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Goals

away from normality how many QTL?

e fewer assumptions * Inferring the number
o extended phenotypes ¢ sampling all QT loci
e check robustness o estimating heritability
 multiple crosses
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Interval Mapping Basics

 known measurements
— phenotypic traity
— markersX (and linkage map)
e unknown guantities
— QT locus (or loci)
— QT genotypes)
» known segregation modB(Q|X,A)
— based on recombination, map function

« unknown aspects of phenotype moHEY|Q)
— distribution shape (could be assumed normal)
— parameter§, 02, if used (could be non-parametric)

October 2001 Jackson Labs Workshop © Brian S. Yandell



Interval Mapping Mixture (BC)

 what shape histogram does thaitave?
— shapdP(Y|Qq) with genotype Qg
— shapdP(Y|QQ) with genotype QQ
e Isthe QTL at a given locus?
—no QTL: P(Y|Qq) =P(Y|QQ)
—yes QTL: mixture If genotype unknown
* mixture of shapes across possible genotypes

P(YIX,A) = P(QQIX,A)P(YIQQ) + P(QQIXA)P(YIQQ)
P(Y|X,A) = sum over possible Q of P(Q|X,A)P(Y|Q)
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Interval Mapping Likelihood

o likelihood: basis for scanning the genome
L(A]Y) = product of P(Y;|X,A) overi =1,...n
L(A[Y) = productof sum, of P(Q[X;,A)P(Y;|Q)

e problem: unknown phenotype mod#ly|Q)

— parametric
— semi-parametric
— non-parametric

(Y
(Y

D(Y

Q) = Normal(Q8, ¢?)

Q) =1(Y)expQp)
Q) = Fq(Y) unspecified
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L imitations of Parametric Models

e measurements not normal
— counts €.g. number of tumors)
— survival time €.g. days to flowering)

 false positives due to miss-specified model
— check model assumptions?

e want more robust estimates of effects

— parametric: only center (mean), spread (SD)
— shape of distribution may be important
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Semi-parametric QTL

* phenotype mode?(Y|Q) =1(Y)expQp)
e test for QTL at locua
— [ = 0impliesP(Y|QQ) =P(Y|Qq)
 Includes many standard phenotype models
normal P(Y|Q) = N(1,0?)
Poisson P(Y|Q) = Poisson(lp)
exponential, binomial, ...
(exercise: verify these are special cases for BC)
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Semi-parametric Empirical Likelihood

* phenotype modéb(Y|Q) = f(Y)expQp)

* non-parametric empirical likelihog®wen 1988)
L(A,B,1]Y,X) = product; [sumg, P(Q[X;, A)I(Y;)exp(Qp)]
= product; f(Y;) [sumg P(QIX;.A)exp(QB)]
= product; f(Y;) WX |A,B)
— weightsw(Xi|A,3) rely only on flanking markers
e “point mass” at each measured phenotype
— Subject to constraints to be a distribution
sum P(Y;|Q) = 1 for all possible genotyp€}
* profile likelihood:L(AJY,X) = max;; L(A,B,f]Y,X)
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Semi-parametric Formal Tests

 clever trick: use partial empirical LOD
— Zou, Fine, Yandell (200Biometrika)
— LOD(\) = log,, L(A|Y,X)
* has same formal behavior as parametric LOD

— single locus test: approximatety with 1 d.f.
— genome-wide scan: can use same critical values
— permutation test: possible with some work

e can estimate cumulative distributions
— nice properties (converge to Gaussian processes)
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Non-parametric Methods

* phenotype mode?(Y|Q) = Fy(Y)

o Kruglyak, Lander (1995)
— formal rank-sum test, replacingoy rank{)
— claimed no estimator of QTL effects

e estimators are indeed possible

— semi-parametric shift (Hodges-Lehmann)
e Zou (2001) thesis

— non-parametric cumulative distribution
e Fine, Zou, Yandell (2001 in review)
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Rank-Sum QTL Methods

* phenotype mode?(Y|Q) = Fy(Y)

o replaceY by rank{) and perform IM
— extension of Wilcoxon rank-sum test
— fully non-parametric

 Hodges-Lehmann estimator of sHift
— most efficient IfP(Y|Q) = F(Y+Q[)

— find 3 that matches medians
e problem:  genotype® unknown

 resolution: Haley-Knott (1992) regression scan
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Non-Parametric QTL CDFs

e estimate non-parametric phenotype model
— cumulative distributiongq(y) = P(Y <Yy |Q)
— can use to check parametric model validity

 basic idea:
P(Y <Y [XA) = sumg P(QIXA)F(Y)
— depends oiX only through flanking markers

— few possible flanking marker genotypes
e 4 for BC, 9 for F2, etc.
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Finding NP QTL CDFs

- cumulative distribution&(y) = P(Y<y|Q)
» F={F,, all possible QT genotyp&y

— BC:F = {Foo=P(Y=y|QQ), Fo=P(Y= y|QQ)}
 find F to minimize over all phenotypgs

sum; [I(Y; < y) — sumy, P(QIXA)Fo(Y)]?
* looks complicated, but simple to implement
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Non-parametric CDF Properties

* readily extended to censored data
— time to flowering for non-vernalized plants

* nice large sample properties
— estimates ofF(y) = {F(y)} Jointly normal
— point-wise, experiment-wise confidence bands

 more robust to heavy tails and outliers
e can use to assess parametric assumptions
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Combining Multiple Crosses

e combining inbred lines in search of QTL

— most IM methods limited to single cross
— animal model largely focuses on polygenes
— Individuals no longer independent given

e recent work in plant sciences

— Bernardo (1994) Wright's relationship matAx

— Rebaiet al. (1994) regression method

— Xu Atchley (1995) IBD &A for QTLs & polygenes

— Liu Zeng (2000) multiple inbred lines, fixed effect IM
— Zou, Yandell, Fine (200Genetics) power, threshold
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Thresholds for Multiple Crosses

e permutation test

— Churchill Doerge (1994); Doerge Churchill (1996)
— computationally intensive
— difficult to compare different designs

 theoretical approximation

— Lander Botstein (1989) Dupuis Siegmund (1999)
 single cross, dense linkage map

— Rebaiet al. (1994, 1995) approximate extension
* Piepho (2001) improved calculation of efficiency

— Zou, Yandell, Fine (2001) extend original theory
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Extension of Threshold Theory

o likelihood for multiple crosses of inbred
lines withm founders

— approximately? with m degrees of freedom

— genome-wide threshold theory
« extends naturally based on Ornstein-Uhlenbeck

— threshold based on dense or sparse linkage map

e some calculations based on BC1, F2, BC2
— Liu Zeng (2000) ECM method to estimate
Y;; ~ Normal(Q;;6,+1;, ;2), j = cross
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Bayesian Interval Mapping
for Inbred Lines

e return to single inbred cross
— parametric phenotype model (normal)

e connection between likelihood and posterior
— maximizelL, sample from posterior

 how many QTL?
— model selection: number of QTL as unknown

* |earning from data
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Bayesian Interval Mapping

 recall likelihood for inbred lines
L(A[Y) = product; [sumg P(Q[X;,A)P(Y;|Q,0)]
« Bayesian posterior idea
— sample unknown data instead
P(A,Q,8]Y,X) = [product; P(Q;[X;,A) P(Y;|Q;,8)]P(A,B[X)
— marginal summaries provide key information
e |OCI: P(AlY,X) = SUMy g P(A,Q,0]Y,X)
« effects: P(6]Y,X) = sum,, P(A,Q,6]Y,X)
— Satagopaset al. (1996Genetics)
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Brassica napus Data

e 4-week & 8-week vernalization effect
— log(days to flower)

e genetic cross of
— Stellar (annual canola)
— Major (biennial rapeseed)

105 F1-derived double haploid (DH) lines
— homozygous at every locu9Q or qq)

* 10 molecular markers (RFLPs) on LG9

— two QTLs inferred on LG9 (now chromosome N2)
— corroborated by Butruille (1998)
— exploiting synteny witlArabidopsis thaliana
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Brassica 4—0& 8-week Data
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B_rass/ca Data LOD Maps
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Brassica Sampled Summaries
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Collinearity of QTLS

 multiple QT genotypes are correlated
— QTL linked on same chromosome
— difficult to distinguish if close

o estimates of QT effects are correlated
— poor identifiability of effects parameters
— correlations give clue of how much to trust

e which QTL to go after in breeding?
— largest effect?
— may be biased by nearby QTL
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How many (detectable) QTL?

e build m= number of QTL into model
P(A,Q,8]Y,X,m) = P(QIX,A,m) P(Y|Q,6,mP(A,8)X,m)
— prior on number of QTL

» Poisson or exponential seem to work best
 uniform can push posterior to more complicated model

 model selection
— Bayes factors (Jaya Satagopan talk)
— samplan as part of a bigger model

 many, many QTL affect most any trait
— how many detectable with these data?
— limits to useful detection (Bernardo 2000)
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Sampling the Number of QTL

« almost analogous to stepwise regression
P(Yi|Q;.0): Yi =t Quant ..+ Qpant §

— but regressors (QT genotypes) are unknown

— linked loci = collinear regressors = correlated effects
e use reversible jump MCMC to change

— bookkeeping helps in comparing models

— adjust to change of variables between models

— Green (1995); Richardson Green (1997)

— other approaches out there these days...
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Model Selection in Regression

e consider known regressors £ markers)
— models with 1 or 2 regressors

e jump between models
— centering regressors simplifies calculations
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Regressor Slope Estimators

recall |east squares estimators of slopes
note relation of o, inmodel 2 to a in moddl 1

m=1. a-= ClngY ,  Cy =corr(X,Y),s, =SD(Y),...
m=2: 4, = (Cy —CCyy)Sy - § - CiaCoyv Sy

S S
m=2: 4. = (Cy —CCy)Sy

2

S

October 2001 Jackson Labs Workshop © Brian S. Yandell 30



0.6 0.8

-~ w

0.0 0.2

Geometry of Reversible Jump

Move Between Models

Reversible Jump Sequence

e 0)
_ S
(o)
_ S
c21=0.7 _
_ 152 _
m=2 ~
_ x d_
o
B . . v S ST
I I m:]- I I I I I I I
00 02 04 06 0.8 00 02 04 06 0.8
o, a,
October 2001 Jackson Labs Workshop © Brian S. Yandell 31



QT addi ti ve Reversible Jump

a short sequence first 1000 with m<3
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Credible Set for addi ti ve
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Jumping QTL nunber & | oci
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Bayes Factor Senditivity

* Bayes factors computed from RJ-MCMC
— posterioPP(m|Y,X) affected by prioP(m)
— BF Insensitive to prior
BE = P(m|Y,X)/P(m)
T P(m+1Y,X)/P(m+1)
e exponential, Poisson, uniform

— BF sensitivity to prior variance on effeds
e prior variance should reflect data variability

 resolved by using hyperpriors

— automatic algorithm; no need for tuning by user
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How To Infer Loci?

e iIf mis known, use fixed MCMC
— histogram of loci
— Issue of bump hunting

e combining loci estimates in RJ-MCMC

— some steps are from wrong model
 too few loci (bias)
« too many loci (variance/identifiability)

— condition on number of loci
e subsets of Markov chain
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Raw Histogram of loci
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Conditional Histograms
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A Complicated Example

« simulated 200 individuals (Stephens, Fisch 1998)
8 QTL, heritability = 50%; detected 3 QTL

* Increase heritability to 97% to detect all 8

QTL o o efect o

1 1 11 -3

2 1 50 5 8-

3 3 62 +2 ¢C>,‘ _

4 6 107 -3 Eg’_ S

5 6 152 +3 £ _

6 8 32 4 )

/ 8 54 +1 R e T"T‘
3 9 195 +2 7 8 9 10 11 12 13

number of QTL
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Best Loci Model by Chromosome

* notice which chromosomes have persistent loci
* best pattern found 42% of the time

Chromosome
ml 2 3 4 56 7 8 9 10 Countof 8000
82 0 1 002 02 1 0 3371
93 0 1 002 02 1 0 7951
/72 0 1 002 01 1 0 377
92 0 1 002 02 1 0 218
92 0 1 0 03 02 1 0 218
92 0 1 0 02 02 2 0 198
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Reanalysis of other Brassica data

e Brassica napus

— 19 chromosomes, 480 markers
— infer 4 QTL (2 linked, 2 unlinked)

e Brassicarapa

— 9 chromosomes

— infer 4 QTL with addedrLC marker
o 2 tightly linked in repulsion

* Ferreiraet al. (1994), Koleet al. (1997, 2001)
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Computational |1ssues

 more complicated whem > 2
— avoid matrix inverses: Cholesky decomposition
— multivariate updates: all effects, all loci at once
* Improvements in sampling efficiency
— pre-burnin to overshoot, burnin to wash out
— occasional long distance loci update
 bump hunting to sort out locl

e Gaffney (2001 PhD thesis)
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Bayesian IM Software

e General MCMC software
— U Bristol links

e http://www.stats.bris.ac.uk/MCMC/pages/links.html
— BUGS (Bayesian inference Using Gibbs Sampling)

 http://www.mrc-bsu.cam.ac.uk/bugs/

 Our MCMC software for QTLs

— our C code using LAPACK
o ftp://ftp.stat.wisc.edu/pub/yandell/revjump.tar.gz

— our QTL Cart module
« Bmapqtl 3rd party module (Windows available)
* R post processing
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