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Key Questions
• Why design microarray experiments? (Kerr Churchill)

– chips and samples are expensive
– design experiment for one or a few genes (want true replication)

• Are typical statistical assumptions warranted?
– how to transform to symmetry (near normal)?
– how does the variance change? by gene? with abundance?

• How do we combine data analysis across multiple genes?
– differential expression pattern changes with abundance

• how to keep potentially important low abundance genes?
– noise pattern changes with abundance

• How can we map gene expression?
– use pattern of expression as one or more quantitative traits

• Illustrate ideas with experiments from Attie Lab
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But what about MY technology?
• talk focuses on Affymetrix mouse chips

– 13,000+ mRNA fragments (11,000+ genes)
– ∆ = mean(PM) - mean(MM) adjusted expression levels

• adaptable to other molecular data types
– genome, proteome, metabolome, megagenome, virome

• adaptable to emerging “micro-array” technologies
– spotted arrays (Brown Botstein 1999)

– micro-beads (www.lynxgen.com)

– surface plasmon resonance (Nelson et al. Corn 2001)

– maskless array synthesizer (www.nimblegen.com)
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Design: learning by experience
• fat and obesity

– lean vs. obese
– 3 “strains”
– no replicates: 4 mice per chip

• SCD knockout mouse
– 5 replicates: 1 mouse per chip
– knockout vs. wild type
– 8 error degrees of freedom

• fat, liver, muscle, islet tissues
– 2 strains, 4 tissues
– 2 replicates: 2 mice per chip
– 8 error degrees of freedom
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fat livermuscleislet

B6
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How are obesity & diabetes related?
• focus on adipose (fat) tissue

– whole-body fuel partitioning
– Nadler et al. (2000) PNAS

• 6 conditions in 2x3 factorial
– lean vs. obese
– strains B6, BTBR, F1 cross

• pseudo-replication = subsampling
– only 1 chip per condition
– 4 mice pooled per chip

• increase precision per chip
• but reduce power to detect change

• combine data across genes
– no way to infer differences otherwise
– noise decreases with average intensity
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SCD knockout experiment
• single gene knockout

– stearoyl-CoA desaturase-1 

• experimental design
– knockout vs. wild type mice
– 5 mice per group, 1 chip per mouse
– dChip recalc of ∆ = PM-MM

• have gene-specific replication
– estimate noise from replicates within groups

• compare genes in functional groups
– up or down regulation?

wild type

knockout
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Diabetes action in whole body
• tissues important for diabetes

– fat, muscle, liver, islets
– focus on fat & liver here

• two obese strains
– BTBR diabetic
– B6 non-diabetic

• experimental design
– only 16 Affymetrix chips 
– 2 replicates each tissue*genotype condition
– 4 mice per condition in pools of 2 per chip
– some benefits of pooling & independent replication

fat liver muscle islet
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How do we infer strain differences?
strain differences?

same mean
flat line

noise negligible?
high noise
signal unreliable
test inconclusive
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Why is noise so important?
• is differential expression “signal” large relative to “noise”?

– signal is difference across conditions of interest
• lean vs. obese, knockout vs. wild, B6 vs. BTBR

– noise assessed by “true” replicates, not pseudo-replicates
• sources of noise

– conditions: mouse, strain, tissue
• can vary with mRNA abundance, gene-specific features

– materials: chip, mRNA sample preparation
• hybridization and reading mechanics

– watch out for pseudo-replication
• pooled mRNA from multiple mice on one chip
• multiple chips from same mRNA source

• experimental unit is tissue from mouse (or set of pooled mice)
– increase power with more mice on distinct chips
– think of experiment for a single mRNA at a time
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Are typical statistical assumptions 
warranted for microarrays?

• independence: address at design phase
– want chips independent, but gene spots on chip?
– often expect genes to correlate--coordinated expression

• equal variance
– log (almost) takes care of this--or does it?
– what affects variance? abundance? gene function?

• normality (symmetry, bell-shaped histogram)
– log (almost) transforms to symmetry?
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To log or not to log?
• log is natural choice

– tremendous dynamic range (100-1000 fold common)
• intuitive appeal, e.g. concentrations of chemicals (pH) 
• fold changes becomes additive

– nice statistical properties ideally
• noise variance roughly constant(?)
• histogram roughly symmetric/normal

– but adjusted values ∆ = PM – MM may be negative
• approximate log transform: normal scores

– there is an exact transform to normality
• close to log(∆) but exact form unknown: Φ-1(F(∆))
• handles negative background-adjusted values

– close approximation easy to compute: X = Φ-1(Fn(∆))
– plot using anti-log to approximate fold changes
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Approximate log transform: 
normal scores

whole chip
• ∆ = PM – MM
• log10(∆)
note dropped data

sample of 30
• rank(∆)
• X = Φ-1(Fn(∆))
squish blocks into
bell shaped curve
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How do we analyze multiple genes?
• assume transformed expression is roughly normal

– at least roughly symmetric
– or use methods that account for data shape

• find common patterns of differential expression
– compare genes across conditions
– how can we combine gene patterns?

• use common patterns in noise
– is variation in noise constant? probably not

• mRNA abundance, gene function, gene-to-gene variability
– how to model changing variation easily?

• let design drive analysis
– linear model based on experimental design
– incorporate sources of variation
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Gene-specific model for data analysis
• fit linear model with conditions, genes, replicates

– Xcgr = µ + Cc + Gg + Dcg + Ncgr
• c = condition; g = gene; r = replicate
• Cc = 0 if arrays normalized separately
• Dcg = differential expression for condition i, gene j
• Kerr Churchill (2001)

• mean abundance of gene g: Ag = X•g•

• differential expression: Dg = D1g – D2g
– contrast among conditions = “signal”
– lean vs. obese, B6 vs. BTBR, …
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How to assess differential expression?
• differential expression: Dg = Σc wc Xcg•

– Dg = Σ wi Dcg + Σ wc Ncg•

– Var(Dg) = δg
2 + σg

2/R = signal + noise
• standardized contrasts: Σ wc = 0, Σ wc

2 = 1

• gene-specific variance of difference
– Var(Dg) = σg

2/R no differential expression
– Var(Dg) = δg

2 + σg
2/R differential expression

• infer gene-specific differential expression 
– is signal δg “large” relative to noise σg ?
– how to estimate SDg = σg ?
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Two ways to measure noise SD
• SD decreases with abundance

– mechanics of  hybridization, reading
– SDg

2 = σ(Ag)2

• can estimate without replication
• combine information across genes

– Newton et al. (2001), Roberts et al. (2000), Lin et al. (2001)

• SD varies from gene to gene
– biochemistry of specific mRNA
– SDg

2 = gene-specific σg
2

• need “substantial” replication (say 5?)
• analyze genes separately

– Efron et al. (2002), Lönnstedt Speed (2001)
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Are SDs constant across genes?
gene-specific SD
using replicates

abundance-based SD
using mean contrasts

95% χ8
2 limits
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How to Estimate Spread of Noise?
• focus on genes with no differential expression

– assume SD changes with abundance Ag
– use robust estimate SDg = σ(Ag) across genes
– screens out changing genes as “outliers”

• focus on replication
– measure expression noise by deviations from mean 

• SDg
2 = Σcr(Xcgr – Xcg• )2 / ν1

• Combine ideas into gene-specific hybrid
– Gene-specific SDs vary around σ(Ag)

• “prior” σg
2 ~ inv-χ2(ν0, σ(Ag)2)

– combines two “statistically independent” estimates
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Adipose: no replication
low abundance

(some ∆ < 0)

Clustering
(Nadler et al. 2000)
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Why Worry about Low Abundance Genes?
• expression may be at or below background level

– background adjustment: ∆ = PM – MM
• removes local “geography”
• allows comparison within and between chips
• can be negative--problem with log transform

– large measurement variability
• early technology (bleeding edge)
• do next generation chips really fix this?

– low abundance genes
• mRNA virtually absent in one condition
• could be important: transcription factors, receptors, regulators

• high prevalence across genes on a chip
– up to 25% per early Affy chips (reduced to 3-5% with www.dChip.org)
– 10-50% across multiple conditions

• low abundance signal may be very noisy
– 50% false positive rate even after adjusting for variance
– may still be worth pursuing: high risk, high research return
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Adipose: What was Found?
• transcription factors

– I-κB modulates transcription - inflammatory processes
– RXR nuclear hormone receptor - forms heterodimers

with several nuclear hormone receptors
• regulatory proteins

– protein kinase A
– glycogen synthase kinase-3

• roughly 100 genes
– 90 new since Nadler (2000) PNAS
– but 50% false positives!
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Robust SD varying with abundance
• median & median absolute deviation (MAD)

– robust to outliers (e.g. changing genes)
– easy to compute
– adapt to patterns in data rather than idealized model

• partition genes into slices based on abundance Ag
– use many slices to assess how SD varies
– ~30 genes per slice for Affy mouse chips (400 slices)

• smooth median & MAD over slices
– automated smoothing splines (Wahba 1990)
– smoothes out slice-to-slice chatter
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Median & MAD by abundance slices
(1% sample)
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Adipose: center and spread
low abundance

(some ∆ < 0)

Clustering
(Nadler et al. 2000)

significant change
(Bonferroni limits)
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Standardized Genotype Effects
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Are strain differences real?
strain differences?

similar pattern
parallel lines
no interaction

noise negligible?
few d.f. per gene
Can we trust SDg ?
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Improving on gene-specific SD
• gene-specific SD from replication

– SDg
2 = Σcr(Xcgr – Xcg• )2 / ν1

• robust abundanced-based estimate
– σ(Ag) = smoothed MAD

• Combine ideas into gene-specific hybrid
– “prior” σg

2 ~ inv-χ2(ν0, σ(Ag)2)
– “posterior” shrinkage estimate

ν1SDg
2 + ν0σ(Ag)2

ν1 + ν0

– combines two “statistically independent” estimates
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SD for strain differences
gene-specific σg

smooth of σg
main effects

fat σ(Ag)
liver σ(Ag)

interaction
fat-liver σ(Ag)
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Shrinkage Estimates of SD
gene-specific σg

abundance σ(Ag)

95% χ8
2 limits
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How good is shrinkage model?
prior for gene-specific

σg
2 ~ inv-χ2(ν0, βσ(Ag)2)

fudge β to adjust mean
ν1σg

2 + ν0βσ(Ag)2

ν1 + ν0

histogram of ratio
σg

2 / σ(Ag)2

empirical Bayes estimates

χ2 approximation
ν0 = 5.45, β = 1

χ2 approximation with β
ν0 = 3.56, β = .809

used ν0 = 8, β = 1 in figures
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Effect of SD Shrinkage on Detection
fat-liver interaction
shrinkage-based
abundance-based
9 genes identified
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Liver vs. Fat effects

significant change
9 genes identified
Bonferroni lines
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How to detect patterns of expression?
• differential expression--or not?

– Dg / σ(Ag) ~ Normal(0,1) ?
• no differential expression (most genes)
• differential expression more dispersed than N(0,1)

– evaluation of differential expression
• formal test of outliers: multiple comparisons
• posterior probability in differential group
• want to control false positives & false negatives

• general pattern recognition
– in which group does gene belong?

• clustering, discrimination & other multivariate approaches
– linear discriminants are natural extension of ideas here

– are these groups different?
• comparison of functional groups

© BS Yandell Experimental Biology 2002 34

Multiple Comparisons: a concern?
• many tests performed at once

– goal: detect genes with “large” differential expression
– formality: is Dg / σ(Ag) ~ Normal(0,1) ?
– practice: use multiple comparisons as guideline

• simple multiple comparisons approach
– Zidak/Bonferroni corrected p-values: p = p1/n
– 13,000 genes with an overall level p = 0.05

• each gene should be tested at level p1 = 1.95*10-6

• differential expression if Dg / σ(Ag) > 4.62

• is this too conservative? (Dudoit et al. 2000)
– re-envigorated multiple comparisons “industry”
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all multiple comparisons similar
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pattern of standardized differences
standardized differences

Dg / σ(Ag) 
standard normal
differential expression
Bonferroni cutoff
after Efron et al. (2001)
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Comparing gene function groups
9 functional groups

115 significant genes
5-20 genes/group
dropped unknowns

up or down regulation?
relative to gene-to-gene variation
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Related Literature
• comparing two conditions

– log normal: var=c(mean)2

• ratio-based  (Chen et al. 1997)
• error model (Roberts et al. 2000; Hughes et al. 2000)
• empirical Bayes (Efron et al. 2002; Lönnstedt Speed 2001)

– gene-specific Dg ~ Φ, var(Dg) ~Γ-1, Zg ~ Bin(p)

– gamma 
• Bayes (Newton et al. 2001, Tsodikov et al. 2000)

– gene-specific Xg ~Γ, Zg ~ Bin(p)

• anova (Kerr et al. 2000, Dudoit et al. 2000)
– log normal: var=c(mean)2

– handles multiple conditions in anova model
– SAS implementation (Wolfinger et al. 2001)

• See www.stat.wisc.edu/~yandell/statgen References
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R Software Implementation
• quality of scientific collaboration

– hands on experience to researcher
– focus on graphical information content

• needs of implementation
– quick and visual
– easy to use (GUI=Graphical User Interface)
– defensible to other scientists
– open source in public domain?

• www.r-project.org
– www.bioconductor.org
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library(pickgene)
### R library
library(pickgene)

### create differential expression plot(s)
result <- pickgene( data, geneID = probes,

renorm = sqrt(2), rankbased = T )

### print results for significant genes
print( result$pick[[1]] )

### density plot of standardized differences
pickedhist( result, p1 = .05, bw = NULL )
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Mapping Gene Expression
as a Quantitative Trait?

• gene expression in segregating population
– assume one gene locus (QTL) influences expression
– create backcross (BC) or intercross (F2)
– map QTL using expression as quantitative trait

• scan entire genome for possible QTL
• MapMaker, QTL Cart or other package

– gene expression may be controlled by other QTL
• multiple genes influenced by same QTL?

– is QTL at a regulatory gene?
• multiple QTL affecting some regulatory gene?
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From genes to regulatory genes
• X = expression data from chips for F2 population

– too many gene expressions to map separately
– reduce dimension using multivariate approach
– principle components (singular value decomposition)

• X = UDVT

• V has eigen-genes as rows, individuals as columns

• V = combined expression of coordinated genes
– map first few important rows of V as quantitative traits
– suppose coordination due to gene regulation

• elicit biochemical pathways (Henderson et al. Hoeschele 2001)

– increase power to detect expression-modifying QTL 
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Alter et al. (2000 PNAS)
yeast cell cycleX = UDVT
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Idea of test for QTL at one locus
(using graphs from West et al. 2000)
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Multiple QTLs
• mapping principle component as quantitative trait

– Liu et al. (1996); Zeng et al. (2000)
– multiple interval mapping with interactions

• research groups working on expression QTLs
– Doerge et al. (Purdue)
– Jansen et al. (Waginingen)

• multiple QTL literature
– multiple interval mapping 

• Zeng, Kao, et al. (1999, 2000)
– Bayesian interval mapping 

• Satagopan et al. (1996); Satagopan, Yandell (1996); Stevens, 
Fisch (1998); Silanpää, Arjas (1998, 1999)
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Summary
• Why design microarray experiments? (Kerr Churchill)

– chips and samples are expensive: use resources well
– design experiment for one gene with true replication

• Are typical statistical assumptions warranted?
– not automatically--plot your data!
– find transform to symmetry (near normal)
– examine how SD changes with abundance

• How do we combine data analysis across multiple genes?
– keep low abundance data & allow model noise with abundance
– use formal tests as guide to false positive rate

• How can we map gene expression?
– use multivariate summaries to capture functional patterns
– expression may be controlled by other (regulatory) gene

• Ongoing collaboration requires continual dialog
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