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Here we reproduce the analysis of the budding yeast genetical genomics data-set presented
in Chaibub Neto et al. (2012). The data represents a cross of a standard yeast laboratory
strain, and a wild isolate from a California vineyard (Brem and Kruglyak 2005). It consists
of expression measurements on 5,740 transcripts measured on 112 segregant strains with dense
genotype data on 2,956 markers. Processing of the expression measurements raw data was done
as described in Brem and Kruglyak (2005), with an additional step of converting the processed
measurements to normal quantiles by the transformation ®~![(r; — 0.5)/112], where ® is the
standard normal cumulative density function, and the r; are the ranks.

The data were provided by Rachel Brem and further edited by Jun Zhu and Bin Zhang
(formerly of Sage Bionetworks). Elias Chaibub Neto and Brian Yandell have organized the data
and analysis into this R statistical package, qtlyeast, which is available through GITHUB.

We first load the yeast cross object (yeast.orf), and compute the conditional genotype prob-
abilities using Haldane’s map function, genotype error rate of 0.0001, and setting the maximum
distance between positions at which genotype probabilities were calculated to 2cM.

> library(qtlhot)

> library(qtlyeast)

> ## data(yeast.orf) is loaded lazily.

> yeast.orf <- calc.genoprob(yeast.orf, step = 2)

The following command does an genome scan for QTL using R/qtl for all the traits using
Haley-Knott regression (Haley and Knott 1992).

> scan.orf <- scanone(yeast.orf, pheno.col = seq(nphe(yeast.orf)), method = "hk")
To save space, we work with only the genome regions that are above the single trait LOD

threshold and within 1.5 LOD of the maximum per chromosome. We do this after we determine
the permutation LOD threshold below.
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1 Hotspot Inference

Plan of action: 1. Find Churchill-Doerge 5% LOD threshold 2. Determine hotspot counts
relative to LOD threshold (Jansen method) 3. conduct permutation test (using CHTC) 4.
report Jansen and Chaibub-Neto results 5. identify hotspots.

1.1 Churchill-Doerge LOD threshold

Since we are using normal scores on the traits, we need only conduct permutation threshold
calculation with a normal response. Here we create one trait and then do 1000 permutations.
We have saved this as perm.orf.

> cross <- yeast.orf
> cross$pheno <- data.frame(norm = rnorm(nind(cross)))

> set.seed(12345)
> perm.orf <- scanone(cross, method = "hk", n.perm = 1000)

> ## data(perm.orf) is loaded lazily.
> summary (perm.orf)

LOD thresholds (1000 permutations)

lod
5% 3.48
10% 3.08

> lod.thr <- c(summary(perm.orf, alpha = 0.05))
Now we save only the high lods of the scan.orf object to save space.
> highlod.orf <- highlod(scan.orf, lod.thr = lod.thr, drop.lod = 1.5)

This takes considerable time, so we have actually saved the completed scans as object
scan.orf. However, the scan.orf object is 203Mb, so we don’t keep it in the package. In-
stead we have saved highlod.orf.

> ## data(highlod.orf) is loaded lazily.

1.2 Hotspots for Yeast Data above LOD threshold

Now we show the hotspots. We can get summary and plot from highlod.orf, but it is sometimes
more helpful to first turn it into a hotsize object. We use an arbitrary threshold of 80 traits
per hotspot, which is passed along to scanone summary and plot methods, to get some handle
on hotspots.

> hotsize.orf <- hotsize(highlod.orf, lod.thr = lod.thr)
> summary (hotsize.orf, threshold = 80)



hotsize elements: chr pos max.N
LOD threshold: 3.475609

chr pos max.N

YBR154C_chr2@548401 2 224.1 394
c3.1loc60 3 60.0 158
NHROO1C.5_chr8@111687 8 58.5 93
YLR257W_chr12@659357 12 323.6 182
cl14.10c240 14 240.0 494
g0L02.1_chr150174364 15 61.1 358

> plot (hotsize.orf)
> abline(h = 80, 1lwd = 2, col

"red", 1ty = 2)
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This shows hotspots, but there is no way yet to assess their significance. To do that, we
must run some further permutations across all the traits together, preserving their correlation
structure. This takes even more time, so we will do it offline and show the results.



2 Causal Inference

Current efforts in systems genetics have focused on the development of statistical approaches that
aim to disentangle causal relationships among molecular phenotypes in segregating populations.
Model selection criterions, such as the AIC and BIC, have been widely used for this purpose, in
spite of being unable to quantify the uncertainty associated with the model selection call. We
illustrate analysis of the Brem and Kruglyak (2005 PNAS) data using software implemented in
R/qtlhot.

In order to evaluate the precision of the causal predictions made by the methods we used
validated causal relationships extracted from a data-base of 247 knock-out experiments in yeast
(Hughes et al. 2000, Zhu et al. 2008). In each of these experiments, one gene was knocked-
out, and the expression levels of the remainder genes in control and knocked-out strains were
interrogated for differential expression. The set of differentially expressed genes form the knock-
out signature (ko-signature) of the knocked-out gene (ko-gene), and show direct evidence of a
causal effect of the ko-gene on the ko-signature genes.

Next, we load a yeast annotation data.frame, yeast.annot, that provides the orf, gene
symbol, and chromosome location (in both Mb and ¢M) of each one of the 5,740 transcripts.
(This information will be needed to determine which ko-genes show significant QTLs.) Next, we
load a yeast annotation (derived from the YEAST R package) data.frame, yeast.annot, that
provides ORF's, gene names, chromosome, and position in Mb and cM.

> ## data(yeast.annot) is loaded lazily.
> head(yeast.annot)

orf gene chr Mb.pos cM.pos

3952 YALOO1C TFC3 1 0.151168 102.4066
3951 YALOO2W VPS8 1 0.143709 101.3745
3950 YALOO3W EFB1 1 0.142176 101.1623
1330 YALOO5C SSA1 1 0.141433 101.0595
3934 YALOO7C ERP2 1 0.138347 100.1245
3933 YALOO8W FUN14 1 0.136916 100.1245

Next, we load the list of ko-signatures derived from the knock-out experiments in Hughes et
al. (2000) and Zhu et al. (2008). We show below the first knock-out signature.

> ## data(ko.list) is loaded lazily.
> length(ko.list)

[1] 247

> ko.list[[1]]

[1] "YARO73W" "YBLO13W" "YBLO32W" "YBLO42C" "YBLO54W" "YBLOG64C"
(7] "YBRO13C" "YBRO54W" "YBRO72W" "YBR126C" "YBR155W" "YBR186W"
[13] "YCLO30C" "YDLO38C" "YDL234C" "YDL244W" "YDROO1C" "YDRO18C"



[19] "YDRO55W" "YDRO77W" "YDRO85C" "YDR399W" "YDR518W" "YDR533C"
[25] "YDR534C" "YERO55C" "YERO62C" "YFLO14W" "YFLO30W" "YFLO58W"
[31] "YGL156W" "YGL162W" "YGL187C" "YGL234W" "YGRO32W" "YGR0O43C"
[37] "YGR138C" "YGR161C" "YGR171C" "YGR213C" "YGR250C" "YHLO40C"
[43] "YHRO87W" "YHRO96C" "YHR104W" "YHR216W" "YIL125W" "YJLO34W"
[49] "YJLO54W" "YJL116C" "YJR151C" "YKL029C" "YKLOOOW" "YKLOO7W.A"
[55] "YKL163W" "YKL165C" "YKROG61W" "YLLO19C" "YLLO60C" "YLR120C"
[61] "YLR121C" "YLR142W" "YLR178C" "YLR194C" "YLR350W" "YLR359W"
[67] "yYML130C" "YML131W" "YMRO40W" "YMROOOW" "YMR173W" "YMR181C"
[73] "YMR300C" "YNL112W" "YNL134C" "YNL160W" "YNL220W" "YOL151W"
[79] "yoLo31C" "YOR173W" "YOR289W" "YOR338W" "YOR382W" "YPLO8B8W"
[85] "YPL277C" "YPR156C" "YARO75W" "YDR243C" "YFR024C.A" "YOLO53C.A"

Next, we determine which of the 247 ko-genes also showed a significant QTL in our data
set, according to a permutation test (Churchill and Doerge 1994) aiming to control GWER
< 0.05. For each one of the ko-genes with a significant QTL, that is, with LOD score above
lod.thr = 3.48, the function GetCandReg returns the ko-gene’s chromosome (phys.chr) and
physical position in ¢cM (phys.pos), as well as, the LOD score (peak.lod) at the peak position
(peak.pos), and the chromosome where the peak is located (peak.chr). In total, we observed
135 ko-genes with significant QTLs. These ko-genes are our candidate regulators. We show
below the information on the first 10 candidate regulators. Note that some ko-genes map to the
same chromosome where they are physically located, while other map to different chromosomes.

> cand.reg <- GetCandReg(highlod.orf, yeast.annot, names(ko.list))

> dim(cand.reg)

[1] 135 6

> head(cand.reg)
gene phys.chr phys.pos peak.chr

peak.pos peak.lod

2 YMR282C 13 473.2316 14 236.0138450 3.692560
3 YERO17C 5 152.3216 14 238.0138450 6.597231
7 YERO69W 5 211.7280 3 54.0140660 3.975861
9 YORO58C 15 188.5460 8 0.9067482 3.569372
10 YGLO17W 7 227.0394 7 221.6439074 5.894020
14 YMRO55C 13 235.2625 13 246.0276440 5.578000

Genes that map to positions close to their physical locations are said to map in cis (local-
linkages). Genes that map to positions away from their physical locations are said to map in
trans (distal-linkages). There is no unambiguous way the determine how close a gene needs to
map to its physical location in order to be classified as cis. Our choice is to classify a gene as
cis if the 1.5-LOD support interval (Manichaikul et al. 2006) around the LOD peak contains
the gene’s physical location, and if the LOD score at its physical location is higher the the LOD
threshold. The function GetCisCandReg determines which of the candidate regulators map in
cis.



> cis.cand.reg <- GetCisCandReg(highlod.orf, cand.reg)
> dim(cis.cand.reg)

(11 28 7
> head(cis.cand.reg)

gene phys.chr phys.pos peak.pos peak.lod peak.pos.lower peak.pos.upper

10 YGLO17W 7 227.0394 221.6439 5.894020 210.0037 230.7461
14 YMRO55C 13 235.2625 246.0276 5.578000 144.0276 260.0276
16 YMR275C 13 467.3183 460.0276 5.508846 420.0276 472.0276
48 YLR342W 12 402.5087 402.5087 8.666742 400.0196 410.0196
61 YNLO21W 14 278.5199 242.0138 4.359721 222.0138 280.0138
63 YORO38C 15 179.1709 174.0012 5.060326 156.0012 184.0012

We see that only 28, out of the 135 candidate regulators, show cis-linkages. (The additional
columns peak.pos.lower and peak.pos.upper show, respectively, the lower and upper bounds
of the 1.5-LOD support interval around peak.pos.)

For each one of the 135 candidate ko-genes, we determined which other genes also co-mapped
to the same QTL of the ko-gene. The co-mapping genes represent the putative targets of a ko-
gene. The function GetCoMappingTraits returns a list with the putative targets of each ko-gene.
A gene is included in the putative target list of a ko-gene when its LOD peak is greater than
lod.thr and the 1.5 LOD support interval around the peak contains the location of the ko-gene’s
QTL.

> comap.targets <- GetCoMappingTraits(highlod.orf, cand.reg)
> summary (sapply(comap.targets, length))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 63.5 188.0 236.9  479.0 569.0

> comap.targets[[7]]

[1] "YDLO13w" "YGL254W" "YMLO69W" "YMR247C"
> length(unlist (comap.targets))

[1] 31975

The number of targets vary from ko-gene to ko-gene (from 1 to 569). We illustrate with the
putative targets of one ko-gene (YMR275C) with 4 putative targets. In total, the 135 candidate
regulators have 31975 targets.

Next, we use the function FitAllTests to fit the causality tests of each candidate regula-
tor ko-gene (phenol) to its putative targets (pheno2). We use the candidate regulator’s QTL
(Q.chr and Q.pos) as a causal anchor. This function fits: the AIC and BIC model selection
criterions (Schadt et al. 2005); the AIC- and BIC-based versions of the joint, parametric and



non-parametric CMST tests (Chaibub Neto et al. 2012); and the CIT test (Millstein et al.
2009). We do not run it here because this step can take a few hours, as we perform a total
of 31975 tests for each of the 9 approaches. The function JoinTestOutputs joins together the
outputs of the 135 separate fits of the FitAllTests function.

> set.seed(123456789) # we fix a seed because cit uses bootstrap
> for (k in 1 : 135) {
> cat("trait=", k, "\n")

> out <- FitAllTests(cross = yeast.orf,

+ phenol = cand.reglk, 1],

+ pheno2 = comap.targets[[k]],

+ Q.chr = cand.reglk, 4],

+ Q.pos = cand.reglk, 5])

> save(out, file=paste("output_ko_validation", cand.regl[k, 1], "RData",
+ sep = "."), compress = TRUE)

>}

> ko.tests <- JoinTestOutputs (comap.targets, file = "output_ko_validation")

We are now using the Benjamini-Hochberg adjustment for the non-parametric CMST tests.
Therefore to get the adjusted values, we do the following;:

> ## data(ko.tests) is loaded lazily.
> adj.ko.tests <- p.adjust.np(ko.tests)

After loading the joined results we use the function PrecTpFpMatrix to summarize the
performance of the different methods in terms of “biologically validated” true positives, false
positives and precision, of the inferred causal relations. Since we already have the results of the
knock-out experiments (recall that ko.1list holds the ko-signatures of the ko-genes), we define
a true positive as a statistically significant causal relation between a ko-gene and a putative
target gene, when the putative target gene belongs to the ko-signature of the ko-gene. Similarly,
we define a false positive as a statistically significant causal relation between a ko-gene and a
putative target gene when the target gene doesn’t belong to the ko-signature. (For the AIC and
BIC methods, that do not provide a p-value measuring the significance of the causal call, we
simply use the detected causal relations in the computation of true and false positives). The
“validated precision”, is computed as the ratio of true positives by the sum of true and false
positives. The PrecTpFpMatrix computes these measures to both all ko-genes, and to cis ko-
genes only. The argument alpha sets the significant levels at each the summaries are computed.
Since this takes awhile, we have also stored roc.aux as a data object in the package.

> roc.aux <- PrecTpFpMatrix(alpha = seq(0.01, 0.10, by = 0.01),

+ val.targets = ko.list,

+ all.orfs = highlod.orf$names,

+ tests = adj.ko.tests,

+ cand.reg = cand.reg, cis.cand.reg = cis.cand.reg)



> ## data(roc.aux) is loaded lazily.

Before we show plots, here are some preliminary plot settings in a simple plot routine that
will be used repeatedly for figures.

> plots <- function(roc.aux, elements) {

+ par(mfrow = c(1,3))

+ par(mar=c(5, 4.1, 4, 2) + 0.1)

+ myplot(roc.aux[[elements[1]]], "Number of true positives", "(a)")
+ myplot(roc.aux[[elements[2]]], "Number of false positives", "(b)")
+ myplot(roc.aux[[elements[3]]], "Precision", "(c)")

+ }

> myplot <- function(sum.type, sum.label, main = "") {

+  ymax <- max(sum.type)

+ my.pch <- c¢(1, 21, 24, 23, 25, 2, 5, 6, 8)

+ xaxis <- seq(0.01, 0.10, by=0.01)

+ yaxis <- seq(0, ymax,length.out = length(xaxis))

+ plot(xaxis, yaxis, type = "n", ylab = sum.label, cex = 1.5,

+ xlab = "target level", cex.axis = 1.5,

+ cex.lab = 1.7, main = main, cex.main = 2)

+ for (kin1 : 9) {

+ lines(xaxis, sum.typelk,], type="b", lwd=2, pch=my.pchl[k], cex=1.5,
+ col = "black", bg = "black")

+

+ }

Below we reproduce Figure 8 of Chaibub Neto et al. (2012). This figure presents the number
of inferred true positives, number of inferred false positives and the prediction precision across
varying significance levels for each one of the methods. The results were computed using all 135
ko-gene/putative target lists. Next, we reproduce Figure 9 of Chaibub Neto et al. (2012). This
figure was generated using the results of the 27 cis ko-gene/putative targets lists.
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> plots(roc.aux, c("Tpi","Fpl","Preci"))
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Figure 1: Reproduction of Figure 8 on Chaibub Neto et al. 2012. Target significance level
by overall (a) number of true positives, (b) number of false positives and (c) precision across
all 135 ko-gene/putative target lists. Asterisk represents the CIT. Empty and filled symbols
represent, respectively, AIC- and BIC-based methods. Diamonds: parametric CMST. Point-
down triangles: non-parametric CMST. Point-up triangles: joint-parametric CMST. Circles:
AIC and BIC.
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> plots(roc.aux, c("Tp2","Fp2","Prec2"))
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Figure 2: Reproduction of Figure 9 on Chaibub Neto et al. 2012. Target significance level by
overall (a) number of true positives, (b) number of false positives and (c¢) precision restricted
to 27 cis ko-gene/putative target lists. Asterisk represents the CIT. Empty and filled symbols
represent, respectively, AIC- and BIC-based methods. Diamonds: parametric CMST. Point-
down triangles: non-parametric CMST. Point-up triangles: joint-parametric CMST. Circles:
AIC and BIC.
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