

lod

solid = 8wk, dashed = addcev, detted = intcov

Map position (cM)
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log10(Bwk flower time)

marker at 80cM

marker at 47cM

»
I

log1 0{Bwk flower time)

i

>
X
10 9 -
>
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|In 1‘2 1‘4 |I£ 1‘3 2‘5 1‘5 |I2 1'4 1‘5 |IE ZID
log10(4wk flower time) 10g10(4wk flower time)
Correlated Traits SISG (c) Yandell 2012 11

scatterplot adjusted for covariate

## Set up data frame with peak markers, traits.
markers <- c(“E38M50.133","ec2e5a","wg7f3a'")
tmpdata <- data.frame(pull.geno(Bnapus)[,markers])
tmpdata$fl4 <- Bnapus$pheno$loglOflower4d
tmpdata$fl8 <- Bnapus$pheno$loglOflower8

## Scatterplots grouped by marker.
library(lattice)
xyplot(f18 ~ fl4, tmpdata, group = wg7f3a,

col = "black™, pch = 3:4, cex = 2, type =

xlab = "logl0(4wk flower time)",
ylab = "logl0(8wk flower time)",
main = "marker at 47cM™)

(P,

xyplot(fl18 ~ fl4, tmpdata, group = E38M50.133,
col = "black™, pch = 3:4, cex = 2, type = c("p","r"),

xlab = "logl0(4wk flower time)",
ylab = "logl0(8wk flower time)",
main = "marker at 80cM™)

Correlated Traits
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Multiple trait mapping

Joint mapping of QTL
— testing and estimating QTL affecting multiple
traits

Testing pleiotropy vs. close linkage
— One QTL or two closely linked QTLs

Testing QTL x environment interaction

Comprehensive model of multiple traits

— Separate genetic & environmental correlation
Correlated Traits SISG (c) Yandell 2012 13

Formal Tests: 2 traits

y1~ N(u,,, ) for group 1 with QTL at location A,
¥2 ~ N(,, %) for group 2 with QTL at location 2,

 Pleiotropy vs. close linkage

» test QTL at same location: A, = A,

¢ likelihood ratio test (LOD): null forces same location
* if pleiotropic (A, =A,)

* test for same mean: Hg1 = Uy

¢ Likelihood ratio test (LOD)

¢ null forces same mean, location
* alternative forces same location

» only make sense if traits are on same scale
ComeledtRisseX or location effect v e 2012 14




3 correlated traits B
(Jiang Zeng 1995) .| o
i o)
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Correlated Traits SISG (c) Yandell 2012

pleiotropy or close linkage?

2 traits, 2 qtl/trait
pleiotropy @ 54cM
linkage @ 114,128cM
Jiang Zeng (1995)

70

LR test statistic

T T T T T T T
0 15 30 45 80 76 S0 106 120 135 150

Testing position (cM)
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More detail for 2 traits

y1 ~N(u,,, o) for group 1

¥, ~ N(u,,, o) for group 2
* two possible QTLs at locations A, and A,
* effect B; in group & for QTL at location A,

Hg1 =1yt Brigy) + Bia(gr)

Hgp = o+ Bay(qy) + Bra(gr)
* classical: test B,; = 0 for various
conrQREPINALIONS 156 (o) vandet 2012 2

seemingly unrelated regression
(SUR)

Hgr =My T Y11Bq11 T Y12 Bq12
Mo =y T Yo qul T V2 quz
indicators v;; are 0 (no QTL) or 1 (QTL)

* include ys in formal model selection

Correlated Traits SISG (c) Yandell 2012 18




SUR for multiple loci across genome

 consider only QTL at pseudomarkers (lecture 2)

* use loci indicators y; (=0 or 1) for each
pseudomarker

* use SUR indicators y;; (=0 or 1) for each trait

» Gibbs sampler on both indicators
— Banerjee, Yandell, Yi (2008 Genetics)

Moo = #7708 + 7,78, (4,) +

Hoy = Hy 2717555 (a)) + 7,75, 55, (4,) + -
Correlated Traits SISG (c) Yandell 2012 19
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M16i: large, obese, rapid growth CASTI/Ei: small, lean
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R/qtlbim and GxE

 similar idea to R/qtl
— fixed and random additive covariates
— GxE with fixed covariate
» multiple trait analysis tools coming soon
— theory & code mostly in place
— properties under study
— expect in R/qtlbim later this year
— Samprit Banerjee (N Y1, advisor)

Correlated Traits SISG (c) Yandell 2012 24




reducing many phenotypes to 1

* Drosophila mauritiana x D. simulans

— reciprocal backcrosses, ~500 per be

 response is “shape” of reproductive piece

— trace edge, convert to Fourier series

— reduce dimension: first principal component

* many linked loci
— brief comparison of CIM, MIM, BIM

Correlated Traits

SISG (c) Yandell 2012
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shape phenotype via PC
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shape phenotype in BC study
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multiple QTL: CIM, MIM and BIM
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Quantile-based Permutation
Thresholds for QTL Hotspots

Brian S Yandell and Elias Chaibub Neto
17 March 2012

MSRC5 2012 © Yandell 1

Fisher on inference

We may at once admit that any inference from
the particular to the general must be
attended with some degree of uncertainty,
but this is not the same as to admit that such
inference cannot be absolutely rigorous, for
the nature and degree of the uncertainty
may itself be capable of rigorous
expression,

ake:Ronald A Fisher(1935) )
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Why study hotspots?

How do genotypes affect phenotypes?
genotypes = DNA markers for an individual
phenotypes = traits measured on an individual
(clinical traits, thousands of mMRNA expression levels)
QTL hotspots = genomic locations affecting many traits
common feature in genetical genomics studies
biologically interesting--may harbor critical regulators
But are these hotspots real? Or are they spurious or random?
non-genetic correlation from other environmental factors

MSRC5 2012 © Yandell 3
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How large a hotspot is large?

recently proposed empirical test
Brietling et al. Jansen (2008)
hotspot = count traits above LOD threshold
LOD = rescaled likelihood ratio ~ F statistic
assess null distribution with permutation test
extension of Churchill and Doerge (1994)
extension of Fisher's permutation t-test

MSRC5 2012 © Yandell 9

Single trait permutation threshold T
Churchill Doerge (1994)

e Null distribution of max LOD
— Permute single trait separate from genotype
— Find max LOD over genome
— Repeat 1000 times

e Find 95% permutation threshold T

* ldentify interested peaks above T in data

» Controls genome-wide error rate (GWER)
— Chance of detecting at least on peak above T

MSRC5 2012 © Yandell 10




Single trait permutation schema

wn 5]

(«5] o

2 || =

*é S| —> LOD over genome—> max LOD

o =

(@)) o
1. shuffle phenotypes to break
QTL
2. repeat 1000 times and
summarize

MSRC5 2012 © Yandell

11

Hotspot count threshold N(T)
Breitling et al. Jansen (2008)

e Null distribution of max count above T
— Find single-trait 95% LOD threshold T
— Find max count of traits with LODs above T
— Repeat 1000 times
» Find 95% count permutation threshold N
o ldentify counts of LODs above T in data
— Locus-specific counts identify hotspots

» Controls GWER in some way

MSRC5 2012 © Yandell
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Hotspot permutation schema

LOD at each locus

count LODs at locus

ov‘eryshold T

max count N over genome

for each phenotyp
over genome

genotypes
phenotypes

1. shuffle phenotypes by row to break QTL, keep
correlation
msBegepeat 1000 times andzsurmmarize 13

spurious hotspot permutation histogram

fAr hntennt ci7o ahnvia 1 _trait 'I'hraohnld

¥ (b}
- 95% threshold at N > 82
B2 using single trait thresholdT = 3.41
5

E i LT am n o]
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Hotspot sizes based on count of
LODs above single-trait
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hotspot permutation test

(Breitling et al. Jansen 2008 PLoS Genetics)
« for original dataset and each permuted set:

— Set single trait LOD threshold T
* Could use Churchill-Doerge (1994) permutations

— Count number of traits (N) with LOD above T
* Do this at every marker (or pseudomarker)
* Probably want to smooth counts somewhat

o find count with at most 5% of permuted sets above
(critical value) as count threshold
 conclude original counts above threshold are real

MSRC5 2012 © Yandell 16




permutation across traits
(Breitling et al. Jansen 2008 PLoS Genetics)

right way wrong way
A Observed genotype and expression data Observed hotspots B
n M1 Mz Min
MiM2 / Mn G1 G2 .
c = I | o
S BLL s | | cHsmae
permute#rows cow‘ False h otspots
in permuted eQTLs
-
- IO -
W B Er(teak correlal:'uon
3 ) Ol etween markers
| 2 EE N .
- I | [T and traits
marker gene expression  Faise hotspots but
in permuted data i
MSRC5 2012 © Yandell preserve Correll7atlon

among traits

quality vs. quantity in hotspots
(Chaibub Neto et al. in review)

* detecting single trait with very large LOD
— control FWER across genome
— control FWER across all traits

« finding small “hotspots” with significant

— all with large LODs
— could indicate a strongly disrupted signal
pathway

wsrsliding LOD threshoddracross hotspot sizes =




Rethinking the approach

Breitling et al. depends highly on T

Threshold T based on single trait
— but interested in multiple correlated traits

want to control hotspot GWER (hGWER,)

— chance of detecting at least one spurious hotspot of
size N or larger

N=1
— chance of detecting at least 1 peak above threshold
across all traits and whole genome

— Use permutation null distribution of maximum

LOD scores across all transcripts and all genomic
MSRC5 |ocations 2012 © Yandell 19

rarponpt counts

Hotspot architecture using multiple
trait G\AMFR thrachnld (T =7 12)

(b)
a7 count of all traits with LOD above T, = 7.12
all traits counted are significant
60 conservative adjustment for multiple traits
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LOD quantile

locus-specific LOD quantiles in data
for 10(black), 20(blue), 50(red) traits
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locus-specific LOD quantiles

e Quantile: what is LOD value for which at
least 10 (or 20 or 50) traits are at above it?

 Breitling hotspots (chr 2,3,12,14,15)
— have many traits with high LODs

e Chromosome max LOD quantile by trait
count

color count chr3 chr 8 chr12 chr14

black 10 24 10 18 12
blue 20 1 8 | 15 1
MSRCS 50 g 2012GYandell o 9 22




Hotspot permutation revisited

LOD at each locus

over genome

per phenotype
Find quantile
= N-th largest

LOD 7each locus

max LOD quantile over genof

genotypes
phenotypes

1. shuffle phenotypes by row to break QTL, keep
correlation
msBegepeat 1000 times andzsurmmarize 23

Tail distribution of LOD quantiles
What |sqglgs§déﬁlz§$§r%hg gogm-t.es holds

— all traits in hotspot have LOD above null threshold
Small spurious hotspots have higher minimum LODs
— min of 10 values > min of 20 values
Large spurious hotspots have many small LODs
— most are below single-trait threshold
Null thresholds depending on hotspot size
— Decrease with spurious hotspot size (starting at N = 1)
— Be truncated at single-trait threshold for large sizes

Chen Storey (2007) studied LOD quantiles
— For multiple peaks on a single trait

MSRC5 2012 © Yandell 24




genome-wide LOD permutation
threshold
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hotspot architectures using LOD

thresholds
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Hotspot size significance profile

» Construction

— Fix significance level (say 5%)
— At each locus, find largest hotspot that is significant using
sliding threshold

— Plot as profile across genome

* Interpretation

— Large hotspots were already significant

— Traits with LOD > 7.12 could be hubs

— Smaller hotspots identified by fewer large LODs (chr 8)
— Subjective choice on what to investigate (chr 13, 5?)

MSRC5 2012 © Yandell 29
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Yeast study

120 individuals

6000 traits

250 markers

1000 permutations

1.8 * 10710 linear models

MSRC5 2012 © Yandell
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Mouse study

500 individuals

30,000 traits * 6 tissues

2000 markers

1000 permutations

1.8 * 10"13 linear models
1000 x more than yeast study

MSRC5 2012 © Yandell
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Scaling up permutations

e tremendous computing resource needs
— Multiple analyses, periodically redone
» Algorithms improve
« Gene annotation and sequence data evolve
— Verification of properties of methods
» Theory gives easy cutoff values (LOD > 3) that may not be relevant
¢ Need to carefully develop re-sampling methods (permutations, etc.)
— Storage of raw, processed and summary data (and metadata)
» Terabyte(s) of backed-up storage (soon petabytes and more)
¢ Web access tools
 high throughput computing platforms (Condor)
— Reduce months or years to hours or days
— Free up your mind to think about science rather than mechanics
— Free up your desktop/laptop for more immediate tasks
— Need local (regional) infrastructure
*  Who maintains the machines, algorithms?
¢ Who can talk to you in plain language?

MSRC5 2012 © Yandell 33

CHTC use: one “small” project

SOAR Job Progress

Open Science Grid Glidein Usage (4 feb 2012)
group hours  percent

1 BMRB 10710.3  73.49%
2 Biochem_Attie 3660.2 25.11%
3 Statistics_Wahba 178.5 1.22%
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hotspot LOD threshold by hotspot size
significance level = 0.01 to 0.2

Chaibub |. .|
Neto
sliding
LOD

hotspot LOD score threshold

- -
T T T T T = T T
1 5 10 50 100 “500 1000
significant hotspot size with given threshold
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What’s next?
Further assess properties (power of test)

Drill into identified hotspots

— Find correlated subsets of traits

— Look for local causal agents (cis traits)

— Build causal networks (another talk ...)
Validate findings for narrow hotspot
Incorporate as tool in pipeline

— Increase access for discipline researchers
— Increase visibility of method

MSRC5 2012 © Yandell 39

* Chaibub Neto E, e%.grell‘/lgngrgr%an AF, Attie AD,
Jansen RC, Broman KW, Yandell BS, Quantile-based
permutation thresholds for QTL hotspots.

Genetics (in review).

* Breitling R, Li Y, Tesson BM, Fu J, Wu C, Wiltshire
T, Gerrits A, Bystrykh LV, de Haan G, Su Al, Jansen
RC (2008) Genetical Genomics: Spotlight on QTL
Hotspots. PLoS Genetics 4: €1000232.

* Churchill GA, Doerge RW (1994) Empirical
threshold values for quantitative trait
mapping. Genetics 138: 963-971.
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Causal Graphical Models

Elias Chaibub Neto and Brian S Yandell

SISG 2012
July 12, 2012
Correlation and Causation
The ideal ... is the study of the direct influence of one condition on

another ... [when] all other possible causes of variation are eliminated . ..
The degree of correlation between two variables ... [includes] all
connecting paths of influence .. .. [Path coefficients combine] knowledge
of ... correlation among the variables in a system with ... causal relations.

Sewall Wright (1921)




Graphical models

Basic concepts

Directed graphical models

A graphical model is a multivariate probabilistic model whose conditional
independence relations are represented by a graph.

We will focus on directed acyclic graph (DAG) models (aka Bayes nets),

@

AN
96@
@ @

Assuming the Markov property, the joint distribution factors according to
the conditional independence relations:

P(1.2.3.4.5.6) = P(6|5)P(5|3.4) P(4) P(3 | 1,2) P(2) P(1)

61 {1,2,3.4}|5, 51{1,2.3} |4, andsoon

i.e., each node is independent of its non-descendants given its parents.




Standard Bayesian networks and causality

Even though the direct edges in a Bayes net are often interpreted as causal
relations, in reality they only represent conditional dependencies.

Different phenotype networks, for instance,
Y1%Y2%Y3. Yl%YzéYg,. Y1%Y2%Y3.

can represent the same set of conditional independence relations
(Y1 1L Y3 | Y2, in this example). When that is the case, we say the nets
are Markov equivalent.

In general (although it is not always true), Markov equivalent networks will
have equivalent likelihood functions, so that model selection criteria cannot
distinguish between them. The best we can do is to learn equivalent
classes of likelihood equivalent phenotype networks from the data.

Genetics as a mean to reduce the size of equivalence
classes

The incorporation of genetic information can help distinguish between
likelihood equivalent nets two distinct ways:

1. By creating priors for the network structures, using the results of
causality tests (Zhu et al. 2007).

2. By augmenting the phenotype network with QTL nodes, creating new
sets of conditional independence relations (Chaibub Neto et al. 2008,
2010).




Genetic priors

Consider the networks
GL:Yi—=YaoYs., Gi:Yi+Yae V3.
These Markov equivalent networks have the same likelihood, i.e.,
P(Y | Gy)=P(Y | G}).

If the phenotypes are associated with QTLs, we can use the results of the
causality tests to compute prior probabilities for the network structures. If
P(Gy)
P(G3)

PGYIY) _ P(SY) |
P(GZIY) ~ P(G3) 7

# 1, then

and we can use the posterior probability ratio to distinguish between the
networks.

Augmenting the phenotype network with QTL nodes

By augmenting the phenotype network with a QTL node,
Gl Q=Yi=Ya—=Ys., G2: QoY+« Yo« Vs,

we have that G! and G2 have distinct sets of conditional independence
relations:

Yol Q| Y1, on Gt

Yo L Q|Y;. on G?

Hence, G! and G? are no longer likelihood equivalent.

In the inferential approaches we address here we adopt this augmentation
approach.




d-separation

Definition (d-separation): A path p is said to be d-separated (or
blocked) by a set of nodes Z if and only if

1. p contains a chain i — m — j or a fork i + m — j such that the
middle node mis in Z, or

2. p contains an inverted fork (or collider) i — m « j such that the
middle node m is not in Z and such that no descendant of misin Z

A set Z is said to d-separate X from Y if and only if Z blocks every path
from a node in X to a node in Y. X and Y are d-connected if they are
not d-separated (Pearl, 1988, 2000).

d-separation
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Simple graphical criterium to detect Markov equivalence

Detecting Markov equivalence: Two DAGs are Markov equivalent if

and only if they have the same skeletons and the same set of v-structures.
(Verma and Pearl 1990).

The skeleton of a causal graph is the undirected graph obtained by
replacing its arrows by undirected edges.

A v-structure is composed by two converging arrows whose tails are not
connected by an arrow.

D ® 7N D—@
e ®

& &
v-structure v-structure not a v-structure

Simple graphical criterium to detect Markov equivalence

DAG structures | skeletons | v-structures
Y1—>Y2—>Y3 Yl—Yg—Y3 @
Y1—>Y2<—Y3 Yl—Yg—Yg Y1—>Y2<—Y3
Yld—Y2—>Y3 Yl—Yg—Yg Q}
Extended DAG structures | skeletons ‘ v-structures
Qo> Yi—=>Y—=Ys | Q-Yi—-Yo—VT; [}

01%\/1%}/2%\’3 Q—Yl—YQ—Yg QHYleYQ




Faithfulness assumption

Given a graph and a probability distribution associated with it, all the
conditional independence relations spanned by a probability distribution

must match the d-separation relations predicted from the graph structure
(Spirtes et al. 2000).

Unfaithfulness example:

Yi=ea. Yo=Yi+e., Yz=/701Y1+30Y +e€

ek ~ N(0,02), Cov(Yy. Y3) = (B31 + f3201) 03

If 831 = —/332/991 then COV(Yl. Yg) = 0.

Although the data is generated from a, its probability distribution is
faithful to b.
a @ b D
£\ e
@——0 ——=03

The PC skeleton algorithm

Infers the skeleton of the causal model (Spirtes et al. 1993).




PC skeleton algorithm

Suppose the true network describing the causal relationships between six

transcripts is

oo™ AV
xl ¥

The PC-algorithm starts with the complete undirected graph

and progressively eliminates edges based on conditional independence tests.
15

PC skeleton algorithm

The algorithm performs several rounds of conditional independence tests
of increasing order.

It starts with all zero order tests, then performs all first order, second
order, and so on.

» Remark: in the Gaussian case zero partial correlation implies
conditional independence, thus

iljlk < cor(i,j|k)=0 = drop (i,j) edge




PC algorithm - zero order

A oI
Ve ys
) ()
true graph L/ >Ny SONNCD)
(y1)—={y2) \Y5) Ya) direct effect of y; on y»
" et
/ 7 \ initial network
3] %)
¥B)—")
La}=02)
and / e \-
—
(Ve 3
soon (o) ]

AN
) )

indirect effect of y; on y3

move to next edge 17

PC algorithm - zero order

Yi—2)

After all zero order conditional
independence tests

The algorithm then moves to first
order conditional independence tests.

18




PC algorithm - first order

true graph
/'ﬂ@:ﬂf o/72)
~ \

(Y6 (v3) (¥o)

®

ya2 d-separates y; from y;3

Move to / \\ ){5\\’ ’

next edge (Vo F—1Va)

drop edge 19

PC algorithm - first order

true graph
( '}71. :‘r—“‘ :_);2 ;'a

—
7 \

\ }13';

-

\}7_6\

\_.37-\_
Y3

keep edge change cond set 20




PC algorithm - first order

}}7 —2)
\\

y3
J After all first order
conditional independence tests.

V)

&5 s
AL

(Vs r—Ya)

order conditional independence tests. 21

The algorithm then moves to second

PC algorithm - second order

true graph
n}*l = }Q

/«_/\
N/

}‘5—‘—"}'4

(v2, vs) d-separate y; from y,

move to
next edge

drop edge 22




PC algorithm - second order

After all second order
conditional independence tests

¥e) (¥3)
Then the algorithm moves \ /
to third order, fourth order ... }%ﬂy@

23

Edge orientarion with
the QDG algorithm

24




Edge orientation

We perform model selection using a direction LOD score

[T (i | asi)f(vai | vai m;)}
LOD = lo =
&10 { H,-:l f(yvai | a2i)f (vii | v2i, 1)

where f() represents the predictive density, that is, the sampling model
with parameters replaced by the corresponding maximum likelihood
estimates.

250

QDG algorithm

The QTL-driven Dependency Graph algorithm is composed of 7 steps:

1.

Get the causal skeleton (with the PC skeleton algorithm).

. Use QTLs to orient the edges in the skeleton.

. Choose a random ordering of edges, and

Recompute orientations incorporating causal phenotypes in the
models (update the causal model according to changes in directions)

. Repeat 4 iteratively until no more edges change direction (the

resulting graph is one solution).

. Repeat steps 3, 4, and 5 many times and store all different solutions.

. Score all solutions and select the graph with best score.

26




QDG algorithm - step 2

Now suppose that for each transcript we have a set of e-QTLs

Given the QTLs we can distinguish causal direction:

@21 .. @)

27

QDG algorithm - steps 2 and 3

First estimate of the causal model, DG, (using only QTLs to infer causal
direction)

In step 4 we recompute the directions including other transcripts as
covariates in the models (following the above ordering).

28




QDG algorithm - step 4

true graph

QDG algorithm - steps 5, 6, and 7

Step 5: repeat 4 iteratively until no more edges change direction (the
resulting graph is one solution).

Step 6: repeat the process starting from different random orderings
several times, and store all different solutions.

Step 7: score all solutions and select the graph with best score.

a0




Real data example
Network of metabolites and transcripts involved in liver metabolism.

{(D2Mir305) (DaMir20)} { D18Mit177)

G S

Ivd D13Mit91

D10Mit233

Four out of six predictions were validated experimentally (Ferrara et al.

2008).

21

QTLnet algorithm

32




QTLnet algorithm

» Perform joint inference of the causal phenotype network and the
associated genetic architecture.

» The genetic architecture is inferred conditional on the phenotype
network.

» Because the phenotype network structure is itself unknown, the
algorithm iterates between updating the network structure and genetic
architecture using a Markov chain Monte Carlo (MCMC) approach.

» QTLnet corresponds to a mixed Bayesian network with continuous
and discrete nodes representing phenotypes and QTLs, respectively.

33

QTL mapping conditional on the pheno net structure

We simulated data from the model @1 — Y1 — Yo < @ with @ located
on chr 1, and @ on chr 2.

Y1 Y2
25
201 : ]
15 4 ]
8 0 B 4
5 2+
0 t I 0 t 1
1 2 1 2
Chromosome Chromosome
Y1|Y2 Y2| Y1
i 12 4
15 lg i
B 10+ B 6
5 4
//\_f 2]
0- . . 0 o= t
1 2 1 2
Chromosome Chromosome

» Y, maps indirectly to @ (top right), but Y, d-separates Y3 and @, (bottom
right).

» Y7 is marginally independent from @ (top left), but conditional on Y5

became associated (bottom left).
24




QTLnet algorithm - MCMC steps

. Propose a new phenotype network, M e, by adding, deleting or
reversing (with parent orphaning) an edge.

=

2. Recompute the genetic architecture (only for the phenotypes y; whose
parent set, pa(y:), has changed).

3. Compute the marginal likelihood p(y | ., Mew).

4. Accept or reject the new phenotype network and QTLs according to
the Metropolis-Hastings acceptance probability:

o = min {1 ) p(y | q. Mnew)P(Mnew) Q(Mm’d | Mnew}} ‘
p(y [ a, M) P(Moig) q(Mapew | Mo)

21

QTLnet algorithm

We approximate the Bayes factor comparing old and new models by

ply | a. Mpew)
ply | a. Mow)

~ exp {—%(BICAA"EW - B"Ca'\/[ofd)} ’

and adopt p(Mpew )/P(Moid) = 1. The proposal distribution ratio is
computed as

G(Moid | Mnew)  # of DAGs that can be reached from Mg

G(Mpew | Mow)  # of DAGs that can be reached from M ey

26




QTLnet algorithm

iteration M proposed modification M pen

k+1

k+2

Neighborhood edge reversal

select edge
drop edge
identify parent.

orphan nodes
reverse edge
find new parer

from Grzegorczyk and Husmier (2008)
38




Neighborhood edge reversal

Trace plots of the logarithmic scores of the DAGs after the burn-in phase.

-1.11 T | T T

W
-1.12p

-1.13 A it AR e i e s e
. 4 1 | 1 1
500 750 1000 1250 1500

structure

1
—_
—

. 4 1 L 1
500 750 1000 1250 1500
from Grzegorczyk and Husmier (2008) 39

Bayesian model averaging

MUDDDDDEE

M2 M3 M4 MS M6 MT MB M9 MI10

020

Posterior prob

010

Model
M O M, © M; @ M, @ M, @
(z;rl r\zx\% af af 5[ 2\%
N : sy l P

1 ) 3 3 €)
A A

@ @If" @ @ @r
Ms \“ M, @ Mg - /,:1:' My /;:1:' Mg (1)

(2\« @ ( 2:\( @ @
(@\ 1@ [ @ | @ [ @

@ @ @ @

Pr(Yy — Y2) = Pr(M,) + Pr(M;) + Pr(M,) = 0.54
Pr(Yi...Y2) = Pr(M2) 4+ Pr(Ms) + Pr(M7) = 0.34
Pr(Yy + Y2) = Pr(Ms) + Pr(Ms) + Pr(Ms) + Pr(My) = 0.12
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BxH ApoE-/- chr 2: causal architecture

B0
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BxH ApoE-/- chr 2: causal network for transcription factor
Pscdbp
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Scaling up to larger networks

» restrict number of causal edges into each node
BIC computations by maximum number of parents

# 3 4 5 6 all
10 1,300 2,560 3,820 4,660 5,120
20 23,200 100,720 333,280 875,920 10.5M
30 122,700 835,230 4.40M 18.6M 16.1B
40 396,800 3.69M 26.7TM 157M  22.0T
50 982,500 11.6M 107TM 806M  28.1Q

(limit complexity by allowing only 3-4 parents)

» make task parallel: run on many machines

» pre-compute BIC scores
» run multiple parallel Markov chains

A3

Parallel phases for larger projects

Phase 1: identify parents
Phase 2: compute BICs @(’

Phase 3; store BICs

Phase 4: run Markov chains m( @

Phase 5: combine results

44




Parallel implementation

R/qtInet available at CRAN

* Condor cluster: chtc.cs.wisc.edu
— System Of Automated Runs (SOAR)

* ~2000 cores in pool shared by many scientists
» automated run of new jobs placed in project

SOAR Job Progress

Jobs
cc888883888

Ready ——=
Running

Phase 2 Phase 4

/

09:00 1000 1100 12:00 1300 14:00 15:00  16:00 17:00 1800 19:00 20:00
0916 0916 0916 0916 0216 0916 0916 0916 016 0916 0916 0916

Final remarks

A6




Potential issues

» Steady state (static) measures may not reflect dynamic processes

(Przytycha and Kim 2010).

» Population-based estimates (from a sample of individuals) may not

reflect processes within an individual.

A7
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Expression Modules

Brian S. Yandell (with slides from
Steve Horvath, UCLA, and

Mark Keller, UW-Madison)

Modules/Pathways SISG (c) 2012 Brian S Yandell 1
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Ping Wang
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Expression Networks
Zhang & Horvath (2005)

www.genetics.ucla/edu/labs/horvath/CoexpressionNetwork

organize expression traits using correlation

adjacency Qi =] COV(Xi,Xj) Iﬂ,,B =6

connectivity  Ki =sum, (a;)
a; +sum, (;a;)

topological TOM.
overlap ? 1-a; +min(k; k;)

Modules/Pathways SISG (c) 2012 Brian S Yandell




Using the topological overlap matrix
(TOM) to cluster genes

— modules correspond to branches of the dendrogram

Genes correspond to TOM plot

rows and columns WWMW
|

{l
Hierarchical i 8 TOM matrix
clustering
dendrogram R Module:
N Correspond
} to branches
Modules/Pathways SISW 5

module traits highly correlated

adjacency attenuates correlation
can separate positive, nege
summarize module

— eigengene

— weighted average of traits
relate module

— to clinical traits

— map eigengene i

Modules/Pathways SISG (c) 2012 Brian S Yandell 6
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advantages of Horvath modules

» emphasize modules (pathways) instead of individual
genes
— Greatly alleviates the problem of multiple comparisons
— ~20 module comparisons versus 1000s of gene comparisons
* intramodular connectivity k; finds key drivers (hub genes)
— quantifies module membership (centrality)
— highly connected genes have an increased chance of validation
» module definition is based on gene expression data
— no prior pathway information is used for module definition
— two modules (eigengenes) can be highly correlated
« unified approach for relating variables
— compare data sets on same mathematical footing

» scale-free: zoom in and see similar structure
Modules/Pathways SISG (c) 2012 Brian S Yandell

Ping Wang
modules for 1984 transcripts with similar genetic architecture as insulin

W™

TR i :

\ contains the insuIiH trait
Modules/Pathways SISG (c) 2012 Brian S Yandell
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Islet — modules

Color Key
2 2
Walue

chromosomes

SISG (c) 2012 Brian S Yandell 9

Islet — enrichment for modules

Calor Key
Module __Pvalue _Qualue _Count Term
BLUE 00005 00463 30 1068 biosynthetic process 0o o2 2
00006 00470 18 511 cellular lipid metabolic process Yalue
00009 00507 11 241 lipid biosynthetic process
00012 00595 19 530 liid metabolic process s s s s e e 1 e e e
GREEN 00008 0.0457 76 phosphate transport
00055 00970 2 20 intermediate filament-based process
00056 00970 10 707 ion transport
nucleobase, nucleoside, nucleotide and nucleic acid
PURPLE 00011 00165 7 2769 metabolic process
BLACK 00078 00138 2 68 sensory perception of sound
MAGENTA 254605 00011 7 313 cellcycle process -
00001 00040 5 179 microtubule-based process
00004 00040 5 225 mitotic cell cycle Insulin
00005 00040 5 228 Mphase
00006 00040 5 239 cell division
00009 00041 5 266 cellcycle phase
00011 00041 4 162 mitosis
00012 00041 4 163 M phase of mitotic cell cycle
YeLLow 00026 00675 7 281 cel projection organization and biogenesis
00026 00675 7 281 cell part morphogenesis
00026 00675 7 281 cell projection morphogenesis
RED 00017 00619 2 13 steroid hormone receptor signaling pathway
00026 00619 5 200 reproductive process
BROWN 00057 01442 4 95 response to pheromone
TURQUOISE 00002 00830 17 279 enzyme linked receptor protein signaling pathway
00003 00830 10 115 morphogenesis of an epithelium
00003 00830 7 57 morphogenesis of embryonic epithelium
00004 00830 40 1021 anatomical structure morphogenesis o p - - 2 =
PINK 00004 00608 2 14 vesicle organization and biogenesis : : : : .
00092 00612 4 384 regulation of apoptosis

chromosomes

Modules/Pathways SISG (c) 2012 Brian S Yandell 10




www.geneontology.org

 ontologies
— Cellular component (GOCC)
— Biological process (GOBP)
— Molecular function (GOMF)
* hierarchy of classification
— general to specific
— based on extensive literature search, predictions

* prone to errors, historical inaccuracies

Modules/Pathways SISG (c) 2012 Brian S Yandell 11

Bayesian causal phenotype network
Incorporating genetic variation and
biological knowledge

Brian S Yandell, Jee Young Moon
University of Wisconsin-Madison
Elias Chaibub Neto, Sage Bionetworks
Xinwei Deng, VA Tech

Modules/Pathways SISG (c) 2012 Brian S Yandell 12




. insulin
resistance alleles

Modules/Pathways

BTBR mouse is
insulin resistant

B6 is not

make both obese...

glucose

RTHAGH

Time iweeaks)

SISG (c) 2012 Brian S Yandell

Alan Attie

Biochemist

insulin

each other?

data

phenotypes
Mwﬁ‘é(fﬁﬂé@es

bigger picture

* how do DNA, RNA, proteins, metabolites regulate

* regulatory networks from microarray expression

— time series measurements or transcriptional
perturbations

— segregating population: genotype as driving
perturbations

 goal: discover causal regulatory relationships among

use knowledge of regulatory relationships from

SISG (c) 2012 Brian S Yandell
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BxH ApoE-/- chr 2: hotspot

w
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number of fraits
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on number of traits

20

100 150
Modules/Pathways W@%E)’%ﬂ"ﬁ’?ian?%ﬁgﬁlGhazalp our et al. (ZOQG) PLo

DNA —local gene —distant genes

causal model selection choices
in context of larger, unknown network

causal
trait ’

focal .
- . reactive

A [ . c
focal ¢ correlated
trait .

al(c
[9ZE. % uncorrelated
trait
ModulesPathways SISG (c) 201 Yandell 16




causal architecture references
BIC: Schadt et al. (2005) Nature Genet

CIT: Millstein et al. (2009) BMC Genet
Aten et al. Horvath (2008) BMC Sys Bio

CMST: Chaibub Neto et al. (2010) PhD thesis
— Chaibub Neto et al. (2012) Genetics (in review)

Extends Vuong's model selection tests to the comparison of 3,
possibly misspecified, models.
(My) (Mz) (Mz)
R
Q1= Y1 = Y2 = Qo Qz=Y1=Ye= Q2 =YL Yo=0Q:

Modules/Pathways SISG (c) 2012 Brian S Yandell 17
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Liver expression data in a
mice intercross.

3,421 transcripts and 1,065
markers.

261 transcripts physically
located on chr 2.
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Modules/Pathways SISG (c) 2012 Brian S Yandell 18
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1 1 L

i

100
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b posfion

bl CMET

, RRasnte

: P 122 152 Analysis restricted to 78 traits
e composing a hotspot around 54.2Mb.

This collection of traits enriches for
“immune system process”.

‘ | ‘ ‘ ‘ “ Pscdbp, the local trait at 58.4Mb,
| L is a transcription factor.
CI EI:I ICIJ ‘él:
Modules/Pathways SISG (c) 2012 Brian S Yandell 19

QTL-driven directed graphs
 given genetic architecture (QTLs), what causal
network structure is supported by data?
* R/qdg available at www.github.org/byandell

» references

— Chaibub Neto, Ferrara, Attie, Yandell (2008) Inferring
causal phenotype networks from segregating populations.
Genetics 179: 1089-1100. [doi:genetics.107.085167]

— Ferrara et al. Attie (2008) Genetic networks of liver
metabolism revealed by integration of metabolic and
transcriptomic profiling. PLoS Genet 4: e1000034.
[doi:10.1371/journal.pgen.1000034]

Modules/Pathways SISG (c) 2012 Brian S Yandell 20




partial correlation (PC) skeleton

cofrelati

(—y2)
true graph >4 \
—=r2) S

(V5) (Va
W2 A
¥z d-separates y; from y3

1t order partial correlations drop edge
Y—2)

Vo

(e —a)
Modules/Pathways SISG (C) Zulz Dhian o Tanuen 21

partial correlation (PC) skeleton

true graph 1t order partial correlations
w2 (Y1—y2)

2" order pat)gigl correlations

(Yi—)2)

(¥2,¥5) d-separate y; from ya

(¥3)
3 U4 12,5

Modules/Pathways SISG (c) 2012 Brian S Yandell 22




edge direction: which is causal?
M D M2 @)
the above models are likelihood equivalent,

f)f(yvz | y1) = flyr,y2) = F(02)f (1 | v2)

(qu1) (q21) (qi1) (qz1)
\ / i i . / Yy S
\ /// \\ ///

e /_\;ﬁ . /_\;ﬁ
: (Y12, : : (Y12, :

- e : A S :
/// ///
— — — —
(quk) (921 (qik) (921
S— e M— S—

not likelihood equivalent ¢ye to QTL
fladf (e [a0)f (v2 | y1,92)f(q2)

#
fla2)f(v2 | a2)f (v1 | y2, 91)f(a1)
Modules/Pathways SISG (c) 2012 Brian S Yandell 23

test edge direction using LOD score

[T7—; FOai | 91)f (i | yais qu)}
LOD = | ;
o810 {Hr':l f(yvai | Q2i)f (vii | yais 91/)

(q11) (G21}  (q11) (q21)
e /\._J S /\-_
// \ //
— K . L
e e P i
(Y1—=(y2) SN E7Y N SZY N
/// ///# \

P . —, —
(qik) (G2 (Qik) (q21)
e - N M b s

not likelihood equivalent because
Flay)f O [ a1)f (v2 | y1,92)f(a2)

#
fla)f (y2 [ a2)f (v1 | y2,q1)f(a1)
Modules/Pathways SISG (c) 2012 Brian S Yandell 24




reverse edges

using QTLs /"
\qﬁ I—Hj/'ﬁ) . 1{3:
true graph @) (Qa)
(v1) l—a (y2) D
LN @ @
( }zé / (¥3) i ;2‘
\ ~/ /TN
(Vs —=(va) Iq6ﬂ (¥3r(Q3)
>Jf5><—');4w
T
wCI5> (Q4)

Modules/Pathways SISG (c) 2012 Brian S Yandell

(1)
@) W
(1)

causal graphical models in systems genetics

» What if genetic architecture and causal network are

unknown? jointly infer both using iteration

e Chaibub Neto, Keller, Attie, Yandell (2010) Causal Graphical Models in
Systems Genetics: a unified framework for joint inference of causal
network and genetic architecture for correlated phenotypes. Ann Appl

Statist 4: 320-339. [d0i:10.1214/09-A0AS288]
e R/gtlnet available from www.github.org/byandell

» Related references

— Schadt et al. Lusis (2005 Nat Genet); Li et al. Churchill (2006
Genetics); Chen Emmert-Streib Storey(2007 Genome Bio); Liu de la
Fuente Hoeschele (2008 Genetics); Winrow et al. Turek (2009 PLoS

ONE); Hageman et al. Churchill (2011 Genetics)

Modules/Pathways SISG (c) 2012 Brian S Yandell




Basic idea of QTLnet

* iterate between finding QTL and network

* genetic architecture given causal network
— trait y depends on parents pa(y) in network

— QTL for y found conditional on pa(y)

« Parents pa(y) are interacting covariates for QTL
scan

« causal network given genetic architecture
— build (adjust) causal network given QTL
voaures@BER directionsehapgamaynalter neighbor edges,

missing data method: MCMC

known phenotypes Y, genotypes Q
unknown graph G

want to study Pr(Y | G, Q)

break down in terms of individual edges
— Pr(Y|G,Q) =sum of Pr(Y; | pa(Y;), Q)
sample new values for individual edges
— given current value of all other edges
 repeat many times and average results

Modules/Pathways SISG (c) 2012 Brian S Yandell 28




oropo N e PIERS JOr QTLnet

— with simple changes to current network:

— change edge direction

— add or drop edge
find any new genetic architectures Q

— update phenotypes when parents pa(y) change in new G
compute likelihood for new network and QTL

- Pr(Y[G, Q)

accept or reject new network and QTL

— usual Metropolis-Hastings idea

Modules/Pathways SISG (c) 2012 Brian S Yandell 29

BxH ApoE-/- causal network
for transcription factor Pscdbp

causal trait \

Pscdbp
chra@48.53 4930568P13Ri

&’45

chr1@32.59

work of ﬂ
Elias Chaibub Neto e e Vi

Modules/Pathways SISG (c) 2@%% ggrﬁéplp our et al.(2006) P 1395 Gen




scaling up to larger networks

* reduce complexity of graphs
— use prior knowledge to constrain valid edges
— restrict number of causal edges into each node
* make task parallel: run on many machines
— pre-compute conditional probabilities
— run multiple parallel Markov chains
* rethink approach

— LASSO, sparse PLS, other optimization
Modules/Plaﬁ\eathodS SISG (c) 2012 Brian S Yandell 31

graph complexity with node parents
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parallel phases for larger projects

Phase 1: identify parents c

Phase 2: compute BICs

BIC = LOD - penalty

all possible parents to all

(3]

nodes

Phase 3: store BICs @(D m
O

Phase 4: run Markov chains
Modules/Pathways SISG (c) 2012 Brian S Yandell 33

parallel implementation

» R/gtlnet available at www.github.org/byandell

e Condor cluster: chtc.cs.wisc.edu

— System Of Automated Runs (SOAR)
» ~2000 cores in pool shared by many scientists
* automated run of new jobs placed in project

S0AR Job Progress

Ready —— 100
Running s 20

a0
70
B0
S0

1 Phase 2

20
20 /
10

o
09:00 10:00 11:00 12:00 1300 1400 15:00 16:00 17:00 1800 19:00 20:00
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BIC samples tor 100 MCMC runs

;Q;éﬁ single edge updates
| : .

- -
: == R = B
s = O | IS e MY DG i
——
—> S
burnin =

800 35 1000
aaaaaaaaaaa 100,000 runs

neighborhood edge reversal
©||@& ©

(A)
select edge ‘ ‘ @'
Zir:rﬁr) t;:iec’zren ts ‘@

@'A

@)

orphan nodes
reverse edge
find new parents

© @

E 9 (E)

Grzegorczyk M. and Husmeier D. (2008) Mach/ne Learning 71 (2- 3)
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BIC
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27850
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BIC samples tor 100 MCMC runs

neighborhood for reversals only
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Modules/Pathways 200 400 500 800 1000

Sampie ndex 100,000 runs

how to use functional information?

« functional grouping from prior studies
— may or may not indicate direction
— gene ontology (GO), KEGG
— knockout (KO) panels
— protein-protein interaction (PPI) database
— transcription factor (TF) database

» methods using only this information

o priors for QTL-driven causal networks
— more weight to local (cis) QTLS?

Modules/Pathways SISG (c) 2012 Brian S Yandell 38




modeling biological knowledge

« infer graph G, from biological knowledge B
- Pr(G, | B, W) = exp(—-W * |B-G,|) / constant
— B = prob of edge given TF, PPI, KO database
« derived using previous experiments, papers, etc.
— Gy = 0-1 matrix for graph with directed edges
« W = inferred weight of biological knowledge
— W=0: no influence; W large: assumed correct
— P(W|B) = g exp(- ¢ W) exponential
« Werhli and Husmeier (2007) J Bioinfo Comput Biol

Modules/Pathways SISG (c) 2012 Brian S Yandell 39

combining eQTL and bio knowledge

* probability for graph G and bio-weights W
— given phenotypes Y, genotypes Q, bio info B
* Pr(G,W|Y,Q,B)=c
Pr(Y|G,Q)Pr(G|B,W,Q)Pr(W|B)
— Pr(Y|G,Q) is genetic architecture (QTLS)
« using parent nodes of each trait as covariates
- Pr(G|B,W,Q) = Pr(G,|B,W) Pr(Gq_,IQ)
* Pr(Gy|B,W) relates graph to biological info
* Pr(Gq_IQ) relates genotype to phenotype

Moon JY, Chaibub Neto E, Deng X, Yandell BS (2011) Growing graphical models
to infer causal phenotype networks. In Probabilistic Graphical Models Dedicated to

Applications in Genetics. Sinoquet C, Mourad R, eds. (in review)
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encoding biological knowledge B
transcription factors, DNA binding (causation)

~ e~
e +(l-e?)

p = p-value for TF binding of i—j

truncated exponential (1) when TF i—j
uniform if no detection relationship

Bernard, Hartemink (2005) Pac Symp Biocomp

Bij
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encoding biological knowledge B
protein-protein interaction (association)

posterior odds
1+ posterior odds

Bij = Bji =

 post odds = prior odds * LR
* use positive and negative gold standards
 Jansen et al. (2003) Science
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encoding biological knowledge B
gene ontology(association)

Bij = Bji - c e mean(sim(GO;, GO;))

« GO = molecular function, processes of gene

 sim = maximum information content across
common parents of pair of genes

 Lord et al. (2003) Bioinformatics
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MCMC with pathway

» sample new network Ernom proposal R(G*|G)
— add or drop edges; switch causal direction
» sample QTLs Q from proposal R(Q*|Q,Y)
— e.g. Bayesian QTL mapping given pa(Y)
* accept new network (G*,Q*) with probability
o A=min(1, f(G,Q|G*,Q*)/ f(G*,Q*|G,Q))
- f(G,QIG*,Q*) = Pr(Y|G*,Q*)Pr(G*|B,W,Q*)/R(G*|G)R(Q*Q,Y)
» sample W from proposal R(W*|W)
* accept new weight W* with probability ...

Modules/Pathways SISG (c) 2012 Brian S Yandell 44
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weight on biological knowledge
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phenotypic buffering
of molecular QTL

(AW
é*%“’@o S <<"'\0 \zf\‘\\
IO ) ﬁ" ? cf,o Traits
SNP | ' - : - | with QTL QTL
Local eQTL [ - T ) T | 2,294 2294
Distant eQTL | — : ; ] 2,807 3,190
PQTLI e : T | 253 273
gemsQTL F - T ] 5,678 9,850
lemsQTL | T - I | | 936 1,547
nmrQTL 1 I I | 544 1,172
Yy v v v w
phQTL [ 1 10 I 116 344
1 2 3 4 5
Genome
Fu et al. Jansen (2009 Nature Genetics)
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limits of causal inference

» Computing costs already discussed

* Noisy data leads to false positive causal calls
— Unfaithfulness assumption violated
— Depends on sample size and omic technology
— And on graph complexity (d = maximal path length i—j)

— Profound limits

» Uhler C, Raskutti G, Buhlmann P, Yu B (2012 in prep)
Geometry of faithfulness assumption in causal
inference.

* Yang Li, Bruno M. Tesson, Gary A. Churchill, Ritsert
C. Jansen (2010) Critical reasoning on causal inference
in genome-wide linkage and association studies. Trends
in Genetics 26: 493-498.
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sizes for reliable causal inference
ide li e & association

% Varance explained by the OTL in trat 2
o . M & x » B

Li, Tesson, Churchill, Jansen (2010) Trends in Genetics
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Thanks!
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 Collaborators on papers and ideas
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— Karl Broman, Aimee Broman, Christina
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Computational Infrastructure

for Systems Genetics Analysis
Brian Yandell, UW-Madison

high-throughput analysis of systems data
enable biologists & analysts to share tools

eQTL Tools Seattle SISG: Yandell © 2012 1

www.stat.wisc.edu/~yandell/statgen
byandell@wisc.edu

« UW-Madison » Jackson Labs (HTDAS)
. — Gary Churchill
- Alar.1 Attle . . — Ricardo Verdugo
— Christina Kendziorski - Keith Sheppard
— Karl Broman * UC-Denver (PhenoGen)
— Mark Keller — Boris Tabakoff
_  Andrew Broman — Cheryl Hornbaker
. — Laura Saba
— Aimee Broman _ Paula Hoffman
— YounJeong Choi « Labkey Software
— Elias Chaibub Neto — Mark Igra
— Jee Young Moon ¢ U Groningen (XGA)

— Ritsert Jansen

— John Dawson .
— Morris Swertz

— Ping Wang

— Pjotr Pins
— NIH Grants DK58037, DK66369, — Danny Arends
GM74244, GM69430 , EY18869 « Broad Institute
— Jill Mesirov
— Michael Reich
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experimental context

» B6 x BTBR obese mouse cross
— model for diabetes and obesity
— 500+ mice from intercross (F2)
— collaboration with Rosetta/Merck
e genotypes
— 5K SNP Affymetrix mouse chip
— care in curating genotypes! (map version, errors, ...)
* phenotypes
— clinical phenotypes (>100 / mouse)
— gene expression traits (>40,000 / mouse / tissue)
— other molecular phenotypes

eQTL Tools Seattle SISG: Yandell © 2012 3

how does one filter traits?

» want to reduce to “manageable” set
— 10/100/1000: depends on needs/tools
— How many can the biologist handle?

* how can we create such sets?

— data-driven procedures
 correlation-based modules
— Zhang & Horvath 2005 SAGMB, Keller et al. 2008 Genome Res
— Lietal. 2006 Hum Mol Gen

* mapping-based focus on genome region

— function-driven selection with database tools
* GO, KEGG, etc
* Incomplete knowledge leads to bias

— random sample

eQTL Tools Seattle SISG: Yandell © 2012 4




why build Web eQTL tools?

¢ common storage/maintainence of data

— one well-curated copy

— central repository

—reduce errors, ensure analysis on same data
« automate commonly used methods

— biologist gets immediate feedback

— statistician can focus on new methods

— codify standard choices

eQTL Tools Seattle SISG: Yandell © 2012

how does one build tools?

no one solution for all situations

use existing tools wherever possible

— new tools take time and care to build!

— downloaded databases must be updated regularly
human component is key

— need informatics expertise

— need continual dialog with biologists

build bridges (interfaces) between tools

— Web interface uses PHP

— commands are created dynamically for R
 continually rethink & redesign organization

eQTL Tools Seattle SISG: Yandell © 2012




perspectives for building a community
where disease data and models are shared

Benefits of wider access to datasets and models:
1- catalyze new insights on disease & methods
2- enable deeper comparison of methods & results
Lessons Learned:
1- need quick feedback between biologists & analysts
2- involve biologists early in development
3- repeated use of pipelines leads to
documented learning from experience
increased rigor in methods
Challenges Ahead:
1- stitching together components as coherent system

2- ramping up to ever larger molecular datasets
eQTL Tools Seattle SISG: Yandell © 2012 7

User interfaces

(Genome Brawser QTL Viewer
e =3

J Fle
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= B2 e | B
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collaborative
portal
(LabKey)

\ iterate many
\tn'neﬁ -
Y
( )

view results
(R graphics,
GenomeSpace
tools)

\. J
“ run pipeline
(CLIO,XGAPHTD

AS)
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-
-

analysis pipeline acts on objects
(extends concept of GenePattern)
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pipeline is composed of many
steps

combine datasets

compare methods

>

Q= -
eQTL Tools Seattle SISG: Yandell © 2012 alternative pathl

causal model selection choices
in context of larger, unknown network

focal

target causal

trait trait

reactive
focal target correlated
trait trait
target uncorrelated

trait
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BxH ApoE-/- chr 2: causal architecture
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BxH ApoE-/- causal network
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Model/View/Controller (MVC)

software architecture

* isolate domain logic from input and presentation

 permitindependent development, testing,
maintenance

Controller
Input/response

Model
domain-specific
logic

system actions

render for
interaction I

\ user changes

eQTL Tools \\ Seattle SISG: Yandell © 2012 f’ 17
~ ~ : - -

-~---————

mouse

500

400

300

200

100

0 2 4 6 8 10 12 14 16 20 24 28 32 36 42 46 50 56 60

L1 | 1 1=} | 1 | S Y N | {1 S N T T Y |
L1l ]

70 80 90 18




File Edit View History Bookmarks Tools Help
«-2>-FOoRE i wisc. _op.php =Lk K

Home

Wes've logped i 5 B S Yandel. Logoul Raw  Update Profle  *

Chromosomes 1-D Genome Scan of Clinical and

Data Source; 0 §3 s Dat
# LOD C MOM C PAT {ardy ket and lhver tissuts sce svadabie)
Sext @ Dotn O Male O Femsie (gnored for LD of cinacal trats)

Chinical Traits: E,

Genesi O Symbols & a_gene_id O a_substance_id ) sosession_code ©f Gene Name
Paste It here:
(o per rom)

Thastes: 62 fases 1 1ypa £ Adoose

ot Type: & 30d posmion) ) densey fstogram (For Raw Cata only)
Tescale LOOT Peaks O Mone
Chastering?
Threshobs: ) 05 Enter 0 - 1.0

e & e Oy

¥olabel: & Symbol O a_gene_id C) symbola_gene_id ) nane

tmage Sire: g 16 fnchest aghéi B fnches), Fos seze: (20 —. ]
ot Theet Leave tuavsk to use defaul titie.
] O st mant to downkoad extracted data and please do NOT perform analyss.
% ommeats _MGY Coonree tapdt . Tideament 1. &l dooanert L Trgbereounodt ToULrabmto.. S1MH0Sdc can

* - § 19405 @ @ < @ Now: Sunny, 81° F Wed: 85° F 5* Thu:

Download PDF Image

Mb

] ] 28 3o a0 as = 55 &0 m %80 85 80
P SR R R IR N OO ORI O NGl | P O P |
Chimeal Tot
Clinical Tot
Clireal Tot:
Mb B6=blue, Het=green, BTBR=red; femal lid, le=dashed
5§ 15 26 30 40 45 50 55 B0 o7 80 85 90
L B B e g - s
06 e,
g 04 HTHA=red
]
=
& 02
o
E
= 0D
7
1 -02
]
5-04- 86-biue
=08

eQ 20




automated R script

library("B6BTBRO7")

out <- multtrait(cross.name="B6BTBRO7",
filename = "scanone_1214952578.csv",
category = "islet", chr = c(17),
threshold.level = 0.05, sex = "both",)

sink("scanone_1214952578.txt")
print(summary(out))
sink()

bitmap("scanone_1214952578%03d.bmp*,

height = 12, width = 16, res = 72, pointsize = 20)
plot(out, use.cM = TRUE)
dev.off()
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