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Correlation and Causation

“The old view of cause and effect . . . could only fail; things are not in our
experience either independent or causative. All classes of phenomena are
linked together, and the problem in each case is how close is the degree of
association.”

Karl Pearson (1911)

“Causality is not mystical or metaphysical. It can be understood in terms
of simple processes, and it can be expressed in a friendly mathematical
language, ready for computer analysis.”

Judea Pearl (2000)
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Motivation
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Motivation

Suppose the expression of gene G is associated with a clinical phenotype C.

We want to know whether: G → C or if C → G or if C ↔ G .

If G and C map to the same QTL, we can use genetics to infer the causal
ordering among the phenotypes.
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Motivation: Schadt et al. (2005)
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Motivation

How can genetics help out in the determination of causal
relationships among phenotypes?

Two cases:

1. Causal relations between QTLs and phenotypes.

2. Causal relations between phenotypes.
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Causal relations between QTLs and phenotypes

Analogous to a randomized experiment.

Randomization is considered the “gold standard” for causal inference.

Causality can be inferred from a randomized experiment since:

1. Application of a treatment to an experimental unit precedes the
observation of the outcome.

2. Because the treatment levels are randomized across the experimental
units, the effects of confounding variables get averaged out.
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Causal relations between QTLs and phenotypes

The analogy of QTL mapping and a randomized experiment was first
pointed out by Li et al. 2006.

Experimental unit: individual on the segregating population.

Treatment levels: QTL genotypes (eg AA, Aa in a backcross).

Measured outcome: quantitative phenotype.

Confounding variables: other QTLs that might affect the phenotype.

For a detected QTL:

1. Genotypes precedes the phenotype.

2. The recombination process randomly allocates the QTL genotypes to
the individuals in a segregating population, averaging out the effects
of other (unlinked) QTLs.
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Causal relations between QTLs and phenotypes
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Causal relations between phenotypes

The concept of conditional independence is the key concept to understand
how genetics can help out untangle causal relationships between
phenotypes.
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Conditional independence as the key to causal ordering
Model: X → Y1 → Y2

Marginal dependence:
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Conditional independence as the key to causal ordering
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Statistical approaches for model
selection

Two main approaches:

1. Model selection criteria.

2. Model selection via hypothesis tests.
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Model selection criterions
I Based on log-likelihood scores (measure how well the data fits the

model).

I When models have the same dimension, the maximized log-likelihood
scores,

loglikj = log fj(y | θ̂j),

are usually used. The model with the highest loglik score is selected.

I For models with different dimensions, the penalized log-likelihood
scores,

ploglikj = log fj(y | θ̂j) − D(kj),

are usually used, where D(kj) = kj or 0.5 kj log n represents the AIC
or BIC penalties.

The main drawback: model selection criteria do not provide an uncertainty
measure for the model call.
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Model selection via hypothesis tests

Two alternative approaches:

Hypothesis tests over regression coefficients: considers a series of
regression models, and combines:

1. Equivalence tests to support conditional independence relations.

2. Conditional F-tests to support conditional dependence relations.

[approach adopted by CIT (Millstein et al. 2009).]

Vuong’s test: attaches a p-value to a contrast of (penalized) model
section scores.

[approach adopted by CMST (Chaibub Neto et al. 2012).]
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CIT (Millstein et al. 2009)
Causal model: Q → G → C
Implied CI rels: C ⊥̸⊥ Q, G ⊥̸⊥ Q | C , C ⊥̸⊥ G | Q, C ⊥⊥ Q | G

C = α1 + β1Q + ϵ
G = α2 + β2 C + β3Q + ϵ
C = α3 + β4 G + β5Q + ϵ

CI relation hypothesis test type p-value

C ⊥̸⊥ Q H0,1 : β1 = 0, HA,1 : β1 ̸= 0 F-test p1
G ⊥̸⊥ Q | C H0,2 : β3 = 0, HA,2 : β3 ̸= 0 F-test p2
C ⊥̸⊥ G | Q H0,3 : β4 = 0, HA,3 : β4 ̸= 0 F-test p3
C ⊥⊥ Q | G H0,4 : β5 ̸= 0, HA,4 : β5 = 0 equiv test p4

Intersection-union test:

H0 : H0,1 ∪ H0,2 ∪ H0,3 ∪ H0,4 , HA : HA,1 ∩ HA,2 ∩ HA,3 ∩ HA,4 ,

causal model p-value: pc = max{p1 , p2 , p3 , p4}
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CIT (Millstein et al. 2009)
Reactive model: Q → C → G
Implied CI rels: G ⊥̸⊥ Q, C ⊥̸⊥ Q | G , G ⊥̸⊥ C | Q, G ⊥⊥ Q | C

G = α2 + β2 C + β3Q + ϵ
C = α3 + β4 G + β5Q + ϵ
G = α4 + β6Q + ϵ

CI relation hypothesis test type p-value

G ⊥̸⊥ Q H0,5 : β6 = 0, HA,5 : β6 ̸= 0 F-test p5
C ⊥̸⊥ Q | G H0,6 : β5 = 0, HA,6 : β5 ̸= 0 F-test p6
G ⊥̸⊥ C | Q H0,7 : β2 = 0, HA,7 : β2 ̸= 0 F-test p7
G ⊥⊥ Q | C H0,8 : β3 ̸= 0, HA,8 : β3 = 0 equiv test p8

Intersection-union test:

H0 : H0,5 ∪ H0,6 ∪ H0,7 ∪ H0,8 , HA : HA,5 ∩ HA,6 ∩ HA,7 ∩ HA,8 ,

reactive model p-value: pr = max{p5 , p6 , p7 , p8}
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CIT (Millstein et al. 2009)

For a given significance level α, the decision rule for model selection is:

I Select the causal model, if pc ≤ α and pr > α.

I Select the reactive model, if pc > α and pr ≤ α.

I Select the independence model, if pc > α and pr > α.

I Do not select any model, if pc ≤ α and pr ≤ α.

Drawbacks:

I Computationally expensive: the null distribution of the equivalence
test is unknown and a bootstrap approach is needed.

I Incoherent behavior : sometimes both causal and reactive models are
well supported by the CIT test.
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Vuong’s model selection test (Vuong 1989)

General properties:

I Attaches a p-value to a (penalized) log-likelihood ratio score, allowing
the assessment of the uncertainty associated with a model selection
call.

I Can handle non-nested models.
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I Fully analytical approach.

I Can handle misspecified models.
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Vuong’s model selection test (Vuong 1989)

Consider two competing probability models, say, M1 and M2,

M1
Q

~~~~
M2

Q
  @@

Y1
// Y2 Y1 Y2

oo

with densities

f1 =
n∏

i=1

N(y2,i ; α21 + β21 y1,i , σ
2
21)N(y1,i ; µq , σ

2
1) f (Qi ) ,

f2 =
n∏

i=1

N(y1,i ; α12 + β12 y2,i , σ
2
12)N(y2,i ; µq , σ

2
2) f (Qi ) .

Let h0 represent the true (and unknown) model.

The hypotheses assessed by Vuong’s test are:

H0: f1 and f2 are equally close (or distant) to h0.
H1: f1 is closer to h0 than f2.
H2: f2 is closer to h0 than f1.

20



Vuong’s model selection test (Vuong 1989)

Consider the Kullback-Leibler distance (Kullback 1959) of two probability
models:

KL(h0; f ) = E 0
[
log h0(y)

]
− E 0 [log f (y | θ∗)]

where E 0 is the expectation w.r.t. the true distribution h0, and θ∗ is the
parameter that minimizes the KLIC distance from f to the true model.

A model f1 is a better approximation of h0 than an alternative model f2 iff

KL(h0; f1) < KL(h0; f2) ⇔ E 0(log f1) > E 0(log f2).
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Vuong’s model selection test (Vuong 1989)

Let LR12 = log f1 − log f2, then the direction of LR12 tells us which model
is closer to h0 according to the KL distance.

The null and alternative hypothesis are given by

H0 : E 0(LR12) = 0 , H1 : E 0(LR12) > 0 , H2 : E 0(LR12) < 0 .

The quantity E 0(LR12) is unknown, but the sample mean and variance of

LR̂12,i = log f̂1,i − log f̂2,i , i = 1, . . . , n,

converge, respectively, to E 0(LR12) and Var0(LR12) = σ12.12.

Then, under H0, the scaled likelihood-ratio test statistic

Z12 =
LR̂12√
n σ̂12.12

−→d N(0, 1) , where LR̂12 =
n∑

i=1

LR̂12,i .
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Vuong’s model selection test (Vuong 1989)

I More complex models tend to over-fit the data and always produce
higher log-likelihood scores than more parsimonious models.

I Hence, when comparing models with different dimensions it is
necessary to counter-balance model fit and model parsimony, by
adding a penalty term proportional to the model dimension,
penalizing more complex models to a greater extent.

I We replace LR̂12 by LR̂12 − D12, where,

D12 = kf1 − kf2 or D12 = (kf1 − kf2)(log n)/2

for the AIC and BIC penalties, respectively.

23



Vuong’s model selection test (Vuong 1989)
Interesting property:

Recall that under the null, Z12 ∼ N(0, 1), and p-value for the comparison
of model M1 against M2 is computed as

p12 = Pr(Z12 ≥ z12) = 1− Φ(z12) .

Since LR̂12 = −LR̂21 we have that

Z12 =
LR̂12√
n σ̂12.12

= − LR̂21√
n σ̂12.12

= −Z21 .

Therefore,
p21 = 1− Φ(z21) = Φ(z12) ,

and
p12 + p21 = 1 .

This property ensures that the p-values of the intersection-union tests we
develop in the next few slides, cannot be simultaneously significant.
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Causal Model Selection Tests (CMST)

Vuong’s test handles model selection for 2 models only.

However, we want to use data from experimental crosses to distinguish
among 4 models:

M1 Q
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Our strategy is to combine several separate Vuong’s tests into a single one.

We developed 3 distinct Causal Model Selection Tests (Chaibub Neto et
al. 2012):

1. Parametric CMST

2. Non-parametric CMST

3. Joint parametric CMST
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Parametric CMST

Corresponds to an intersection-union test of separate Vuong’s tests.

For model M1 we consider f1 × f2, f1 × f3, f1 × f4, and test:

H0 : model M1 is not closer to the true model than M2, M3, and M4.

H1 : model M1 is closer to the true model than M2, M3, and M4.

H0 :
{
E 0(LR12) = 0

}
∪

{
E 0(LR13) = 0

}
∪

{
E 0(LR14) = 0

}
H1 :

{
E 0(LR12) > 0

}
∩

{
E 0(LR13) > 0

}
∩

{
E 0(LR14) > 0

}
The p-value for M1 is computed as: p1 = max{p12 , p13 , p14}

Similarly, for models M2, M3, and M4 we have:

M2 : f2 × f1, f2 × f3, f2 × f4 ⇒ p2 = max{p21 , p23 , p24}
M3 : f3 × f1, f3 × f2, f3 × f4 ⇒ p2 = max{p31 , p32 , p34}
M4 : f4 × f1, f4 × f2, f4 × f3 ⇒ p2 = max{p41 , p42 , p43}
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Parametric CMST
The CMST p-values cannot be simultaneously significant.

For a fixed α:

p1 = max{p12 , p13 , p14} ≤ α ⇒ p12 ≤ α , p13 ≤ α , p14 ≤ α
p12 ≤ α and p12 + p21 = 1 ⇒ p21 ≥ 1− α
p13 ≤ α and p13 + p31 = 1 ⇒ p31 ≥ 1− α
p14 ≤ α and p14 + p41 = 1 ⇒ p41 ≥ 1− α

If max{p21 , p23 , p24} = p21 ⇒ p2 = p21 ≥ 1− α
If max{p21 , p23 , p24} = p23 ⇒ p2 = p23 ≥ p21 ≥ 1− α
If max{p21 , p23 , p24} = p24 ⇒ p2 = p24 ≥ p21 ≥ 1− α

If max{p31 , p32 , p34} = p31 ⇒ p3 = p31 ≥ 1− α
If max{p31 , p32 , p34} = p32 ⇒ p3 = p32 ≥ p31 ≥ 1− α
If max{p31 , p32 , p34} = p34 ⇒ p3 = p34 ≥ p31 ≥ 1− α

If max{p41 , p42 , p43} = p41 ⇒ p4 = p41 ≥ 1− α
If max{p41 , p42 , p43} = p42 ⇒ p4 = p42 ≥ p41 ≥ 1− α
If max{p41 , p42 , p43} = p43 ⇒ p4 = p43 ≥ p41 ≥ 1− α

Hence, p1 ≤ α ⇒ p2 ≥ 1− α , p3 ≥ 1− α , p4 ≥ 1− α .
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Non-parametric CMST

Vuong tests the null hypothesis that the mean log-likelihood ratio is equal
to zero.

Alternatively, we could test the null hypothesis that the median
log-likelihood ratio is equal to zero (Clarke 2007).

Paired sign test:

LR score LR̂12,1 LR̂12,2 LR̂12,3 . . . LR̂12,n

sign + + - . . . +

Let T12 = #of positive signs. Then under H0, T12 ∼ Bin(n, 1/2).

The non-parametric CMST correspond to an intersection-union test of
paired sign tests.
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Non-parametric CMST

Observe that the p-value for comparing models 1 and 2 is the tail of a
binomial distribution with success probability 0.5

p12 = P(T12 ≥ t12) =
n∑

k=t12

Cn
k 2−n .

The p-values for T12 and T21 do not add to 1 since the statistics are
discrete, p12 + p21 = 1 + Cn

t122
−n.

Nonetheless, the Cn
t122

−n term decreases to 0 as n increases, and, in
practice, p12 + p21 ≈ 1 even for moderate sample sizes.

Hence, in practice, the non-parametric CMST p-values cannot be
simultaneously significant.
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Joint parametric CMST

Z12, Z13 and Z14 are not independent test statistics.

The joint CMST test corresponds to a multivariate extension of Vuong’s
test.

Under condition  E 0(LR12)
E 0(LR13)
E 0(LR14)

 =

 0
0
0


we have that

Z1 = diag(Σ̂1)
− 1

2 LR̂1/
√
n →d N3(0,ρ1)

where Z1 = (Z12 , Z13 , Z14)
T , LR̂1 = (LR̂12 , LR̂13 , LR̂14)

T , and ρ1 is a
correlation matrix.
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Joint parametric CMST

The joint parametric CMST test adopts

W1 = min{Z1}

as a test statistic, and tests the hypothesis:

H0 : model M1 is not better than at least one of M2, M3, M4.

H1 : model M1 is better than all other models.

H0 : min
{
E 0(LR12),E

0(LR13),E
0(LR14)

}
≤ 0

H1 : min
{
E 0(LR12),E

0(LR13),E
0(LR14)

}
> 0

The p-value is computed as

P(W1 ≥ w1) = P(min{Z12,Z13,Z14} ≥ w1)
= P(Z12 ≥ w1,Z13 ≥ w1,Z14 ≥ w1)
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Simulations
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Simulations

Models used in the simulation study:

Q
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Performance measures:

Power =
true positives

total number of tests

Type I error =
false positives

total number of tests

Precision =
true positives

true positives + false positives
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Overall simulation results:
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Overall simulation results:

Overall findings:

I The AIC, BIC and CIT show high power, high type I error rates, and
low precision.

I The CMST methods show lower power, lower type I error rates, and
higher precision.

I The joint CMST tend to be less powerful but more precise than the
other CMST approaches.

I The non-parametric CMST tend to be more powerful but less precise
than the other CMST approaches.

I As sample size increase, all methods show an increase in power and
precision and decrease in type I error rate.
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Yeast data analysis
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Data structure and QTL mapping analysis

We analyzed a budding yeast genetical genomics data set derived from a
cross of a standard laboratory strain, and a wild isolate from a California
vineyard (Brem and Kruglyak 2005).

Data on 112 strains with:

I Expression measurements on 5,740 transcripts.

I Dense genotype data on 2,956 markers (genotypes AA, Aa).

We performed QTL analysis using:

I Haley-Knott regression.

I Haldane’s map function, with genotype error rate of 0.0001, and
maximum distance between positions at which genotype probabilities
were calculated set to 2cM.

I Permutation LOD threshold of 3.47, controlling GWER < 5%.
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Knockout signatures

I We evaluate the precision of the causal predictions using validated
causal relationships extracted from a data-base of 247 knock-out
experiments in yeast (Hughes et al. 2000, Zhu et al. 2008).

I In each experiment, one gene was knocked-out, and the expression
levels of the remainder genes in control and knocked-out strains were
interrogated for differential expression.

I The set of differentially expressed genes form the knock-out signature
(ko-signature) of the knocked-out gene (ko-gene).

I The ko-signature represents a validated set of causal relations.
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Validation using yeast knockout signatures

To leverage the ko information, we:

I Determined which of the 247 ko-genes also showed a significant QTL
in our data-set.

I For each ko-gene showing significant linkages, we determined which
other genes co-mapped to the ko-gene’s QTL, generating, in this way,
a list of putative targets of the ko-gene.

I For each ko-gene/putative targets list, we applied all methods using
the ko-gene as the Y1 phenotype, the putative target genes as the Y2

phenotypes and the ko-gene’s QTL as the causal anchor.
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Validation using yeast knockout signatures

I In total, 135 ko-genes showed significant QTLs (both cis- and trans-).

I A gene was included in the putative targets list of a ko-gene when it
showed a significant QTL, such that the 1.5-LOD support interval
around the QTL’s peak contained the ko-gene’s QTL.

I The number of genes in the target lists varied from ko-gene to
ko-gene, but, in total, there were 31,936 targets.
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Validation using yeast knockout signatures

We summarize the method’s performances in terms of “biologically
validated” true positives, false positives and precision, of the inferred
causal relations, where:

I A true positive is a statistically significant causal relation between a
ko-gene and a putative target gene when the putative target gene
belongs to the ko-signature of the ko-gene.

I A false positive is a statistically significant causal relation between a
ko-gene and a putative target gene when the target gene doesn’t
belong to the ko-signature.

I The “validated precision”, is computed as the ratio of true positives
by the sum of true and false positives.

(AIC and BIC use the detected causal rels in these computations.)
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Results: cis and trans ko-genes
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Results: cis and trans ko-genes

I Overall, all methods showed low precision.

I Nonetheless, the CMST methods dominated the AIC, BIC and CIT in
terms of FP and precision (at the expense of reduced power to detect
TP).

I The BIC-based CMST methods tended to outperform their AIC-based
counterparts.
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Results: cis ko-genes only

Next lets consider the results restricted to cis ko-genes.

I 27 out of the 135 candidate regulator ko-genes mapped in cis.

I We classify a gene as cis if the 1.5-LOD support interval around its
LOD peak contains the gene’s physical location (and if the LOD score
at its physical location is higher the the LOD threshold).
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Results: cis ko-genes only
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Results: cis ko-genes only

I Overall, we see the same trends as before.

I Nonetheless, all methods perform better when the analyzes are
restricted to cis ko-genes. (Note the increase in precision.)
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