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1. what is the goal of QTL study?

* uncover underlying biochemistry
— identify how networks function, break down
— find useful candidates for (medical) intervention
— epistasis may play key role

— statistical goal: maximize number of correctly identified QTL

* basic science/evolution
— how is the genome organized?
— identify units of natural selection

— additive effects may be most important (Wright/Fisher debate)
— statistical goal: maximize number of correctly identified QTL

* select “elite” individuals

— predict phenotype (breeding value) using suite of characteristics

(phenotypes) translated into a few QTL
— statistical goal: mimimize prediction error
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cross two inbred lines
— linkage disequilibrium
— associations

— linked segregating QTL

(after Gary Churchill) QTL
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pragmatics of multiple QTL

+ evaluate some objective for model given data
— classical likelihood
— Bayesian posterior
+ search over possible genetic architectures (models)
— number and positions of loci
— gene action: additive, dominance, epistasis
» estimate “features” of model
— means, variances & covariances, confidence regions
— marginal or conditional distributions
 art of model selection
— how select “best” or “better” model(s)?
— how to search over useful subset of possible models?
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advantages of multiple QTL approach

* improve statistical power, precision
— increase number of QTL detected
— Dbetter estimates of loci: less bias, smaller intervals
« improve inference of complex genetic architecture
— patterns and individual elements of epistasis
— appropriate estimates of means, variances, covariances
+ asymptotically unbiased, efficient
— assess relative contributions of different QTL
* improve estimates of genotypic values
— less bias (more accurate) and smaller variance (more precise)

— mean squared error = MSE = (bias)? + variance
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limits of multiple QTL?

» limits of statistical inference

— power depends on sample size, heritability, environmental
variation

— “best” model balances fit to data and complexity (model size)
— genetic linkage = correlated estimates of gene effects
* limits of biological utility
— sampling: only see some patterns with many QTL
— marker assisted selection (Bernardo 2001 Crop Sci)
* 10 QTL ok, 50 QTL are too many
* phenotype better predictor than genotype when too many QTL
* increasing sample size may not give multiple QTL any advantage
— hard to select many QTL simultaneously
* 3mpossible genotypes to choose from
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QTL below detection level?

* problem of selection bias
— QTL of modest effect only detected sometimes
— their effects are biased upwards when detected

 probability that QTL detected
— avoids sharp in/out dichotomy
— avoid pitfalls of one “best” model
— examine “better” models with more probable QTL

* build m = number of QTL detected into QTL model
— directly allow uncertainty in genetic architecture
— model selection over genetic architecture
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2. Bayesian QTL mapping

» Reverend Thomas Bayes (1702-1761)
— part-time mathematician
— buried in Bunhill Cemetary, Moongate, London
— famous paper in 1763 Phil Trans Roy Soc London
— was Bayes the first with this idea? (Laplace?)
* basic idea (from Bayes’ original example)
— two billiard balls tossed at random (uniform) on table

— where is first ball if the second is to its left?
* prior: anywhere on the table
* posterior: more likely toward right end of table
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Bayes posterior for normal data
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Bayes posterior for normal data

model v,i=ute,

environment e~N(0, 6), o> known
likelihood y~N(u &)

prior U~ N( 4y, k6%), K known
posterior: mean tends to sample mean
single individual U ~N(py+b,(v, — 1), b0

sample of n individuals 4~ N (bnj;. +(1=b)py,b,0°/ n)

with y, = {sum}yl. /n
i=l,...,n

Kn
fudge factor b, = 51
(shrinks to 1) xn+1
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Bayesian QTL: key players

* observed measurements

— y=phenotypic trait
— m = markers & linkage map observed m
— i =individual index (1,...,n)
* missing data
— missing marker data missing

— g = QT genotypes
« alleles QQ, Qq, or qq at locus

* unknown quantities
— A =QT locus (or loci)
— 4 = phenotype model parameters ~ UNKNown
— H = QTL model/genetic architecture

*  pr(q|m,A,H) genotype model

— grounded by linkage map, experimental cross

— recombination yields multinomial for ¢ given m
*  pr(ylg, 1 H) phenotype model

— distribution shape (assumed normal here)

. fi
— unknown parameters u (could be non-parametric) after

Sen Churchill (2001)
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pr(y|q, 1) phenotype model
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Bayes posterior QTL means

posterior centered on sample genotypic mean
but shrunken slightly toward overall mean
prior: u, ~ N()_/_, KO.Z)

posterior: H, ~ N(bq)_/q +(1- bq))—;.,bqo-Z /nq)

n =count{qg. =q},y =sumy./n
‘ t9; =4}, y, =sumy./n,

fudge factor: b, ar +1

QTL 2: Bayes Seattle SISG: Yandell © 2006 14




partition of multiple QTL effects

* partition genotype-specific mean into QTL effects
u, = mean + main effects + epistatic interactions
Hg=H+ fy= ptsumy, S

* priors on mean and effects

U ~ Ny, 1,0  grand mean
,Bq ~ MO0, x,06?) model-independent genotypic effect
,Bq/ ~ MO0, x,0%|H|) effects down-weighted by size of H

* determine hyper-parameters via empirical Bayes

2 2
= O,
~ ~ = _G
H,=Y, and k, = > =—
1-h~ o
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pr(q|m, A) recombination model
pr(g|m,A) = pr(geno | map, locus) =
pr(geno | flanking markers, locus)

m, m, q 7 omy om, ms Mg
markers

ﬂ/ distance along chromosome
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posterior on QTL genotypes

« full conditional for ¢ depends data for individual i
— proportional to prior pr(g | m;, A)
» weight toward ¢ that agrees with flanking markers
— proportional to likelihood pr(y;|q,u)
* weight toward g so that group mean u, ~ y,
* phenotype and prior recombination may conflict
— posterior recombination balances these two weights
— this is “E step” in EM for classical QTL analysis

)= pr(q |m;, A)pr(y; ¢, 1)
pr(y; [m;, 1, 4)

pr(q | y,,m;, i,
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Bayesian model posterior

» augment data (y,m) with unknowns ¢

* study unknowns (u,A,q) given data (y,m)
— properties of posterior pr(u,A,q | y,m )

» sample from posterior in some clever way
— multiple imputation or MCMC

pr(y | q, 1)pr(q |m, A)pr(w)pr(A|m)
pr(y|m)
pr(u, A | y,m)=sum, pr(q,u,A|y,n)

pr(q, u, A | y,m) =
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Bayesian priors for QTL

* missing genotypes g
— pr(q|m, A)
— recombination model is formally a prior

 effects (u, o)
~ prior=pr( 1, | &%) pr(c?)
— use conjugate priors for normal phenotype
* pr( 4, | 0*)=normal
* pr(o?) = inverse chi-square
 each locus 4 may be uniform over genome
— pr(4 | m)=1/length of genome
* combined prior
— pr(q p Alm)=pr(q|m, A)pr(u)pr(A|m)
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3. Markov chain sampling of architectures

* construct Markov chain around posterior
— want posterior as stable distribution of Markov chain

— in practice, the chain tends toward stable distribution
* initial values may have low posterior probability
* burn-in period to get chain mixing well

* hard to sample (¢, 4, A4, H) from joint posterior
— update (q,u, A) from full conditionals for model H
— update genetic architecture H

(q,,Ll,Z,I‘DNPI'(q,/J,ﬂ,H|y,WZ)
(q,/,l,ﬂ,H)l —)(q,/,l,ﬂ,H)z _)"'_)(qa/'laﬂ“nH)N
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MCMC sampling of (4,q,u)

* Gibbs sampler q~pr(q|y,m.,uA)
— genotypes ¢q
_ effects _pr(y g, )pr(u) >
— not loci A pr(y|q)
4 - pr(g|m, A)pr(4|m)
pr(q|m)

* Metropolis-Hastings sampler
— extension of Gibbs sampler
— does not require normalization

* pr(q|m)=sum, pr(q |m, 4)pr(1)
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full conditional for locus

* cannot easily sample from locus full conditional
pr(Aymu,q) =pr( A|mq)
=pr(q|m, 1) pr(4)/ constant
* constant is very difficult to compute explicitly

— must average over all possible loci A over genome
— must do this for every possible genotype ¢

* Gibbs sampler will not work in general
— but can use method based on ratios of probabilities
— Metropolis-Hastings is extension of Gibbs sampler
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Gibbs sampler 1dea

* toy problem
— want to study two correlated effects
— could sample directly from their bivariate distribution
* instead use Gibbs sampler:
— sample each effect from its full conditional given the other
— pick order of sampling at random
— repeat many times

(B

My~ N(pluz,l—pz)
My, ~ N(p/‘pl _pz)
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Gibbs: mean 1

2

Gibbs: mean 2
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Gibbs sampler samples: p= 0.6

N =50 samples
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Metropolis-Hastings 1dea

» want to study distribution f{4)
— take Monte Carlo samples
* unless too complicated
— take samples using ratios of f

* Metropolis-Hastings samples:

— propose new value A"
* near (?) current value A
* from some distribution g

— accept new value with prob a
* Gibbs sampler: a = 1 always

L SAg(A -4
f (Mg(A-71)

a=
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Metropolis-Hastings samples

N =200 samples N = 1000 samples
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4. sampling across architectures

* search across genetic architectures M of various sizes
— allow change in number of QTL
— allow change in types of epistatic interactions
* methods for search
— reversible jump MCMC
— Gibbs sampler with loci indicators
» complexity of epistasis
— Fisher-Cockerham effects model
— general multi-QTL interaction & limits of inference
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model selection in regression

 consider known genotypes ¢ at 2 known loci 4
— models with 1 or 2 QTL

* jump between 1-QTL and 2-QTL models

* adjust parameters when model changes
— 3, estimate changes between models 1 and 2
— due to collinearity of QTL genotypes

Cm—lz,uq—,u+ﬁql
m=2:,uq=,u+ﬁql+,8q2
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geometry allowing g and A to change

a short sequence
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collinear QTL = correlated effects

4-week

8-week

cor =-0.81

effect 2

effect 2

-0.6

04

-0.2 0.0

effect 1

* linked QTL = collinear genotypes
» correlated estimates of effects (negative if in coupling phase)
» sum of linked effects usually fairly constant
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reversible jump MCMC idea
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Metropolis-Hastings updates: draw one of three choices
— update m-QTL model with probability 1-b(m+1)-d(m)
 update current model using full conditionals
« sample m QTL loci, effects, and genotypes
— add a locus with probability b(m+1)
* propose a new locus and innovate new genotypes & genotypic effect
 decide whether to accept the “birth” of new locus
— drop a locus with probability d(m)
» propose dropping one of existing loci
« decide whether to accept the “death” of locus

Satagopan Yandell (1996, 1998); Sillanpaa Arjas (1998); Stevens Fisch (1998)
— these build on RI-MCMC idea of Green (1995); Richardson Green (1997)
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Gibbs sampler with loci indicators

+ consider only QTL at pseudomarkers
— every 1-2 cM
— modest approximation with little bias
* use loci indicators in each pseudomarker
— 0=1if QTL present
— 0=0ifno QTL present
» Gibbs sampler on loci indicators o
— relatively easy to incorporate epistasis

— Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)
* (see earlier work of Nengjun Yi and Ina Hoeschele)

H, = H + 5lﬂql + 5218(12

QTL 2: Bayes Seattle SISG: Yandell © 2006 34




5. Gene Action and Epistasis

additive, dominant, recessive, general effects
of a single QTL (Gary Churchill)

Additive

Dominant
+ ' i
+ + +
+
+
+ +

A H B A H B
Recessive Ganaral
+ +
‘/ /\
+ + 4
+ + +
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additive effects of two QTL
(Gary Churchill)

/uq::u+ﬂql+ﬂq2

>
X
m

QaTL1
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Epistasis (Gary Churchill)

The allelic state at one locus can mask or
uncover the effects of allelic variation at another.
- W. Bateson, 1907.
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epistasis in parallel pathways (GAC)

* Z keeps trait value low X E
\ ,
* neither E, nor E, is rate Y/EZ'
limiting

* loss of function alleles are
segregating from parent A at
E, and from parent B at E,
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epistasis in a serial pathway (GAC)
 Z keeps trait value high

* neither E, nor E, is rate
limiting

* loss of function alleles are
segregating from parent B at
E, and from parent A at E,
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QTL with epistasis

» same phenotype model overview
y=p,+evar(e) =0’

* partition of genotypic value with epistasis
My =1+ B+ B+ P

* partition of genetic variance & heritability
var(u,) = og = 07 + 0, + 075

2
Og

2 ) 2 2
h =5, =h +h, +h,
G
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epistatic interactions

* model space issues
— 2-QTL interactions only?
* or general interactions among multiple QTL?
— partition of effects
* Fisher-Cockerham or tree-structured or ?
* model search issues
— epistasis between significant QTL
+ check all possible pairs when QTL included?
+ allow higher order epistasis?
— epistasis with non-significant QTL
» whole genome paired with each significant QTL?
* pairs of non-significant QTL?
¢ YiXu (2000) Genetics; Yi, Xu, Allison (2003) Genetics, Yi et al. (2005) Genetics
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limits of epistatic inference

» power to detect effects

— epistatic model size grows exponentially
* |H| = 3" for general interactions

— power depends on ratio of # to model size

» want n / |H| to be fairly large (say > 5)
* n=100,nqtl=3,n/|H =4

» empty cells mess up adjusted (Type 3) tests

— missing ¢,Q,/ q,Q, or q,Q,9;/ q,Q,q; genotype
— null hypotheses not what you would expect

— can confound main effects and interactions

— can bias AA, AD, DA, DD partition
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6. comparing QTL models

* balance model fit with model "complexity*
— want maximum likelihood
— without too complicated a model

« information criteria quantifies the balance
— Bayes information criteria (BIC) for likelihood
— Bayes factors for Bayesian approach
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Bayes factors & BIC

B - pr( model, | Y)/pr( model, |Y) pr(Y | model,)
12— -

pr( model, )/ pr( model,) pr(Y | model,)

+ what is a Bayes factor?
— ratio of posterior odds to prior odds
— ratio of model likelihoods

» BF is equivalent to LR statistic when
— comparing two nested models
— simple hypotheses (e.g. 1 vs 2 QTL)
+ BF is equivalent to Bayes Information Criteria (BIC)
— for general comparison of any models
— want Bayes factor to be substantially larger than 1 (say 10 or more)

—2log(B,,) = —2log(LR) —(p, — p,) log(n)
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Bayes factors and genetic model H

* H = number of QTL
— prior pr(H) chosen by user
— posterior pr(H|y,m)

 sampled marginal histogram

0.30
|

e
—e— exponential
—P— Poisson
e

—t—uniform

N\
U/‘L]% 6\2;2\: -u
1/ A

P
* shape affected by prior pr(H) :
0 2 4 6 8 10

BF _ pI’(H|y,m)/pr(H) m = number of QTL
HH+1 —
pr(H +1|y,m)/pr(H +1)

0.20
|

prior probability

0.10
|

0.00

e

» pattern of QTL across genome

 gene action and epistasis
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1ssues 1n computing Bayes factors

» BF insensitive to shape of prior on ngt/
— geometric, Poisson, uniform
— precision improves when prior mimics posterior
» BF sensitivity to prior variance on effects €
— prior variance should reflect data variability

— resolved by using hyper-priors
* automatic algorithm; no need for user tuning

* easy to compute Bayes factors from samples
— sample posterior using MCMC
— posterior pr(ngt/|y,m) is marginal histogram
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