Extending the Phenotype Model

1. limitations of parametric models 2-9
— diagnostic tools for QTL analysis
—  QTL mapping with other parametric "families"
— quick fixes via data transformations

2. semi-parametric approaches 10-24
3. non-parametric approaches 25-31

e bottom line for normal phenotype model
— may work well to pick up loci
— may be poor at estimating effects if data not normal
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1. limitations of parametric models

e measurements not normal

— categorical traits: counts (e.g. number of tumors)
 use methods specific for counts
 binomial, Poisson, negative binomial

— traits measured over time and/or space
e survival time (e.g. days to flowering)
 developmental process; signal transduction between cells
e TP Speed (pers. comm.); Ma, Casella, Wu (2002)
o false positives due to miss-specified model

— how to check model assumptions?

e Want more robust estimates of effects

— parametric: only center (mean), spread (SD)
— shape of distribution may be important
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what If data are far away from ideal?
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diagnostic tools for QTL
(Hackett 1997)

o illustrated with BC, adapt regression diagnostics

« normality & equal variance (fig. 1)
— plot fitted values vs. residuals--football shaped?
— normal scores plot of residuals--straight line?

« number of QTL.: likelihood profile (fig. 2)
— flat shoulders near LOD peak: evidence for 1 vs. 2 QTL

 genetic effects
— effect estimate near QTL should be (1-2r)a
— plot effect vs. location
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marker density & sample size: 2 QTL

modest sample size large sample size
dense vs. sparse markers dense vs. sparse markers
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. _ FIGURE 4,— M(x) for a normal single-QTL assumed model
FIGURE 1.—The two-QTL true model with a QTL at 30 cM under a two-QTL true model when both of the genes lie on

and a second QTL of somewhat smaller effect at 70 cM (true the chromosome under study. This scenario was originally
locations indicated by A). A normal single-QTL model is as- depicted in Figure 1. With dense markers (thin curve), M(x)
sumed and the LOD score for 100 simulated individuals is peaks at exactly 30 cM, the location of the QTL of stronger
given for dense markers (thin curve) and markers at 20-cM effect. With nondense markers at 20-cM intervals, M(x) peaks
intervals (bold curve). at 47 cM in an incorrect interval (bold curve). Note the simi-
: : larity in shape between the LODs in Figure 1 and the limitin
Wright Kong (1997 Genetics) forme depicred here 8 8
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robust locus estimate for
non-normal phenotype

large sample size &
dense marker map:
no need for normality

but what happens for
modest sample sizes?

Wright Kong (1997 Genetics)
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FIGURE 2.—Misspecification of the phenotype model. (A)
The assumed distributions f, and f;. (B) The true distributions
ho, k. (C) The expected log-likelihood across the chromo-
some when the markers are dense. Despite the misspecifica-
tion, the function is maximized at exactly the true location
x* = 30 cM (indicated by A).



What shape Is your histogram?

 histogram conditional on known QT genotype
— pr(Y|qq, 8 model shape with genotype qq
— pr(Y|Qq, 6 model shape with genotype Qg
— pr(Y|QQ, ) model shape with genotype QQ

e Isthe QTL at a given locus A?

— no QTL pr(Y|aq, ) = pr(Y|Qq,6) = pr(Y|QQ, &)

— QTL present  mixture if genotype unknown
e mixture across possible genotypes

— sumover Q = qq, Qg, QQ
— Pr(y[X,4,6) = sumg, pr(Q|Xx,4) pr(Y|Q,o
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Interval mapping likelihood

e likelihood: basis for scanning the genome

— product over1 =1

..... N

Individuals

L(&,4|Y) = product; pr(Y;|X;,4)
= product; sumg, pr(Q[X;,4) pr(Y;|Q,6)
e problem: unknown phenotype model

— parametric
— semi-parametric
— non-parametric

or(Y
or(Y

or(Y

Q,0) =1(Y | 1, Gg, %)
Q.6) =1(Y) exp(Y )
Q,6) = Fq(Y)

Pheno NCSU QTL II: Yandell © 2004



useful models & transformations

binary trait (yes/no, hi/lo, ...)
— map directly as another marker
— categorical: break into binary traits?
— mixed binary/continuous: condition on'Y > 0?

« known model for biological mechanism

— counts Poisson
— fractions binomial
— clustered negative binomial
 transform to stabilize variance
— counts VY = sgrt(Y)
— concentration log(Y) or log(Y+c)
— fractions arcsin(\Y)
 transform to symmetry (approx. normal)
— fraction log(Y/(1-Y)) or log((Y+c)/(1+c-Y))

« empirical transform based on histogram
— watch out: hard to do well even without mixture
— probably better to map untransformed, then examine residuals
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2. semi-parametric QTL
* phenotype model pr(Y|Q,6) = f(Y)exp(Y5,)

— unknown parameters 8= (f, /)
e f(Y)iIsa (unknown) density if there isno QTL

* = Fyg Pog Foo)
* exp(Y/,) tilts” f based on genotype Q and phenotype Y

e testfor QTL at locus A
— fo=0forall Q, or pr(Y|Q,6) =1(Y)
 Includes many standard phenotype models

normal pr(Y|Q,6) = N(Gq,5?)
Poisson pr(Y|Q, &) = Poisson(Gy)
exponential, binomial, ..., but not negative binomial
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QTL for binomial data

 approximate methods: marker regression

— Zeng (1993,1994); Visscher et al. (1996); Mcintyre et
al. (2001)

e Interval mapping, CIM
— Xu Atchley (1996); Yi Xu (2000)
— Y ~ binomial(1,7), = depends on genotype Q

- pr(Y|Q) = (m)" (1 - my)*™"
— substitute this phenotype model in EM iteration

e Or just map it as another marker!
— but may have complex
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EM algorithm for binomial QTL

o E-step: posterior probability of genotype Q
pr(Q | X;, A)(7y)" (1 —75)" "

pr(Q|Y;, Xi, 4, 74) =
sumg, of numerator
* M-step: MLE of binomial probability 7,
_sum, Y,pr(Q[Y;, X;, 4, 7,)

P sum, pr(Q|Y., X;, 4, 7,)
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threshold or latent variable 1dea

« "real", unobserved phenotype Z is continuous

» observed phenotype Y Is ordinal value
— nolyes; poor/fair/good/excellent
- pr(Y =]) =pr(tj; <Z<71)
— pr(Y <J)=pr(£< 1)
 use logistic regression idea (Hackett Weller 1995)
— substitute new phenotype model in to EM algorithm
— 0Or use Bayesian posterior approach
— extended to multiple QTL (papers in press)

pr(Y < Q) =pr(Z <7;|Q) = [L+exp(u +Go — 7,)]
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quantitative & qualitative traits

* Broman (2003): spike In phenotype
— large fraction of phenotype has one value
— map binary trait (is/is not that value)
— map continuous trait given not that value

e multiple traits
— Williams et al. (1999)

* multiple binary & normal traits
e variance component analysis

— Corander Sillanpaa (2002)

« multiple discrete & continuous traits
o latent (unobserved) variables
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e PolIsson counts

* negative binomial

e exponential

Pheno

other parametric approaches

— Mackay Fry (1996)

e trait = bristle number

— Shepel et al (1998)

e trait = tumor count

Abdominal Bristle Number

— Lan et al. (2001)
e number of tumors

Sternopleural Bristle Number

— Jansen (1992)
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semi-parametric empirical likelihood
* phenotype model pr(Y|Q,6) = f(Y) exp(Y5,)

— “point mass” at each measured phenotype Y;
— subject to distribution constraints for each Q:

1 =sum; £(Y;) exp(Yifo)
* non-parametric empirical likelihood (Owen 1988)
L(6,A]Y,X) = product; [sumq pr(Q|X;,4) f(Y;) exp(Y;5)]

= product; f(Y;) [sumg pr(Q[X;.4) exp(Y; /)]
= product; f(Y;) w;
— weights w; = w(Y;|X;,5,A) rely only on flanking markers
4 possible values for BC, 9 for F2, etc.

o profile likelihood: L(4]Y,X) = max, L(6,4]Y,X)
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semi-parametric formal tests

partial empirical LOD
— Zou, Fine, Yandell (2002 Biometrika)

conditional empirical LOD
— Zou, Fine (2003 Biometrika); Jin, Fine, Yandell (2004)

has same formal behavior as parametric LOD

— single locus test: approximately 2 with 1 d.f.
— genome-wide scan: can use same critical values
— permutation test: possible with some work

can estimate cumulative distributions
— nice properties (converge to Gaussian processes)
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partial empirical likelthood

log(L(&,4]Y,X)) = sum, log(f(Y;)) +log(w;)
now profile with respect to S,4
log(L(5,4|Y,X)) = sum, log(f;) +log(w;)
+sumq o(1-sum; f; exp(Yifo))
partial likelihood: set Lagrange multipliers o, to 0
force f to be a distribution that sums to 1
point mass density estimates

f, = (sum,w; )" with w, = sum,, exp(Y; 3, )pr(Q| X;, 1)
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histograms and CDFs

histogram - cumulative distribution
Q_ 0 c -
5" /TN 38 -
Y=o /— \ A
O o — =
D - \ (D
oo —\ =0 ]
2 T
y S
S _ Eo |
o | | | | | 8 © | | | | |
8 10 12 14 6 8 10 12 14
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histograms capture shape CDFs are more accurate
but are not very accurate but not always intuitive
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rat study of breast cancer
Lan et al. (2001 Genetics)

rat backcross R 1

— two Inbred strains
» Wistar-Furth susceptible
o Wistar-Kyoto resistant

— backcross to WF ] ik

60
12 14
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2(LR)
40

& R -
— 383 females " / u\»\
— chromosome 5, 58 markers =1 T 5 i
search for resistance genes i -
0 20 40 60 80 100
Y = # mammary carcinomas Pasiion(GM)
where is the QTL? dash = normal

solid = semi-parametric

Pheno NCSU QTL II: Yandell © 2004 20

LOD Score



what shape histograms by genotype?
WF/WF WKyY/WF
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Cumulative Distribution
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Tumor Count Tumor Count

line = normal, + = semi-parametric, o = confidence interval
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conditional empirical LOD

o partial empirical LOD has problems

— tests for F2 depends on unknown weights

— difficult to generalize to multiple QTL
 conditional empirical likelihood unbiased

— examine genotypes given phenotypes

— does not depend on f(Y)

— pr(X;) depends only on mating design

— unbiased for selective genotyping (Jin et al. 2004)

pr(XilY;, 6,4.Q) = exp(Yi5y) pPr(Q[Xil4) pr(X;) / constant

Pheno NCSU QTL II: Yandell © 2004

22



spike data example

Boyartchuk et al. (2001); Broman (2003) = "7
133 markers, 20 chromosomes .

116 female mice

Listeria monocytogenes infection
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new resampling threshold method

 EM locally approximates LOD by quadratic form

« use local covariance of S estimates to further approximate
— relies on n independent standard normal variates Z = (Z,,...,Z,)
— one set of variates Z for the entire genome!

» repeatedly resample independent standard normal variates Z
— no need to recompute maximum likelihood on new samples
— intermediate EM calculations used directly

 evaluate threshold as with usual permutation test
— extends naturally to multiple QTL

 results shown in previous figure

LOD(A) ~ nB"(1)S(2) (1) ~ ZTCT(2)S(1)C(A)Z
covVng(2))=-CT(1)C(A)
JnB(A) = C(A)Z, with Z ~ N(0, 1)
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3. hon-parametric methods

» phenotype model pr(Y|Q,&) = Fy(Y)
- 0=F = (Fy4,Fqq Foo) arbitrary distribution functions
* Interval mapping Wilcoxon rank-sum test

— replaced Y by rank(Y)
* (Kruglyak Lander 1995; Poole Drinkwater 1996; Broman 2003)

— claimed no estimator of QTL effects

e non-parametric shift estimator

— semi-parametric shift (Hodges-Lehmann)
e Zou (2001) thesis, Zou, Yandell, Fine (2002 in review)

— non-parametric cumulative distribution
» Fine, Zou, Yandell (2001 in review)

e stochastic ordering (Hoff et al. 2002)
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rank-sum QTL methods

» phenotype model pr(Y|Q,8) = Fy(Y)
e replace Y by rank(Y) and perform IM

— extension of Wilcoxon rank-sum test
— fully non-parametric (Kruglyak Lander 1995; Poole Drinkwater 1996)

* Hodges-Lehmann estimator of shift 3
— most efficient if pr(Y|Q,8) = F(Y+Qp)
— find B that matches medians

 problem: genotypes Q unknown
* resolution: Haley-Knott (1992) regression scan

— works well in practice, but theory is elusive
e Zou, Yandell Fine (Genetics, In review)
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non-parametric QTL CDFs

e estimate non-parametric phenotype model

— cumulative distributions Fq(y) = pr(Y <y |Q)
— can use to check parametric model validity

e basic idea:
pr(Y <y [X,1) = sumg pr(QIX,A)Fo(Yy)
— depends on X only through flanking markers

— few possible flanking marker genotypes
« 4 for BC, 9 for F2, etc.
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finding non-parametric QTL CDFs

» cumulative distribution Fo(y) = pr(Y <y |Q)
* F={F,, all possible QT genotypes Q}
- BC with 1 QTL: F = {Fq, Foq}
 find F to minimize over all phenotypes y
sum; [I(Y; <y) — sumg pr(QIX.A)Fq(Y)]%
 looks complicated, but simple to implement
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non-parametric CDF properties

 readily extended to censored data

— time to flowering for non-vernalized plants
— Fine, Zou, Yandell (2004 Biometrics J)

 nice large sample properties
— estimates of F(y) = {Fq(y)} Jointly normal
— point-wise, experiment-wise confidence bands

e more robust to heavy tails and outliers
e can use to assess parametric assumptions
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what QTL influence flowering time?
no vernalization: censored survival

e Brassica napus
— Major female AN
* needs vernalization a4 W
— Stellar male i
* insensitive
— 99 double haploids

* Y =log(days to flower)

— over50% Major at QTL  ° -
never flowered

— log not fully effective

grey = normal, red = non-parametric
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what shape is flowering distribution?

B. napus Stellar B. napus Major

1.0

D4 08

Cumulative Distributon

02

0.0
1

Days to Flower Days to Flower

line = normal, + = non-parametric, o = confidence interval
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