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1 Motivation

QTL hotspots, groups of traits co-mapping to the same genomic location, are a common feature
of genetical genomics studies. Genomic locations associated with many traits are biologically
interesting since they may harbor influential regulators. Nonetheless, non-genetic mechanisms,
uncontrolled environmental factors and unmeasured variables are capable of inducing a strong
correlation structure among clusters of transcripts, and as a consequence, whenever a transcript
shows a spurious linkage, many correlated transcripts will likely map to the same locus, creating
a spurious QTL hotspot. Permutation approaches that do not take into account the phenotypic
correlation tend to underestimate the size of the hotspots that might appear by change in these
situations (Breitling et al. 2008).

This issue motivated the development of permutation tests that preserve the correlation
structure of the phenotypes in order to determine the significance of QTL hotspots (Breitling
et al. 2008, Chaibub Neto et al. 2012). In this tutorial we present software tools implementing
the NL-method (Chaibub Neto et al. 2012), the N -method (Breitling et al. 2008), and the
Q-method (West et al. 2007, Wu et al. 2008) permutation approaches.

2 Overview

This tutorial illustrates the application of the NL-, N - and Q-methods, implemented in the
qtlhot R package, to a few toy examples. The qtlhot package is built over the R/qtl package
(Broman et al. 2003), and we assume the reader is familiar with it.

3 Basic functionality with No Real Hotspots

In this section we consider two toy simulated examples. In the first we simulate highly correlated
phenotypes. In the second, we simulate uncorrelated phenotypes.
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> library(qtlhot)

We start by simulating a “null backcross” data set composed of 1,000 phenotypes, 4 chro-
mosomes, 51 equally spaced genetic markers per chromosome, and 100 individuals, with the
sim.null.cross function. The latent.eff parameter control the amount of correlation among
the phenotypes. Each phenotype k is generated according to the model Yk = θL + εk, where
L ∼ N(0, σ2) is a latent variable, θ represents the effect (latent.eff) of the latent variable on
the phenotype, and εk ∼ N(0, σ2) represents a residual error term with σ2 set to res.var. Note
that we do not simulate any QTLs in a “null cross” and any linkages we might detect in such a
data set are due entirely to chance.

> ncross1 <- sim.null.cross(chr.len = rep(100, 4),

+ n.mar = 51,

+ n.ind = 100,

+ type = "bc",

+ n.pheno = 1000,

+ latent.eff = 3,

+ res.var = 1,

+ init.seed = 123457)

The function include.hotspots takes the “null cross” as an input and includes 3 hotspots
of size hsize at position hpos of chromosome hchr into it. Explicitly, it simulates each one of
the hotspots according to the model Y ∗

k = βM +Yk, where Yk is the phenotype generated by the
generate.null.cross function; M = γ Q+ εM is a master regulator that affects all phenotypes
in the hotspot; Q is a QTL located at position hpos of chromosome hchr; γ represents the QTL
effect (Q.eff); εM ∼ N(0, σ2); and β is computed such that the association between Y ∗

k and Q,
measured by the LOD score, is given (theoretically) by a valued sampled from the user specified
LOD score range (lod.range.1 and etc).

> cross1 <- include.hotspots(cross = ncross1,

+ hchr = c(2, 3, 4),

+ hpos = c(25, 75, 50),

+ hsize = c(100, 50, 20),

+ Q.eff = 2,

+ latent.eff = 3,

+ lod.range.1 = c(2.5, 2.5),

+ lod.range.2 = c(5, 8),

+ lod.range.3 = c(10, 15),

+ res.var = 1,

+ nT = 1000,

+ init.seed = 12345)

Note that by choosing latent.eff = 3 we generate highly correlated phenotype data. The
distribution of the correlation values for each pair of phenotypes is given below.
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> nphe1 <- as.matrix(cross1$pheno)

> ncor1 <- cor(nphe1)

> ncor1 <- ncor1[lower.tri(ncor1)]

> summary(ncor1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4145 0.8517 0.8929 0.8649 0.9063 0.9691

Next we obtain standard permutation thresholds (Churchill and Doerge 1994) for single trait
QTL mapping analysis for the sequence alphas, representing target genome wide error rates
(GWER).

> set.seed(123)

> pt <- scanone(ncross1, method = "hk", n.perm = 1000)

> alphas <- seq(0.01, 0.10, by=0.01)

> spt <- summary(pt, alphas)

> spt

LOD thresholds (1000 permutations)
lod

1% 3.11
2% 2.89
3% 2.68
4% 2.57
5% 2.44
6% 2.34
7% 2.26
8% 2.20
9% 2.15
10% 2.11

> lod.thrs <- as.vector(spt)

We perform QTL mapping analysis for all 1,000 phenotypes using Haley-Knott regression,
and process the LOD profiles by setting to zero LOD values outside the 1.5 LOD support interval
(Manichaikul et al. 2006) around the peak at each chromosome (as well as LOD values below
the single trait mapping threshold, thr). LOD support intervals are the most commonly used
interval estimate for the location of a QTL. By setting to zero the LOD scores outside the LOD
support interval we can considerably decrease the spread of the hotspot.

> scan1 <- scanone(cross1, pheno.col = 1:1000, method = "hk")

> scandrop1 <- set.to.zero.beyond.drop.int(chr = scan1[,1],

+ scanmat = as.matrix(scan1[,-c(1,2)]),

+ thr = min(lod.thrs),

+ drop = 1.5)
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Next we infer the hotspot architecture at varying QTL mapping thresholds. In other words,
for each genomic position, we count the number of traits that map to it with a LOD score
equal or higher than the threshold in lod.thrs. The counts1 object is a matrix with 204
rows representing the genetic markers, and 10 columns representing the varying QTL mapping
thresholds. As an illustration, we show the counts for the 5 first markers on chromosome 2. The
first column gives the counts associated with QTL mapping threshold of 3.11, whereas the last
one shows the counts based on the more liberal threshold 2.11. Note how the counts increase as
the QTL mapping thresholds decrease.

> counts1 <- t(count.thr(scandrop1, lod.thrs, droptwo = FALSE))

> counts1[52:56,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
D2M1 0 0 0 0 0 0 0 0 0 0
D2M2 0 0 0 0 0 0 0 0 0 0
D2M3 0 1 2 3 4 5 6 8 13 15
D2M4 2 2 3 5 6 14 17 21 24 27
D2M5 0 2 3 3 4 6 8 11 13 14

We plot the hotspot architecture inferred using the single trait permutation threshold 2.44
(α = 0.05). Figure 1 shows the counts across the genome. Recall that in the call of function
include.hotspots we set to simulate 3 hotspots: (1) a hotspot of size 100 at position 25cM
of chromosome 2 with LOD scores around 2.5; (2) a hotspot of size 50 at position 75cM of
chromosome 3 with LOD scores ranging from 5 to 8; and (3) a hotspot of size 20 at position 50cM
of chromosome 4 with LOD scores ranging from 10 to 15. Nonetheless, Figure 1 shows several
spurious peaks on chromosome 1, that arise because of the high correlation of the phenotypes.

> out1 <- data.frame(scan1[, 1:2], counts1)

> class(out1) <- c("scanone", "data.frame")

> plot(out1, lodcolumn = 5, ylab = "counts", cex.lab = 1.5, cex.axis = 1.5)

Next, we perform permutation tests to assess the statistical significance of the hotspots
detected on Figure 1. We start with the Q-method permutations. The WW.perm function im-
plements the Q-method’s permutation scheme (see the Method’s section of Chaibub Neto et a.
2012, for details). The n.perm parameter specifies the number of simulations. Here we set it to
100 in order to save time. In practice, we recommend at least 1,000 permutations. The function’s
output is a matrix with 100 rows representing the permutations, and 10 columns representing
the QTL mapping thresholds. Each entry ij, represents the maximum number of significant
linkages across the entire genome detected at permutation i, using the LOD threshold j. The
WW.summary function computes the Q-method’s hotspot size permutation thresholds, that is, the
1 − α quantiles for each one of the QTL mapping LOD thrsholds in lod.thrs. For instance,
the entry at row 10 and column 1 of the Q.1.thr matrix tells us that the 99% percentile of
the permutation distribution of genome wide maximum hotspot size based on a QTL mapping
threshold of 2.11 is 27.00. In other words, any hotspot greater than 27 is considered statistically
significant at a 0.01 significance level when QTL mapping is done using a 2.11 LOD threshold.
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Figure 1: Hotspot architecture associated with QTL mapping threshold of 2.44 in example 1.

> set.seed(12345)

> Q.1 <- WW.perm(scanmat = scandrop1,

+ lod.thrs = lod.thrs,

+ n.perm = 100,

+ verbose = FALSE)

> Q.1.thr <- WW.summary(Q.1, alphas)

> Q.1.thr

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
3.10508056313925 11.00 10.02 10.00 10.00 10 10.00 10.00 10.00 10.00 10.0
2.89135162173149 12.00 12.00 11.03 11.00 11 11.00 11.00 11.00 11.00 11.0
2.67690269000741 14.01 13.02 13.00 13.00 13 13.00 13.00 13.00 13.00 13.0
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2.5743266994317 16.01 16.00 16.00 15.04 15 14.06 14.00 14.00 14.00 14.0
2.43869721183317 18.00 18.00 17.03 17.00 17 17.00 17.00 17.00 17.00 16.1
2.335067939838 21.01 21.00 20.03 20.00 20 20.00 19.07 19.00 19.00 19.0
2.25777470881538 22.02 22.00 22.00 21.04 21 21.00 21.00 20.08 20.00 20.0
2.19884780562269 23.01 23.00 22.03 22.00 22 22.00 22.00 22.00 22.00 21.1
2.150234395168 24.02 24.00 24.00 23.04 23 23.00 23.00 23.00 22.09 22.0
2.11039422475441 26.02 26.00 25.03 25.00 25 25.00 24.07 24.00 24.00 24.0

In general, we are often interested in using the same error rates for the QTL mapping and
hotspot analysis. That is, if we adopt a QTL mapping threshold that controls GWER at a 1%
level (in our case, 3.11) we will also want to consider α = 0.01 for the hotspot analysis, leading
to a hotspot threshold of 12.00. Therefore, we are usually more interested in the diagonal
of “Q.1.thr”. For the hotspots depicted in Figure 1, we adopted a GWER of 5%, and the
corresponding Q-method’s permutation threshold is 18. According to this threshold, all hotspots
on Figure 1 are significant.

> diag(Q.1.thr)

[1] 11.00 12.00 13.00 15.04 17.00 20.00 21.00 22.00 22.09 24.00

Next we consider the N - and NL-methods. The NL.N.perm function implements the N - and
NL-methods’ permutation schemes (see Chaibub Neto et al. 2012, for details). The param-
eter Nmax sets the maximum hotspot size to be analyzed by the NL-method. The parameter
drop controls the magnitude of the LOD support interval computation during the LOD profile
processing step. The function’s output is a list with two elements: max.lod.quant and max.N.

> set.seed(12345)

> NL.N.1 <- NL.N.perm(cross = cross1,

+ Nmax = 300,

+ n.perm = 100,

+ lod.thrs = lod.thrs,

+ drop = 1.5,

+ verbose = FALSE)

> names(NL.N.1)

[1] "max.lod.quant" "max.N"

The max.lod.quant object stores the output of the NL-method’s permutations and is given
by a matrix with 100 rows representing the permutations, and 300 columns representing the
hotspot sizes analyzed. Entry ij stores the maximum genome wide qLOD(n) value computed
at permutation i using the QTL mapping threshold j. The statistic qLOD(n) corresponds to
the nth LOD score in a sample ordered from highest to lowest. For instance, consider the first
10 lines and 8 columns of max.lod.quant. At the 6th permutation, we have that the maximum
LOD score across the genome is 3.58, the second maximum across the genome is 3.55, and so
on.
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> NL.N.1[[1]][1:10, 1:8]

1 2 3 4 5 6 7 8
[1,] 2.115918 1.903466 1.713409 1.649016 1.600378 1.594265 1.587357 1.557915
[2,] 2.464650 2.162832 1.932474 1.885934 1.878833 1.839507 1.827621 1.815150
[3,] 3.374947 3.358949 3.198482 3.195974 3.121577 3.105578 3.028484 3.026301
[4,] 2.884215 2.867459 2.660496 2.647943 2.560766 2.547804 2.533727 2.510926
[5,] 4.188665 3.759857 3.664104 3.656594 3.560914 3.523829 3.517086 3.497425
[6,] 3.549040 3.360962 3.352198 3.252716 3.219246 3.174312 3.170193 3.147144
[7,] 2.703879 2.494766 2.377396 2.259549 2.206756 2.127329 2.123880 2.114704
[8,] 3.239116 3.229937 3.158906 3.074346 3.006857 3.004526 2.995804 2.991072
[9,] 3.032630 3.008468 2.855149 2.771142 2.746501 2.685583 2.656720 2.638065
[10,] 3.199169 3.006626 2.981184 2.923865 2.914737 2.871451 2.780572 2.776395

The max.N stores the output of the N -method’s permutations and is given by a matrix
with 100 rows representing the permutations, and 10 columns representing the QTL mapping
thresholds. Entry ij stores the maximum genome wide hotspot size detected at permutation i
using the QTL mapping threshold j. For illustration we show it’s first 12 lines (note that we
are transposing the output).

> t(NL.N.1[[2]][1:12,])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
3.10508056313925 0 0 6 0 19 9 0 3 0 1 0 3
2.89135162173149 0 0 14 0 31 18 0 14 2 5 0 4
2.67690269000741 0 0 26 2 45 34 1 36 6 9 0 9
2.5743266994317 0 0 40 4 52 60 1 55 17 9 0 11
2.43869721183317 0 1 65 13 66 97 2 100 25 14 1 15
2.335067939838 0 1 83 25 81 158 3 151 32 17 1 17
2.25777470881538 0 1 106 36 90 213 4 191 40 18 1 22
2.19884780562269 0 1 131 46 101 249 5 224 50 18 1 24
2.150234395168 0 2 162 61 116 290 5 254 61 19 1 25
2.11039422475441 1 2 186 75 127 328 8 281 64 19 1 28

The NL.N.summary function computes the N - and NL-method’s hotspot size permutation
thresholds.

> NL.N.1.thrs <- NL.N.summary(NL.N.1[[1]], NL.N.1[[2]], alphas)

> NL.1.thr <- NL.N.1.thrs[[1]]

> N.1.thr <- NL.N.1.thrs[[2]]

The N.1.thr object is a 10 by 10 matrix with rows indexing the QTL mapping thresholds
and columns indexing the target genome wide error rates. Each entry ij shows the hotspot size
above which a hotspot is considered significant at a GWER j using the QTL mapping threshold
i. As before, our interest focus on the diagonal, and the N -method’s threshold that controls
the hotspot GWER at a 5% level when the QTL mapping was controlled at a GWER of 5% is
200.55. Note that according to the N -method, none of the hotspots on Figure 1 is significant.
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> N.1.thr

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3.10508056313925 52.23 46.08 35.33 32.12 25.35 25.00 20.35 19.08 18.09
2.89135162173149 95.06 86.12 83.09 53.24 39.65 39.00 31.56 30.08 29.09
2.67690269000741 191.59 180.16 157.69 103.24 86.75 65.32 59.35 51.64 46.45
2.5743266994317 249.59 239.14 204.08 138.68 129.35 93.28 79.84 78.08 63.44
2.43869721183317 352.30 309.80 275.05 212.56 195.75 144.24 127.98 121.48 101.89
2.335067939838 432.25 389.80 354.08 286.76 263.10 191.50 176.77 173.24 159.35
2.25777470881538 490.01 445.84 407.17 350.32 322.35 240.16 228.49 215.12 213.09
2.19884780562269 527.81 491.68 462.87 402.48 373.40 288.34 266.26 250.28 240.81
2.150234395168 562.64 531.58 499.96 443.32 413.45 321.76 295.54 290.32 272.71
2.11039422475441 604.35 565.74 540.75 473.76 444.40 350.88 334.77 328.48 303.43

0.1
3.10508056313925 15.3
2.89135162173149 25.4
2.67690269000741 45.1
2.5743266994317 60.2
2.43869721183317 98.2
2.335067939838 151.7
2.25777470881538 193.2
2.19884780562269 225.6
2.150234395168 262.0
2.11039422475441 286.6

> diag(N.1.thr)

[1] 52.23 86.12 157.69 138.68 195.75 191.50 228.49 250.28 272.71 286.60

The NL.1.thr object is a matrix with 300 rows representing the spurious hotspot sizes ana-
lyzed, and 10 columns representing the target genome wide error rates. Each entry ij represents
the LOD threshold at which a hotspot of size greater or equal than i is significant at a GWER
less or equal to j. As a illustration we show the first five lines.

> round(NL.1.thr[1:5,], 4)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1 4.8767 4.7365 4.4521 4.3385 4.1959 4.1198 4.0367 3.9752 3.9376 3.7978
2 4.4265 4.3883 4.3569 3.8245 3.7798 3.7610 3.7364 3.6578 3.6093 3.5616
3 4.3150 4.1852 4.1284 3.8023 3.7285 3.6702 3.6643 3.6173 3.5022 3.4818
4 4.2988 4.1414 4.1100 3.7739 3.6618 3.6439 3.5743 3.4809 3.4273 3.4215
5 4.2838 4.1040 4.0347 3.6636 3.5653 3.5543 3.5462 3.4668 3.3749 3.3165

To visualize these results, we plot on Figure 2 the hotspot significance profile for the thresh-
olds targeting GWER at a 5% level.
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Figure 2: Hotspot size significance profile targeting GWER at a 5% level for example 1.

> N.1 <- round(N.1.thr[5, 5])

. sliding.bar.plot(scan = data.frame(scan1[, 1:2], scandrop1),

+ lod.thr = NL.1.thr[1:N.1, 5],

+ size.thr = 1:N.1,

+ gap = 50,

+ y.axes = seq(1, N.1, by = 10))

Figure 2 depicts a sliding window of hotspot size thresholds ranging from n = 1, . . . , N ,
where N = 201 corresponds to the (approximate) hotspot size threshold derived from the N -
method. For each genomic location this figure shows the hotspot sizes at which the hotspot was
significant, that is, at which the hotspot locus had more traits than the hotspot size threshold
on the left mapping to it with a LOD score higher than the threshold on the right than expected
by chance. For example, the hotspot on chromosome 3 was significant up to size 20, meaning
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that more than 1 trait mapped to the hotspot locus with LOD higher than 3.99, more than 11
traits mapped to the hotspot locus with LOD higher than 3.36, and so on up to hotspot size 49
where more than 49 traits mapped to the hotspot locus with LOD higher than 2.84.

Contrary to the Q-method that detected all the hotspots on Figure 1 as significant (including
the spurious hotspots on chromosome 1), and the N -method that did not detect any hotspots,
the NL-method’s sliding window correctly detected the simulated hotspots and showed that the
apparent hotspots on chromosome 1 were noisy artifacts.

4 Example with Uncorrelated Phenotypes

Next we consider a second toy example with uncorrelated phenotype data. We repeat the
simulation and analysis steps presented previously changing latent.eff to zero.

> ncross2 <- sim.null.cross(chr.len = rep(100,4),

+ n.mar = 51,

+ n.ind = 100,

+ type = "bc",

+ n.pheno = 1000,

+ latent.eff = 0,

+ res.var = 1,

+ init.seed = 123457)

> cross2 <- include.hotspots(cross = ncross2,

+ hchr = c(2, 3, 4),

+ hpos = c(25, 75, 50),

+ hsize = c(100, 50, 20),

+ Q.eff = 2,

+ latent.eff = 0,

+ lod.range.1 = c(2.5, 2.5),

+ lod.range.2 = c(5, 8),

+ lod.range.3 = c(10, 15),

+ res.var = 1,

+ nT = 1000,

+ init.seed = 12345)

> nphe2 <- as.matrix(cross2$pheno)

> ncor2 <- cor(nphe2)

> ncor2 <- ncor2[lower.tri(ncor2)]

> summary(ncor2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.471200 -0.067160 0.001263 0.002224 0.070240 0.666900

> scan2 <- scanone(cross2, pheno.col = 1:1000, method = "hk")

> scandrop2 <- set.to.zero.beyond.drop.int(chr = scan2[,1],

+ scanmat = as.matrix(scan2[,-c(1,2)]),
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+ thr = min(lod.thrs),

+ drop = 1.5)

> counts2 <- t(count.thr(scandrop2, lod.thrs, droptwo=FALSE))

> out2 <- data.frame(scan2[, 1:2], counts2)

> class(out2) <- c("scanone", "data.frame")

> par(mar=c(4.1,4.1,0.1,0.1))

> plot(out2, lodcolumn = 5, ylab = "counts", cex.lab = 1.5, cex.axis = 1.5)
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Figure 3: Hotspot architecture targeting 5% GWER for example 2.

> set.seed(12345)

> Q.2 <- WW.perm(scanmat = scandrop2,

+ lod.thrs = lod.thrs,
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+ n.perm = 100,

+ verbose = FALSE)

> Q.2.thr <- WW.summary(Q.2, alphas)

> set.seed(12345)

> NL.N.2 <- NL.N.perm(cross = cross2,

+ Nmax = 300,

+ n.perm = 100,

+ lod.thrs = lod.thrs,

+ drop = 1.5,

+ verbose = FALSE)

> NL.N.2.thrs <- NL.N.summary(NL.N.2[[1]], NL.N.2[[2]], alphas)

> NL.2.thr <- NL.N.2.thrs[[1]]

> N.2.thr <- NL.N.2.thrs[[2]]

The Q-method thresholds are quite similar to the previous example. This is not unexpected
since the number of significant linkages detected in examples 1 and 2 were similar (respectively,
1438 and 1413 for a LOD threshold of 2.44), and the Q-method thresholds are a function of
the number of significant QTLs (the higher the number of significant linkages, the higher the
threshold) and not of the correlation among the phenotypes.

> diag(Q.2.thr)

[1] 14.00 14.02 15.03 17.00 17.00 18.00 18.00 18.08 19.00 19.00

> apply(counts1, 2, sum)

[1] 590 752 980 1129 1350 1591 1814 2013 2210 2389

> apply(counts2, 2, sum)

[1] 944 1065 1234 1312 1440 1540 1610 1678 1760 1811

The N -method, as expected, gave rise to much smaller thresholds in this second example
with uncorrelated phenotypes. Additionally, inspection of Figure 3 shows no spurious hotspots
on chromosome 1.

> diag(N.2.thr)

[1] 4.00 4.02 5.00 6.00 6.00 7.00 7.00 8.00 8.00 8.10

> N.2 <- round(N.2.thr[5, 5], 0)

> sliding.bar.plot(scan = data.frame(scan2[, 1:2], scandrop2),

+ lod.thr = NL.2.thr[1:N.2, 5],

+ size.thr = 1:N.2,

+ gap = 50,

+ y.axes = seq(1, N.2, by = 1))
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Figure 4: Hotspot significance profile targeting 5% GWER for example 2.

Figure 4 presents the hotspot significance profile targeting 5% GWER. For this second ex-
ample, all methods correctly detected the simulated hotspots.

> hot.scan2 <- qtlhot.scan(cross2, scan2, NL.N.2$max.lod.quant, lod.thrs, probs = seq(.01, .1, by = .01), level = 0.05)

> par(mar = c(4.1,4.1,0.1,4.1))

> plot(out2, lodcolumn = 5, ylab = "counts", cex.lab = 1.5, cex.axis = 1.5)

> plot(hot.scan2, lodcolumn = 2, add = TRUE, col = "red")

> ## Add right axis with

> quant <- attr(hot.scan2, "quant")

> tmp <- seq(along = quant)

> axis(4, at = tmp, label = round(quant[tmp], 2), las = 1, cex = 0.35)

> mtext("sliding LOD thresholds",4, 1, cex=1.5)
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Figure 5: Hotspot significance scan targeting 5% GWER for example 2.

Figure 5 shows another way to represent significant hotspots. We overlay the largest signif-
icant hotspot counts using the sliding quantiles in red on top of the curve on Figure 3. Notice
that the large sizes are all significant, but only small sizes corresponding to larger LOD scores
are significant. We add a right axis with the sliding LOD thresholds.
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