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Key Questions

* Why design microarray experiments? (Kerr Churchill)

— chips and samples are expensive

— design experiment for one or a few genes (want true replication)
* Are typical statistical assumptions warranted?

— how to transform to symmetry (near normal)?

— how does the variance change? by gene? with abundance?
* How do we combine data analysis across multiple genes?

— differential expression pattern changes with abundance

+ how to keep potentially important low abundance genes?

— noise pattern changes with abundance
* How can we map gene expression?

— use pattern of expression as one or more quantitative traits
 TIllustrate ideas with experiments from Attie Lab
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But what about MY technology?

« talk focuses on Affymetrix mouse chips

— 13,000+ mRNA fragments (11,000+ genes)

— A=mean(PM) - mean(MM) adjusted expression levels
« adaptable to other molecular data types

— genome, proteome, metabolome, megagenome, virome
* adaptable to emerging “micro-array” technologies
spotted arrays (Brown Botstein 1999)

micro-beads (www.lynxgen.com)
— surface plasmon resonance (Nelson et al. Corn 2001)
— maskless array synthesizer (www.nimblegen.com)
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Design: learning by experience
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How are obesity & diabetes related?

focus on adipose (fat) tissue
— whole-body fuel partitioning
— Nadler et al. (2000) PNAS B6 F1 BTBR

6 conditions in 2x3 factorial
lean
— lean vs. obese

— strains B6, BTBR, F1 cross
pseudo-replication = subsampling
— only 1 chip per condition
— 4 mice pooled per chip
« increase precision per chip
* but reduce power to detect change
combine data across genes
— no way to infer differences otherwise
— noise decreases with average intensity
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SCD knockout experiment

knockout

wild type

« single gene knockout
— stearoyl-CoA desaturase-1
» experimental design
— knockout vs. wild type mice
— 5 mice per group, 1 chip per mouse
— dChip recalc of 4 = PM-MM
* have gene-specific replication
— estimate noise from replicates within groups
+ compare genes in functional groups
— up or down regulation?
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Diabetes action in whole body

* tissues important for diabetes
— fat, muscle, liver, islets
— focus on fat & liver here

]
8

* two obese strains
— BTBR diabetic
— B6 non-diabetic
» experimental design
— only 16 Affymetrix chips
— 2 replicates each tissue*genotype condition
— 4 mice per condition in pools of 2 per chip
— some benefits of pooling & independent replication

liver  muscle islet

BTBR

BTBR
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How do we infer strain differences?
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Why is noise so important?

« is differential expression “signal” large relative to “noise”?
— signal is difference across conditions of interest
« lean vs. obese, knockout vs. wild, B6 vs. BTBR
— noise assessed by “true” replicates, not pseudo-replicates
* sources of noise
— conditions: mouse, strain, tissue
« can vary with mRNA abundance, gene-specific features
— materials: chip, nRNA sample preparation
* hybridization and reading mechanics
— watch out for pseudo-replication
+ pooled mRNA from multiple mice on one chip
+ multiple chips from same mRNA source
« experimental unit is tissue from mouse (or set of pooled mice)
— increase power with more mice on distinct chips
— think of experiment for a single mRNA at a time
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Are typical statistical assumptions
warranted for microarrays?

* independence: address at design phase

— want chips independent, but gene spots on chip?

— often expect genes to correlate--coordinated expression
* equal variance

— log (almost) takes care of this--or does it?

— what affects variance? abundance? gene function?
+ normality (symmetry, bell-shaped histogram)

— log (almost) transforms to symmetry?
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To log or not to log?

* log is natural choice
— tremendous dynamic range (100-1000 fold common)
* intuitive appeal, e.g. concentrations of chemicals (pH)
« fold changes becomes additive
— nice statistical properties ideally
* noise variance roughly constant(?)
* histogram roughly symmetric/normal
— but adjusted values 4 = PM - MM may be negative
 approximate log transform: normal scores
— there is an exact transform to normality
« close to log(4) but exact form unknown: ®'(F(4))
« handles negative background-adjusted values
— close approximation easy to compute: X = ®-1(F,(4))
— plot using anti-log to approximate fold changes
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Approximate log transform:
normal scores
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How do we analyze multiple genes?

+ assume transformed expression is roughly normal
— at least roughly symmetric
— or use methods that account for data shape
 find common patterns of differential expression
— compare genes across conditions
— how can we combine gene patterns?
* use common patterns in noise
— is variation in noise constant? probably not
« mRNA abundance, gene function, gene-to-gene variability
— how to model changing variation easily?
* let design drive analysis
— linear model based on experimental design
— incorporate sources of variation
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Gene-specific model for data analysis

« fit linear model with conditions, genes, replicates
- Xcg,_: M+ C .+ Gg + ch + Ncgr
« ¢ = condition; g = gene; = replicate
» C.=0ifarrays normalized separately
* D,, = differential expression for condition i, gene j
* Kerr Churchill (2001)

* mean abundance of gene g: Ag= X,g,

» differential expression: D,=D,,-D,,
— contrast among conditions = “signal”
— lean vs. obese, B6 vs. BTBR, ...
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How to assess differential expression?

« differential expression: D=2 w.X,.
= D,=ZwD,+ZW.N,
- Var(D,) = 8,2 + 0,%/R = signal + noise
+ standardized contrasts: = w,=0,Z w2 =1
 gene-specific variance of difference
- Var(D,) = 6,/R no differential expression
- Var(D,) =82+ 0,/R  differential expression
* infer gene-specific differential expression
— is signal §, “large” relative to noise 0, ?
— how to estimate SD, =0, ?
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Two ways to measure noise SD

+ SD decreases with abundance
— mechanics of hybridization, reading
— 2= 2
SD,>=0(4,)
« can estimate without replication
* combine information across genes
— Newton et al. (2001), Roberts et al. (2000), Lin et al. (2001)
» SD varies from gene to gene
— biochemistry of specific mRNA
— 2= - i 2
SD,? = gene-specific 0,
+ need “substantial” replication (say 5?)
» analyze genes separately
— Efron et al. (2002), Lonnstedt Speed (2001)
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Are SDs constant across genes?
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How to Estimate Spread of Noise?

+ focus on genes with no differential expression
— assume SD changes with abundance 4,
— use robust estimate SD, = 0(4,)) across genes
— screens out changing genes as “outliers”
 focus on replication
— measure expression noise by deviations from mean
* 8D =X, (XX )/ V)
+ Combine ideas into gene-specific hybrid
— Gene-specific SDs vary around 0(4,)
* “prior” 0,2 ~ inv-X*(Vy, 0(4,)%)
— combines two “statistically independent” estimates
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Adipose: no replication
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Why Worry about Low Abundance Genes?

« expression may be at or below background level
— background adjustment: 4 = PM - MM
+ removes local “geography™
« allows comparison within and between chips
« can be negative--problem with log transform
— large measurement variability
« carly technology (bleeding edge)
+ do next generation chips really fix this?
— low abundance genes
+ mRNA virtually absent in one condition
+ could be important: transcription factors, receptors, regulators
« high prevalence across genes on a chip
— up to 25% per early Affy chips (reduced to 3-5% with www.dChip.org)
— 10-50% across multiple conditions
« low abundance signal may be very noisy
— 50% false positive rate even after adjusting for variance
— may still be worth pursuing: high risk, high research return
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Adipose: What was Found?

* transcription factors
— I-kB modulates transcription - inflammatory processes

— RXR nuclear hormone receptor - forms heterodimers
with several nuclear hormone receptors

* regulatory proteins
— protein kinase A
— glycogen synthase kinase-3
* roughly 100 genes
— 90 new since Nadler (2000) PNAS
— but 50% false positives!

B6 F1 BTBR

n B0 -
sl -
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Robust SD varying with abundance

» median & median absolute deviation (MAD)
— robust to outliers (e.g. changing genes)
— easy to compute
— adapt to patterns in data rather than idealized model
* partition genes into slices based on abundance 4,
— use many slices to assess how SD varies
— ~30 genes per slice for Affy mouse chips (400 slices)
+ smooth median & MAD over slices
— automated smoothing splines (Wahba 1990)

— smoothes out slice-to-slice chatter
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Standardized Genotype Effects
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Improving on gene-specific SD

 gene-specific SD from replication

= SD/ =%, (X~ X0 P/ V)
* robust abundanced-based estimate

— 0(d,) = smoothed MAD
» Combine ideas into gene-specific hybrid

— “prior” 0,2 ~ inv-X*(Vo, 0(4,)?)

— “posterior” shrinkage estimate

v,SD,? +V,0(4,)
\" 1 + \}0

— combines two “statistically independent” estimates
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SD for strain differences
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How good is shrinkage model?

prior for gene-specific 2
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Effect of SD Shrinkage on Detection
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Liver vs. Fat effects

significant change
9 genes identified

Bonferroni lines
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Liver effect
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How to detect patterns of expression?

differential expression--or not?
- D,/ 0(4,) ~ Normal(0,1) ?
« no differential expression (most genes)
« differential expression more dispersed than N(0,1)
— evaluation of differential expression
« formal test of outliers: multiple comparisons
« posterior probability in differential group
+ want to control false positives & false negatives
general pattern recognition

— in which group does gene belong?
« clustering, discrimination & other multivariate approaches
— linear discriminants are natural extension of ideas here
— are these groups different?
 comparison of functional groups
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Multiple Comparisons: a concern?

* many tests performed at once

— goal: detect genes with “large” differential expression

— formality: is D, / 6(4,) ~ Normal(0,1) ?
— practice: use multiple comparisons as guideline

* simple multiple comparisons approach
— Zidak/Bonferroni corrected p-values: p = p,/n

— 13,000 genes with an overall level p = 0.05
« each gene should be tested at level p, = 1.95%10¢
+ differential expression if D, / 0(4,) > 4.62
* s this too conservative? (Dudoit et al. 2000)
— re-envigorated multiple comparisons “industry”
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pattern of standardized differences
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Comparing gene function groups
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Related Literature

* comparing two conditions
— log normal: var=c(mean)?
« ratio-based (Chen et al. 1997)
« error model (Roberts et al. 2000; Hughes et al. 2000)
« empirical Bayes (Efron et al. 2002; Lonnstedt Speed 2001)
— gene-specific D, ~ ®, var(D,) ~I", Z,~ Bin(p)
— gamma
» Bayes (Newton et al. 2001, Tsodikov et al. 2000)
— gene-specific X, ~T', Z,~ Bin(p)

» anova (Kerr et al. 2000, Dudoit et al. 2000)
— log normal: var=c(mean)*
— handles multiple conditions in anova model
— SAS implementation (Wolfinger et al. 2001)
» See www.stat.wisc.edu/~yandell/statgen References
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R Software Implementation

* quality of scientific collaboration
— hands on experience to researcher
— focus on graphical information content
* needs of implementation
— quick and visual
— easy to use (GUI=Graphical User Interface)
— defensible to other scientists
— open source in public domain?
* WwWw.r-project.org
— www.bioconductor.org
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library(pickgene)

### R library
library(pickgene)

### create differential expression plot(s)
result <- pickgene( data, genelD = probes,
renorm = sqrt(2), rankbased =T ')

### print results for significant genes
print( result$pick[[1]])

### density plot of standardized differences
pickedhist( result, p1 = .05, bw = NULL )
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Mapping Gene Expression
as a Quantitative Trait?

+ gene expression in segregating population
— assume one gene locus (QTL) influences expression
— create backcross (BC) or intercross (F2)

— map QTL using expression as quantitative trait
« scan entire genome for possible QTL
* MapMaker, QTL Cart or other package

— gene expression may be controlled by other QTL
+ multiple genes influenced by same QTL?
— is QTL at a regulatory gene?
» multiple QTL affecting some regulatory gene?
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From genes to regulatory genes

* X = expression data from chips for F2 population
— too many gene expressions to map separately
— reduce dimension using multivariate approach
— principle components (singular value decomposition)
« X=UDV"
 V has eigen-genes as rows, individuals as columns
* V'=combined expression of coordinated genes
— map first few important rows of 7 as quantitative traits
— suppose coordination due to gene regulation
« elicit biochemical pathways (Henderson et al. Hoeschele 2001)

— increase power to detect expression-modifying QTL
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Idea of test for QTL at one locus
(using graphs from West et al. 2000)

colored correlation matrix

t-tests at QTL locus

Multiple QTLs

* mapping principle component as quantitative trait
— Liu et al. (1996); Zeng et al. (2000)
— multiple interval mapping with interactions
* research groups working on expression QTLs
— Doerge et al. (Purdue)
— Jansen et al. (Waginingen)
» multiple QTL literature
— multiple interval mapping
« Zeng, Kao, et al. (1999, 2000)
— Bayesian interval mapping

« Satagopan et al. (1996); Satagopan, Yandell (1996); Stevens,
Fisch (1998); Silanpéi, Arjas (1998, 1999)
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Summary

* Why design microarray experiments? (Kerr Churchill)
— chips and samples are expensive: use resources well
— design experiment for one gene with true replication

* Are typical statistical assumptions warranted?
— not automatically--plot your data!
— find transform to symmetry (near normal)
— examine how SD changes with abundance

* How do we combine data analysis across multiple genes?
— keep low abundance data & allow model noise with abundance
— use formal tests as guide to false positive rate

* How can we map gene expression?
— use multivariate summaries to capture functional patterns
— expression may be controlled by other (regulatory) gene

* Ongoing collaboration requires continual dialog
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Hong Lan’ Yang Song!
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