## Efficient and Robust Statistical Methods for Quantitative Trait Loci Analysis

Brian S. Yandell University of Wisconsin-Madison

www.stat.wisc.edu/~yandell/statgen

with Fei Zou, University of North Carolina, and Patrick J. Gaffney, Lubrizol

Jackson Laboratory
October 2001

## Many Thanks

Michael Newton

Daniel Sorensen

Daniel Gianola

Jaya Satagopan

Patrick Gaffney

Fei Zou

Liang Li

Tom Osborn

David Butruille

Marcio Ferrera

Josh Udahl

Pablo Quijada

Alan Attie

Jonathan Stoehr

**USDA Hatch Grants** 

#### Goals

away from normality

- fewer assumptions
- extended phenotypes
- check robustness
- multiple crosses

how many QTL?

- inferring the number
- sampling all QT loci
- estimating heritability

#### **Interval Mapping Basics**

- known measurements
  - phenotypic trait Y
  - markers *X* (and linkage map)
- unknown quantities
  - QT locus (or loci)  $\lambda$
  - QT genotypes Q
- known segregation model  $P(Q/X,\lambda)$ 
  - based on recombination, map function
- unknown aspects of phenotype model P(Y|Q)
  - distribution shape (could be assumed normal)
  - parameters  $\theta$ ,  $\sigma^2$ , if used (could be non-parametric)

### Interval Mapping Mixture (BC)

- what shape histogram does trait Y have?
  - shape P(Y|Qq) with genotype Qq
  - shape P(Y|QQ) with genotype QQ
- is the QTL at a given locus  $\lambda$ ?
  - no QTL: P(Y|Qq) = P(Y|QQ)
  - yes QTL: mixture if genotype unknown
- mixture of shapes across possible genotypes

$$P(Y|X,\lambda) = P(Qq|X,\lambda)P(Y|QQ) + P(QQ|X,\lambda)P(Y|QQ)$$

 $P(Y|X,\lambda) = \text{sum over possible } Q \text{ of } P(Q|X,\lambda)P(Y|Q)$ 

#### Interval Mapping Likelihood

likelihood: basis for scanning the genome

$$L(\lambda|Y)$$
 = product of  $P(Y_i|X_i,\lambda)$  over  $i=1,\ldots,n$ 

$$L(\lambda|Y) = \text{product}_i \text{ of } \text{sum}_Q \text{ of } P(Q|X_i,\lambda)P(Y_i/Q)$$

• problem: unknown phenotype model P(Y/Q)

- parametric 
$$P(Y/Q) = Normal(Q\theta, \sigma^2)$$

- semi-parametric 
$$P(Y/Q) = f(Y)\exp(Q\beta)$$

- non-parametric 
$$P(Y/Q) = F_Q(Y)$$
 unspecified

#### Limitations of Parametric Models

- measurements not normal
  - counts (e.g. number of tumors)
  - survival time (e.g. days to flowering)
- false positives due to miss-specified model
  - check model assumptions?
- want more robust estimates of effects
  - parametric: only center (mean), spread (SD)
  - shape of distribution may be important

#### Semi-parametric QTL

- phenotype model  $P(Y/Q) = f(Y) \exp(Q\beta)$
- test for QTL at locus  $\lambda$ 
  - $-\beta = 0$  implies P(Y/QQ) = P(Y/Qq)
- includes many standard phenotype models

normal 
$$P(Y/Q) = N(\mu_Q, \sigma^2)$$

Poisson 
$$P(Y/Q) = Poisson(\mu_Q)$$

exponential, binomial, ...

(exercise: verify these are special cases for BC)

#### Semi-parametric Empirical Likelihood

- phenotype model  $P(Y/Q) = f(Y)\exp(Q\beta)$
- non-parametric empirical likelihood (Owen 1988)

```
L(\lambda, \beta, f|Y, X) = \operatorname{product}_{i} \left[ \operatorname{sum}_{Q} P(Q|X_{i}, \lambda) f(Y_{i}) \exp(Q\beta) \right]
= \operatorname{product}_{i} f(Y_{i}) \left[ \operatorname{sum}_{Q} P(Q|X_{i}, \lambda) \exp(Q\beta) \right]
= \operatorname{product}_{i} f(Y_{i}) w(X_{i}|\lambda, \beta)
```

- weights  $w(X_i|\lambda,\beta)$  rely only on flanking markers
- "point mass" at each measured phenotype
  - subject to constraints to be a distribution  $sum_i P(Y_i/Q) = 1$  for all possible genotypes Q
- profile likelihood:  $L(\lambda|Y,X) = \max_{\beta,f} L(\lambda,\beta,f|Y,X)$

#### Semi-parametric Formal Tests

- clever trick: use partial empirical LOD
  - Zou, Fine, Yandell (2001 *Biometrika*)
  - $LOD(\lambda) \approx \log_{10} L(\lambda|Y,X)$
- has same formal behavior as parametric LOD

- single locus test: approximately  $\chi^2$  with 1 d.f.

genome-wide scan: can use same critical values

– permutation test: possible with some work

- can estimate cumulative distributions
  - nice properties (converge to Gaussian processes)

#### Non-parametric Methods

- phenotype model  $P(Y/Q) = F_Q(Y)$
- Kruglyak, Lander (1995)
  - formal rank-sum test, replacing Y by rank(Y)
  - claimed no estimator of QTL effects
- estimators are indeed possible
  - semi-parametric shift (Hodges-Lehmann)
    - Zou (2001) thesis
  - non-parametric cumulative distribution
    - Fine, Zou, Yandell (2001 in review)

#### Rank-Sum QTL Methods

- phenotype model  $P(Y/Q) = F_Q(Y)$
- replace Y by rank(Y) and perform IM
  - extension of Wilcoxon rank-sum test
  - fully non-parametric
- Hodges-Lehmann estimator of shift β
  - most efficient if  $P(Y/Q) = F(Y+Q\beta)$
  - find  $\beta$  that matches medians
    - problem: genotypes Q unknown
    - resolution: Haley-Knott (1992) regression scan

#### Non-Parametric QTL CDFs

- estimate non-parametric phenotype model
  - cumulative distributions  $F_Q(y) = P(Y \le y | Q)$
  - can use to check parametric model validity
- basic idea:

$$P(Y \le y / X, \lambda) = \sup_{Q} P(Q / X, \lambda) F_{Q}(y)$$

- depends on X only through flanking markers
- few possible flanking marker genotypes
  - 4 for BC, 9 for F2, etc.

#### Finding NP QTL CDFs

- cumulative distributions  $F_Q(y) = P(Y \le y | Q)$
- $F = \{F_Q, \text{ all possible QT genotypes } Q\}$ - BC:  $F = \{F_{QQ} = P(Y \le y/QQ), F_{Qq} = P(Y \le y/Qq)\}$
- find F to minimize over all phenotypes y  $\operatorname{sum}_{i} \left[ I(Y_{i} \leq y) \operatorname{sum}_{Q} P(Q/X, \lambda) F_{Q}(y) \right]^{2}$
- looks complicated, but simple to implement

#### Non-parametric CDF Properties

- readily extended to censored data
  - time to flowering for non-vernalized plants
- nice large sample properties
  - estimates of  $F(y) = \{F_Q(y)\}$  jointly normal
  - point-wise, experiment-wise confidence bands
- more robust to heavy tails and outliers
- can use to assess parametric assumptions

#### Combining Multiple Crosses

- combining inbred lines in search of QTL
  - most IM methods limited to single cross
  - animal model largely focuses on polygenes
  - individuals no longer independent given Q
- recent work in plant sciences
  - Bernardo (1994) Wright's relationship matrix A
  - Rebai et al. (1994) regression method
  - Xu Atchley (1995) IBD & A for QTLs & polygenes
  - Liu Zeng (2000) multiple inbred lines, fixed effect IM
  - Zou, Yandell, Fine (2001 Genetics) power, threshold

#### Thresholds for Multiple Crosses

#### permutation test

- Churchill Doerge (1994); Doerge Churchill (1996)
- computationally intensive
- difficult to compare different designs

#### theoretical approximation

- Lander Botstein (1989) Dupuis Siegmund (1999)
  - single cross, dense linkage map
- Rebai et al. (1994, 1995) approximate extension
  - Piepho (2001) improved calculation of efficiency
- Zou, Yandell, Fine (2001) extend original theory

#### Extension of Threshold Theory

- likelihood for multiple crosses of inbred lines with *m* founders
  - approximately  $\chi^2$  with m degrees of freedom
  - genome-wide threshold theory
    - extends naturally based on Ornstein-Uhlenbeck
  - threshold based on dense or sparse linkage map
- some calculations based on BC1, F2, BC2
  - Liu Zeng (2000) ECM method to estimate

$$Y_{ij} \sim Normal(Q_{ij}\theta_j + \mu_j, \sigma_j^2), j = cross$$

# Bayesian Interval Mapping for Inbred Lines

- return to single inbred cross
  - parametric phenotype model (normal)
- connection between likelihood and posterior
  - maximize L, sample from posterior
- how many QTL?
  - model selection: number of QTL as unknown
- learning from data

#### Bayesian Interval Mapping

recall likelihood for inbred lines

$$L(\lambda|Y) = \operatorname{product}_i \left[ \operatorname{sum}_Q P(Q|X_i,\lambda) P(Y_i/Q,\theta) \right]$$

- Bayesian posterior idea
  - sample unknown data instead

$$P(\lambda, Q, \theta/Y, X) = [\operatorname{product}_{i} P(Q_{i}|X_{i}, \lambda) P(Y_{i}/Q_{i}, \theta)]P(\lambda, \theta|X)$$

- marginal summaries provide key information
  - loci:  $P(\lambda/Y,X) = \operatorname{sum}_{O,\theta} P(\lambda,Q,\theta/Y,X)$
  - effects:  $P(\theta/Y,X) = \sup_{Q,\lambda} P(\lambda,Q,\theta/Y,X)$
- Satagopan et al. (1996 Genetics)

#### Brassica napus Data

- 4-week & 8-week vernalization effect
  - log(days to flower)
- genetic cross of
  - Stellar (annual canola)
  - Major (biennial rapeseed)
- 105 F1-derived double haploid (DH) lines
  - homozygous at every locus (QQ or qq)
- 10 molecular markers (RFLPs) on LG9
  - two QTLs inferred on LG9 (now chromosome N2)
  - corroborated by Butruille (1998)
  - exploiting synteny with *Arabidopsis thaliana*

#### Brassica 4- & 8-week Data







## Brassica Data LOD Maps



## Brassica Sampled Summaries



#### Collinearity of QTLs

- multiple QT genotypes are correlated
  - QTL linked on same chromosome
  - difficult to distinguish if close
- estimates of QT effects are correlated
  - poor identifiability of effects parameters
  - correlations give clue of how much to trust
- which QTL to go after in breeding?
  - largest effect?
  - may be biased by nearby QTL

#### Brassica effect Correlations



#### How many (detectable) QTL?

• build m = number of QTL into model

$$P(\lambda,Q,\theta/Y,X,m) = P(Q|X,\lambda,m) P(Y/Q,\theta,m)P(\lambda,\theta|X,m)$$

- prior on number of QTL
  - Poisson or exponential seem to work best
  - uniform can push posterior to more complicated model
- model selection
  - Bayes factors (Jaya Satagopan talk)
  - sample *m* as part of a bigger model
- many, many QTL affect most any trait
  - how many detectable with these data?
  - limits to useful detection (Bernardo 2000)

#### Sampling the Number of QTL

• almost analogous to stepwise regression

$$P(Y_i/Q_i,\theta)$$
:  $Y_i = \mu + Q_{i1}\alpha_1 + \ldots + Q_{im}\alpha_m + e_i$ 

- but regressors (QT genotypes) are unknown
- linked loci = collinear regressors = correlated effects
- use reversible jump MCMC to change *m* 
  - bookkeeping helps in comparing models
  - adjust to change of variables between models
  - Green (1995); Richardson Green (1997)
  - other approaches out there these days...

#### Model Selection in Regression

- consider known regressors (X = markers)
  - models with 1 or 2 regressors
- jump between models
  - centering regressors simplifies calculations

$$m = 1 : Y_i = \mu + \alpha (X_{i1} - \overline{X}_1) + e_i$$

$$m = 2: Y_i = \mu + \alpha_1 (X_{i1} - \overline{X}_1) + \alpha_2 (X_{i1} - \overline{X}_1) + e_i$$

## Regressor Slope Estimators

recall least squares estimators of slopes note relation of  $\alpha_1$  in model 2 to  $\alpha$  in model 1

$$m=1$$
:  $\hat{\alpha} = \frac{c_{1Y} s_Y}{s_1}$ ,  $c_{1Y} = \text{corr}(X_1, Y), s_Y = \text{SD}(Y),...$ 

$$m = 2$$
:  $\hat{\alpha}_1 = \frac{(c_{1Y} - c_{12}c_{2Y})s_Y}{s_1} = \hat{\alpha} - \frac{c_{12}c_{2Y}s_Y}{s_1}$ 

$$m = 2: \quad \hat{\alpha}_2 = \frac{(c_{2Y} - c_{12}c_{1Y})s_Y}{s_2}$$

#### Geometry of Reversible Jump



#### Reversible Jump Sequence



#### QT additive Reversible Jump

a short sequence

first 1000 with m<3



#### Credible Set for additive

90% & 95% sets based on normal

regression line corresponds to slope of updates



### Jumping QTL number & loci



#### #QTL for *Brassica* 8-week



October 2001

Jackson Labs Workshop © Brian S. Yandell

#### Bayes Factor Sensitivity

- Bayes factors computed from RJ-MCMC
  - posterior P(m/Y,X) affected by prior P(m)
  - − BF insensitive to prior

$$BF_{m,m+1} = \frac{P(m/Y,X)/P(m)}{P(m+1/Y,X)/P(m+1)}$$

- exponential, Poisson, uniform
- -BF sensitivity to prior variance on effects  $\theta$ 
  - prior variance should reflect data variability
  - resolved by using hyperpriors
    - automatic algorithm; no need for tuning by user

#### How To Infer Loci?

- if *m* is known, use fixed MCMC
  - histogram of loci
  - issue of bump hunting
- combining loci estimates in RJ-MCMC
  - some steps are from wrong model
    - too few loci (bias)
    - too many loci (variance/identifiability)
  - condition on number of loci
    - subsets of Markov chain

# Brassica 8-week Data locus MCMC with *m*=2



## Raw Histogram of loci



### Conditional Histograms



October 2001

Jackson Labs Workshop © Brian S. Yandell

### A Complicated Example

- simulated 200 individuals (Stephens, Fisch 1998)
- 8 QTL, heritability = 50%; detected 3 QTL
- increase heritability to 97% to detect all 8

| <b>QTL</b> | <u>chr</u> | <u>loci</u> | <u>effect</u> | 04 7                                      |
|------------|------------|-------------|---------------|-------------------------------------------|
| 1          | 1          | 11          | -3            |                                           |
| 2          | 1          | <b>50</b>   | <b>-5</b>     | frequency in %                            |
| 3          | 3          | <b>62</b>   | +2            | ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا     |
| 4          | 6          | 107         | -3            | dne – – – – – – – – – – – – – – – – – – – |
| 5          | 6          | 152         | +3            | frec                                      |
| 6          | 8          | 32          | <b>_4</b>     | 7                                         |
| 7          | 8          | <b>54</b>   | +1            |                                           |
| 8          | 9          | 195         | +2            | 7 8 9 10 11 12 13                         |
|            |            |             |               | number of QTL                             |

#### Best Loci Model by Chromosome

- notice which chromosomes have persistent loci
- best pattern found 42% of the time

#### **Chromosome**

```
        m
        1
        2
        3
        4
        5
        6
        7
        8
        9
        10
        Count of 8000

        8
        2
        0
        1
        0
        0
        2
        0
        2
        1
        0
        3371

        9
        3
        0
        1
        0
        0
        2
        0
        2
        1
        0
        751

        7
        2
        0
        1
        0
        0
        2
        0
        1
        0
        377

        9
        2
        0
        1
        0
        0
        2
        0
        2
        1
        0
        218

        9
        2
        0
        1
        0
        0
        2
        0
        2
        0
        198
```

#### Reanalysis of other Brassica data

- Brassica napus
  - 19 chromosomes, 480 markers
  - infer 4 QTL (2 linked, 2 unlinked)
- Brassica rapa
  - 9 chromosomes
  - infer 4 QTL with added *FLC* marker
    - 2 tightly linked in repulsion
- Ferreira et al. (1994), Kole et al. (1997, 2001)

#### Computational Issues

- more complicated when m > 2
  - avoid matrix inverses: Cholesky decomposition
  - multivariate updates: all effects, all loci at once
- improvements in sampling efficiency
  - pre-burnin to overshoot *m*, burnin to wash out
  - occasional long distance loci update
- bump hunting to sort out loci
- Gaffney (2001 PhD thesis)

#### Bayesian IM Software

- General MCMC software
  - U Bristol links
    - http://www.stats.bris.ac.uk/MCMC/pages/links.html
  - BUGS (Bayesian inference Using Gibbs Sampling)
    - http://www.mrc-bsu.cam.ac.uk/bugs/

#### Our MCMC software for QTLs

- our C code using LAPACK
  - ftp://ftp.stat.wisc.edu/pub/yandell/revjump.tar.gz
- our QTL Cart module
  - Bmapqtl 3rd party module (Windows available)
  - R post processing

#### QTL References

- Bernardo R (2000) What if we knew all the genes for a quantitative trait in hybrid crops? *Crop Sci.* (submitted).
- Fine JP, Zou F, Yandell BS (2001) Nonparametric estimation of mixture distributions with known mixture proportions. (submitted).
- Kruglyak L, Lander ES (1995) A nonparametric approach for mapping quantitative trait loci. *Genetics 139*: 1421-1428.
- Liu YF, Zeng ZB (2000) A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines. *Genet Res* 75: 345-355.
- Zou F (2001) Efficient and robust statistical methodologies for quantitative trait loci analysis. *PhD thesis, UW-Madison Statistics*.
- Zou F, Fine JP, Yandell BS (2001) On empirical likelihood for a semiparametric mixture model. *Biometrika 00*: 000-000.
- Zou F, Yandell BS, Fine JP (2001) Threshold and power calculations for QTL analysis of combined lines. *Genetics 00*: 000-000.

#### QTL MCMC References

- Gaffney PJ (2001) An efficient reversible jump Markov chain Monte Carlo approach to detect multiple loci and their effects in inbred crosses. *PhD thesis*, *UW-Madison Statistics*.
- Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. *Genetics* 144: 805-816.
- Satagopan JM, Yandell BS (1996) Estimating the number of quantitative trait loci via Bayesian model determination. *Proc JSM Biometrics Section*.
- Sillanpaa MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data., *Genetics* 148: 1373-1388.
- Stephens DA, Fisch RD (1998) Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo. *Biometrics* 54: 1334-1347.

# Reversible Jump MCMC References

- Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. *Biometrika* 82: 711-732.
- Kuo L, Mallick B (1998) Variable selection for regression models. Sankhya, Series B, Indian J Statistics 60: 65-81
- Mallick BK (1998) Bayesian curve estimation by polynomial of random order. *J Statistical Planning and Inference 70*: 91-109
- Richardson S, Green PJ (1997) On Bayesian analysis of mixture with an unknown of components. *J Royal Statist Soc B* 59: 731-792.