QTL Model Search



evolution of QTL models

original ideas focused on rare & costly markers
models & methods refined as technology advanced
- single marker regression
-+ QTL (quantitative trait loci)
- single locus models: interval mapping for QTL
- QTL model search: QTLs & epistasis
- GWA (genome-wide association mapping)
- adjust for population structure
- capture "missing heritability"

- genome-wide selection
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phenotype data: flowering time
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covariates

examples: treatment, location, age, weight, height
+account for important design structure (location)
- adjust for important predictors

reduce residual variation to increase power

- covariate with strong effect

Ho:y=pu+px+e
Ho:y=pg+px+e

more complicated (ignored here)

- QTL * covariate interactions

- covariate as ratio y/x
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covariate cautions

use care when the covariate is another phenotype

permutations: keep phenotype & covariates together
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additive covariate
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other phenotype as covariate
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flowering time: QTL as covariate
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QTL model search

- Goals
- identify QTL (and possible interactions among QTL)
- estimate interval for QTL location
- estimate QTL effects
+ Challenges
- how many QTL? which ones?
- more complicated to fit each multiple QTL model

- need rules to search across many QTL models
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pros & cons of multiple QTL models

- benefits
- reduce residual variation
- increased power
- separate linked QTL
- identify interactions among QTL (epistasis)
- shortcomings
- only includes significant loci
- gets complicated very quickly
- selection bias: overestimate effects of included loci

- many loci of small effect ignored ...
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epistasis in BC or DH
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epistasis in F2
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multiple loci models

basic model looks the same
y=Hq te
but now QTL has parts: g = (g1, 92, ***)

g = 1(q1,q2, ) =pu+qipi + qp2 + -

- allows for multiple loci
+ can add epistasis (here for BC)

g = p+Prq1 + g +yqi1q2

- more terms for F2 ...
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LOD-based tests for 2 QTL

For all pairs of positions, fit the following models:

He:y=pu+biqi+ g2 +yqiqz + e
Ho:ty=u+biqi+prqz +e
H:y=u+piq1+e

Hyo:y=u+e

logio likelihoods for QTL positions 41 (for g1) and 42 (for q2)

l[r(A1,12)
la(A1,42)
[1(A1)

Lo
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LOD scores for 2-QTL scan

full (interactive) vs no QTL (f — 0):
lodr(A1,42) = lr(41, 42) — Lo
additive vs no QTL (a — 0):
lodg(A1,42) = la(A1,42) — lo
interaction, or full vs additive (f — a):
lodi(41,42) = (A1, A2) — la(A1, 42)
usual 1 QTLvs no QTL (1 —0):

lodi(41) =11 (A1) — I
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flowering time: add QTL?

R/qtl tools: sim.geno, makeqtl, addgtl
fancier form of using first QTL as covariate
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flowering time 2-D search

interaction (f-a)
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Brassica FLC homologs (6 years later)
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http://www.genetics.org/content/162/3/1457

model search and selection

- QTL mapping began as hypothesis testing: is this a QTL?
- much focus on adjusting for multiple testing

- better to view problem as model selection
- what set of QTL are well supported?
- is there evidence for QTL-QTL interactions?

Model = an identified set of QTL and QTL-QTL interactions
(and possibly covariates and QTL-covariate interactions)
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QTL model search and selection

- Class of models: begin with additive models
- add pairwise or higher interactions?
- other approaches?
-+ Model fit (MLE, Haley-Knott, ...)
+ Model comparison
- estimated prediction error
- model effects criterion: AIC, BIC, penalized likelihood
- Bayes method (prior across model space)
-+ Model search
- forward, backward, stepwise selection

- randomized algorithm
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QTL model search goal

Goal: identify major players

- selected model has two types of errors:
- miss important terms (QTLs or interactions)
- include extraneous terms
+ both errors likely at the same time
- identify as many correct terms as possible
- while controlling rate of inclusion of extra terms

- hypothesis testing only has one error at a time
- pick no QTL model, but there is really a QTL at 44
- pick 1 QTL model, but there is really no QTL
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special nature of QTL models

What is special here?

- continuum of ordinal-valued predictors (the genetic loci)
+association among these QTL predictors

- loci on different chromosomes are independent

-+ along chromosome:

- simple (and known) correlation structure

See Broman MultiQTL talk for more details
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https://www.biostat.wisc.edu/~kbroman/teaching/misc/Jax/2016/multiqtl.pdf

pros & cons of multiple QTL revisted

- Benefits
- reduce residual variation
- increased power
- separate linked QTL
- identify interactions among QTL (epistasis)
- Shortcomings
- only includes significant loci
- gets complicated very quickly
- selection bias: overestimate effects of included loci

- many loci of small effect ignored ...
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selection bias
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implications of selection bias

estimated % variance explained by identified QTLs: too high
repeating an experiment: different QTL (Beavis effect)
congenics (or near isogenic lines): off base
marker-assisted selection: missed effect
See Broman (2003) and Haley, Knott (1992).
Beavis WD (1994). The power and deceit of QTL experiments: Lessons from comparative

QTL studies. In DB Wilkinson, (ed) 49th Ann Corn Sorghum Res Conf, pp 252-268. Amer
Seed Trade Asso, Washington, DC.
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PHE = GWA + QTL * ENV example

QTL x ENV interaction
AA AB

PHE qxe
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PHE = QTL + GWA * ENV example

GWA x ENV interaction
AA AB

PHE gxe

ENV
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Pareto chart: from QTL to GWA
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