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Seattle Summer Institute 2007
Advanced QTL
Brian S. Yandell

University of Wisconsin-Madison
• Overview: Multiple QTL Approaches
• Bayesian QTL mapping & model selection
• data examples in detail
• software demo & automated strategy 
• multiple phenotypes & microarrays
Real knowledge is to know the extent of one’s ignorance. 
Confucius (on a bench in Seattle)
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contact information & resources

• email: byandell@wisc.edu
• web: www.stat.wisc.edu/~yandell/statgen

– QTL & microarray resources
– references, software, people

• thanks:
– students: Jaya Satagopan, Pat Gaffney, Fei Zou, Amy Jin, 

W. Whipple Neely, Jee Young Moon
– faculty/staff: Alan Attie, Michael Newton, Nengjun Yi, Gary 

Churchill, Hong Lan, Christina Kendziorski, Tom Osborn, Jason 
Fine, Tapan Mehta, Hao Wu, Samprit Banerjee, Daniel Shriner
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Overview of Multiple QTL

1. What is the goal of multiple QTL study?
2. Gene action and epistasis
3. Bayesian vs. classical QTL
4. QTL model selection
5. QTL software options
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1. what is the goal of QTL study?
• uncover underlying biochemistry

– identify how networks function, break down
– find useful candidates for (medical) intervention
– epistasis may play key role
– statistical goal: maximize number of correctly identified QTL

• basic science/evolution
– how is the genome organized?
– identify units of natural selection
– additive effects may be most important (Wright/Fisher debate)
– statistical goal: maximize number of correctly identified QTL

• select “elite” individuals
– predict phenotype (breeding value) using suite of characteristics 

(phenotypes) translated into a few QTL
– statistical goal: mimimize prediction error
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QTL

Marker Trait

cross two inbred lines 
→ linkage disequilibrium 

→ associations
→ linked segregating QTL

(after Gary Churchill)
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problems of single QTL approach

• wrong model: biased view
– fool yourself: bad guess at locations, effects
– detect ghost QTL between linked loci
– miss epistasis completely

• low power
• bad science

– use best tools for the job
– maximize scarce research resources
– leverage already big investment in experiment
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advantages of multiple QTL approach
• improve statistical power, precision

– increase number of QTL detected
– better estimates of loci: less bias, smaller intervals

• improve inference of complex genetic architecture
– patterns and individual elements of epistasis
– appropriate estimates of means, variances, covariances

• asymptotically unbiased, efficient
– assess relative contributions of different QTL

• improve estimates of genotypic values
– less bias (more accurate) and smaller variance (more precise)
– mean squared error = MSE = (bias)2 + variance
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– better estimates of loci: less bias, smaller intervals
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– mean squared error = MSE = (bias)2 + variance
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2. Gene Action and Epistasis
additive, dominant, recessive, general effects

of a single QTL (Gary Churchill)
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additive effects of two QTL
(Gary Churchill)

µq = µ + βq1 + βq2
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Epistasis (Gary Churchill)

The allelic state at one locus can mask or 

uncover the effects of allelic variation at another.

- W. Bateson, 1907.
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epistasis in parallel pathways (GAC)
• Z keeps trait value low

• neither E1 nor E2 is rate 
limiting

• loss of function alleles are
segregating from parent A at 
E1 and from parent B at E2

Z

X

Y

E1

E2
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epistasis in a serial pathway (GAC)

ZX Y
E1 E2

• Z keeps trait value high

• neither E1 nor E2 is rate 
limiting

• loss of function alleles are
segregating from parent B at 
E1 and from parent A at E2
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epistatic interactions
• model space issues

– 2-QTL interactions only? 
• or general interactions among multiple QTL?

– partition of effects
• Fisher-Cockerham or tree-structured or ? 

• model search issues
– epistasis between significant QTL

• check all possible pairs when QTL included?
• allow higher order epistasis?

– epistasis with non-significant QTL
• whole genome paired with each significant QTL?
• pairs of non-significant QTL?

• see papers of Nengjun Yi (2000-7) in Genetics
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limits of epistatic inference
• power to detect effects

– epistatic model sizes grow quickly
• |A| = 3n.qtl for general interactions

– power tradeoff
• depends sample size vs. model size
• want n / |A| to be fairly large (say > 5)
• 3 QTL, n = 100 F2: n / |A| ≈ 4

• rare genotypes may not be observed
– aa/BB & AA/bb rare for linked loci
– empty cells mess up balance

• adjusted tests (type III) are wrong
– confounds main effects & interactions

6153
152515
0156

AA
aA
aa

BBbBbb

2 linked QTL
empty cell

with n = 100
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limits of multiple QTL?
• limits of statistical inference

– power depends on sample size, heritability, environmental 
variation

– “best” model balances fit to data and complexity (model size)
– genetic linkage = correlated estimates of gene effects

• limits of biological utility
– sampling: only see some patterns with many QTL
– marker assisted selection (Bernardo 2001 Crop Sci)

• 10 QTL ok, 50 QTL are too many
• phenotype better predictor than genotype when too many QTL
• increasing sample size may not give multiple QTL any advantage

– hard to select many QTL simultaneously
• 3m possible genotypes to choose from
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QTL below detection level?
• problem of selection bias

– QTL of modest effect only detected sometimes
– effects overestimated when detected
– repeat studies may fail to detect these QTL

• think of probability of detecting QTL
– avoids sharp in/out dichotomy
– avoid pitfalls of one “best” model
– examine “better” models with more probable QTL

• rethink formal approach for QTL
– directly allow uncertainty in genetic architecture
– QTL model selection over genetic architecture
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3. Bayesian vs. classical QTL study
• classical study

– maximize over unknown effects
– test for detection of QTL at loci
– model selection in stepwise fashion

• Bayesian study
– average over unknown effects
– estimate chance of detecting QTL
– sample all possible models

• both approaches
– average over missing QTL genotypes
– scan over possible loci
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QTL model selection: key players
• observed measurements

– y = phenotypic trait
– m = markers & linkage map
– i = individual index (1,…,n)

• missing data
– missing marker data
– q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown quantities

– λ = QT locus (or loci)
– µ = phenotype model parameters
– A = QTL model/genetic architecture

• pr(q|m,λ,A) genotype model
– grounded by linkage map, experimental cross
– recombination yields multinomial for q given m

• pr(y|q,µ,A) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters µ (could be non-parametric)

observed X Y

missing Q

unknown λ θ

after
Sen Churchill (2001)

y

λ

q

µ

m

A
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Bayes posterior vs. maximum likelihood
• LOD: classical Log ODds

– maximize likelihood over effects µ
– R/qtl scanone/scantwo: method = “em”

• LPD: Bayesian Log Posterior Density
– average posterior over effects µ
– R/qtl scanone/scantwo: method = “imp”
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LOD & LPD: 1 QTL
n.ind = 100, 1 cM marker spacing



QTL 2: Overview Seattle SISG: Yandell © 2007 23

LOD & LPD: 1 QTL
n.ind = 100, 10 cM marker spacing
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marginal LOD or LPD
• compare two architectures at each locus

– with (A2) or without (A1) another QTL at separate locus λ2

• preserve model hierarchy (e.g. drop any epistasis with QTL at λ2)
– with (A2) or without (A1) epistasis with second locus λ2

• allow for multiple QTL besides locus being scanned
– allow for QTL at all other loci λ1 in architecture A1

• use marginal LOD, LPD or other diagnostic
– posterior, Bayes factor, heritability

)|(LPD)|,(LPD
)|(LOD)|,(LOD

11221

11221
AA
AA

λλλ
λλλ

−
−
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LPD: 1 QTL vs. multi-QTL
marginal contribution to LPD from QTL at λ

2nd QTL

1st QTL

2nd QTL
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substitution effect: 1 QTL vs. multi-QTL
single QTL effect vs. marginal effect from QTL at λ

2nd QTL 2nd QTL

1st QTL
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4. QTL model selection
• select class of models

– see earlier slides above
• decide how to compare models

– coming below
• search model space

– see Bayesian QTL mapping & model selection talk
• assess performance of procedure

– some below
– see Kao (2000), Broman and Speed (2002)
– be wary of HK regression assessments
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pragmatics of multiple QTL
• evaluate some objective for model given data

– classical likelihood
– Bayesian posterior

• search over possible genetic architectures (models)
– number and positions of loci
– gene action: additive, dominance, epistasis

• estimate “features” of model
– means, variances & covariances, confidence regions
– marginal or conditional distributions

• art of model selection
– how select “best” or “better” model(s)?
– how to search over useful subset of possible models?
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comparing models

• balance model fit against model complexity
– want to fit data well (maximum likelihood)
– without getting too complicated a model

smaller model bigger model
fit model miss key features fits better
estimate phenotype may be biased no bias
predict new data may be biased no bias
interpret model easier more complicated
estimate effects low variance high variance
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information criteria
to balance fit against complexity

• classical information criteria
– penalize likelihood L by model size |A|
– IC = – 2 log L(A | y) + penalty(A)
– maximize over unknowns

• Bayes factors
– marginal posteriors pr(y | A )
– average over unknowns
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classical information criteria
• start with likelihood L(A | y, m) 

– measures fit of architecture (A) to phenotype (y)
• given marker data (m)

– architecture (A) depends on parameters
• have to estimate loci (µ) and effects (λ)

• complexity related to number of parameters
– p = |A| = size of genetic architecture
– with n.qtl = 4 QTL and all 2-QTL epistasis terms

• BC: p = 1 + n.qtl + n.qtl(n.qtl - 1) = 1 + 4 + 12 = 17
• F2: p = 1 + 2n.qtl +4 n.qtl(n.qtl - 1) = 1 + 8 + 48 = 57
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classical information criteria
• construct information criteria

– balance fit to complexity
– Akaike AIC = –2 log(L) + 2 p
– Bayes/Schwartz BIC = –2 log(L) + p log(n)
– Broman BICδ = –2 log(L) + δ p log(n)
– general form: IC = –2 log(L) + p D(n)

• compare models
– hypothesis testing: designed for one comparison

• 2 log[LR(p1,p2)] = L(y|m,A2) – L(y|m,A1)
– model selection: penalize complexity

• IC(p1,p2) = 2 log[LR(p1,p2)] + (p2 – p1) D(n)
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Bayes factors
• ratio of model likelihoods

– ratio of posterior to prior odds for architectures
– averaged over unknowns

• roughly equivalent to BIC
– BIC maximizes over unknowns
– BF averages over unknowns
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information criteria vs. model size

• WinQTL 2.0
• SCD data on F2
• A=AIC
• 1=BIC(1)
• 2=BIC(2)
• d=BIC(δ)
• models

– 1,2,3,4 QTL
• 2+5+9+2

– epistasis
• 2:2 AD

epistasis
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scan of marginal Bayes factor & effect
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5. QTL software options
• methods

– approximate QTL by markers
– exact multiple QTL interval mapping

• software platforms
– MapMaker/QTL (obsolete)
– QTLCart (statgen.ncsu.edu/qtlcart)
– R/qtl (www.rqtl.org)
– R/qtlbim (www.qtlbim.org)
– Yandell, Bradbury (2007) book chapter
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approximate QTL methods
• marker regression

– locus & effect confounded
– lose power with missing data

• Haley-Knott (least squares) regression
– correct mean, wrong variance
– biased by pattern of missing data (Kao 2000)

• extended HK regression
– correct mean and variance
– minimizes bias issue (R/qtl “ehk” method)

• composite interval mapping (QTLCart)
– use markers to approximate other QTL
– properties depend on marker spacing, missing data
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exact QTL methods
• interval mapping (Lander, Botstein 1989)

– scan whole genome for single QTL
– bias for linked QTL, low power

• multiple interval mapping (Kao, Zeng, Teasdale 1999)
– sequential scan of all QTL
– stepwise model selection

• multiple imputation (Sen, Churchill 2001)
– fill in (impute) missing genotypes along genome
– average over multiple imputations

• Bayesian interval mapping (Yi et al. 2005)
– sample most likely models
– marginal scans conditional on other QTL
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QTL software platforms
• QTLCart (statgen.ncsu.edu/qtlcart)

– includes features of original MapMaker/QTL
• not designed for building a linkage map

– easy to use Windows version WinQTLCart
– based on Lander-Botstein maximum likelihood LOD

• extended to marker cofactors (CIM) and multiple QTL (MIM)
• epistasis, some covariates (GxE)
• stepwise model selection using information criteria

– some multiple trait options
– OK graphics

• R/qtl (www.rqtl.org)
– includes functionality of classical interval mapping
– many useful tools to check genotype data, build linkage maps
– excellent graphics
– several methods for 1-QTL and 2-QTL mapping

• epistasis, covariates (GxE)
– tools available for multiple QTL model selection
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Bayesian QTL software options
• Bayesian Haley-Knott approximation: no epistasis

– Berry C (1998)
• R/bqtl (www.r-project.org contributed package)

• multiple imputation: epistasis, mostly 1-2 QTL but some multi-QTL
– Sen and Churchill (2000)

• matlab/pseudomarker (www.jax.org/staff/churchill/labsite/software)
– Broman et al. (2003)

• R/qtl (www.rqtl.org)
• Bayesian interval mapping via MCMC: no epistasis

– Satagopan et al. (1996); Satagopan, Yandell (1996) Gaffney (2001) 
• R/bim (www.r-project.org contributed package)
• WinQTLCart/bmapqtl (statgen.ncsu.edu/qtlcart)

– Stephens & Fisch (1998): no code release
– Sillanpää Arjas (1998)

• multimapper (www.rni.helsinki.fi/~mjs)
• Bayesian interval mapping via MCMC: epistasis

– Yandell et al. (2007) 
• R/qtlbim (www.qtlbim.org)

• Bayesian shrinkage: no epistasis
– Wang et al. Xu (2005): no code release
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R/qtlbim: www.qtlbim.org
• Properties

– cross-compatible with R/qtl
– new MCMC algorithms

• Gibbs with loci indicators; no reversible jump
– epistasis, fixed & random covariates, GxE
– extensive graphics

• Software history
– initially designed (Satagopan Yandell 1996)
– major revision and extension (Gaffney 2001)
– R/bim to CRAN (Wu, Gaffney, Jin, Yandell 2003)
– R/qtlbim to CRAN (Yi, Yandell et al. 2006)

• Publications
– Yi et al. (2005); Yandell et al. (2007); …
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Pablo Quijada
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Bayesian Interval Mapping

1. Bayesian strategy 3-17
2. Markov chain sampling 18-25
3. sampling genetic architectures 26-33
4. Bayesian QTL model selection 34-44
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QTL model selection: key players
• observed measurements

– y = phenotypic trait
– m = markers & linkage map
– i = individual index (1,…,n)

• missing data
– missing marker data
– q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown quantities

– λ = QT locus (or loci)
– µ = phenotype model parameters
– H = QTL model/genetic architecture

• pr(q|m,λ,H) genotype model
– grounded by linkage map, experimental cross
– recombination yields multinomial for q given m

• pr(y|q,µ,H) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters µ (could be non-parametric)

observed X Y

missing Q

unknown λ θ

after
Sen Churchill (2001)

y

λ

q

µ

m

H
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1. Bayesian strategy for QTL study
• augment data (y,m) with missing genotypes q
• study unknowns (µ,λ,A) given augmented data (y,m,q)

– find better genetic architectures A
– find most likely genomic regions = QTL = λ
– estimate phenotype parameters = genotype means = µ

• sample from posterior in some clever way
– multiple imputation (Sen Churchill 2002)
– Markov chain Monte Carlo (MCMC) 

• (Satagopan et al. 1996; Yi et al. 2005)
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• Reverend Thomas Bayes (1702-1761)
– part-time mathematician
– buried in Bunhill Cemetary, Moongate, London
– famous paper in 1763 Phil Trans Roy Soc London
– was Bayes the first with this idea? (Laplace?)

• basic idea (from Bayes’ original example)
– two billiard balls tossed at random (uniform) on table
– where is first ball if the second is to its left?

• prior: anywhere on the table
• posterior: more likely toward right end of table

Bayesian idea
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Bayes posterior for normal data

large prior variancesmall prior variance
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model yi = µ + ei
environment e ~ N( 0, σ2 ), σ2 known 
likelihood y ~ N( µ, σ2 )
prior µ ~ N( µ0, κσ2 ), κ known

posterior: mean tends to sample mean
single individual µ ~ N( µ0 + b1(y1 – µ0), b1σ2)

sample of n individuals

fudge factor
(shrinks to 1)

Bayes posterior for normal data
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what values are the genotypic means?
(phenotype mean for genotype q is µq)
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data meandata means prior mean

posterior means
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posterior centered on sample genotypic mean
but shrunken slightly toward overall mean 
prior:

posterior:

fudge factor:

Bayes posterior QTL means
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QTL with epistasis
• same phenotype model overview

• partition of genotypic value with epistasis

• partition of genetic variance & heritability
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• partition genotype-specific mean into QTL effects
µq = mean + main effects + epistatic interactions
µq = µ + βq = µ + sumj in A βqj

• priors on mean and effects
µ ~  N(µ0, κ0σ2) grand mean
βq ~  N(0, κ1σ2) model-independent genotypic effect
βqj ~  N(0, κ1σ2/|A|) effects down-weighted by size of A

• determine hyper-parameters via empirical Bayes

partition of multiple QTL effects
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λ

1m 2m 3m 4m 5m 6m

pr(q|m,λ) recombination model
pr(q|m,λ) = pr(geno | map, locus) ≈
pr(geno | flanking markers, locus)

distance along chromosome

q?
markers
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what are likely QTL genotypes q?
how does phenotype y improve guess?

90

100

110

120

D4Mit41
D4Mit214

Genotype

bp

AA
AA

AB
AA

AA
AB

AB
AB

what are probabilities
for genotype q
between markers?

recombinants AA:AB

all 1:1 if ignore y
and if we use y?
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posterior on QTL genotypes q
• full conditional of q given data, parameters

– proportional to prior pr(q | m, λ )
• weight toward q that agrees with flanking markers

– proportional to likelihood pr(y|q,µ)
• weight toward q with similar phenotype values

– posterior recombination model balances these two
• this is the E-step of EM computations
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Where are the loci λ on the genome?
• prior over genome for QTL positions

– flat prior = no prior idea of loci
– or use prior studies to give more weight to some regions

• posterior depends on QTL genotypes q
pr(λ | m,q) = pr(λ) pr(q | m,λ) / constant
– constant determined by averaging

• over all possible genotypes q

• over all possible loci λ on entire map

• no easy way to write down posterior
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what is the genetic architecture A?

• which positions correspond to QTLs?
– priors on loci (previous slide)

• which QTL have main effects?
– priors for presence/absence of main effects

• same prior for all QTL
• can put prior on each d.f. (1 for BC, 2 for F2)

• which pairs of QTL have epistatic interactions?
– prior for presence/absence of epistatic pairs

• depends on whether 0,1,2 QTL have main effects
• epistatic effects less probable than main effects
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Bayesian priors & posteriors
• augmenting with missing genotypes q

– prior is recombination model
– posterior is (formally) E step of EM algorithm

• sampling phenotype model parameters µ
– prior is “flat” normal at grand mean (no information)
– posterior shrinks genotypic means toward grand mean
– (details for unexplained variance omitted here)

• sampling QTL loci λ
– prior is flat across genome (all loci equally likely)

• sampling QTL model A
– number of QTL 

• prior is Poisson with mean from previous IM study
– genetic architecture of main effects and epistatic interactions

• priors on epistasis depend on presence/absence of main effects

QTL 2: Bayes Seattle SISG: Yandell © 2006 18

2. Markov chain sampling
• construct Markov chain around posterior

– want posterior as stable distribution of Markov chain
– in practice, the chain tends toward stable distribution

• initial values may have low posterior probability
• burn-in period to get chain mixing well

• sample QTL model components from full conditionals
– sample locus λ given q,A (using Metropolis-Hastings step)
– sample genotypes q given λ,µ,y,A (using Gibbs sampler)
– sample effects µ given q,y,A (using Gibbs sampler)
– sample QTL model A given λ,µ,y,q (using Gibbs or M-H)
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MCMC sampling of (λ,q,µ)
• Gibbs sampler

– genotypes q
– effects µ
– not loci λ

• Metropolis-Hastings sampler
– extension of Gibbs sampler
– does not require normalization

• pr( q | m ) = sumλ pr( q | m, λ ) pr(λ )
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Gibbs sampler 
for two genotypic means

• want to study two correlated effects
– could sample directly from their bivariate distribution
– assume correlation ρ is known

• instead use Gibbs sampler:
– sample each effect from its full conditional given the other
– pick order of sampling at random
– repeat many times
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Gibbs sampler samples: ρ = 0.6
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full conditional for locus
• cannot easily sample from locus full conditional

pr(λ |y,m,µ,q) = pr( λ | m,q)
= pr( q | m, λ ) pr(λ ) / constant

• constant is very difficult to compute explicitly
– must average over all possible loci λ over genome
– must do this for every possible genotype q

• Gibbs sampler will not work in general
– but can use method based on ratios of probabilities
– Metropolis-Hastings is extension of Gibbs sampler
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Metropolis-Hastings idea
• want to study distribution f(λ)

– take Monte Carlo samples
• unless too complicated

– take samples using ratios of f
• Metropolis-Hastings samples:

– propose new value λ*

• near (?) current value λ
• from some distribution g

– accept new value with prob a
• Gibbs sampler: a = 1 always
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Metropolis-Hastings for locus λ
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Metropolis-Hastings samples
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3. sampling genetic architectures 
• search across genetic architectures A of various sizes

– allow change in number of QTL
– allow change in types of epistatic interactions

• methods for search
– reversible jump MCMC
– Gibbs sampler with loci indicators

• complexity of epistasis
– Fisher-Cockerham effects model
– general multi-QTL interaction & limits of inference
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reversible jump MCMC

• consider known genotypes q at 2 known loci λ
– models with 1 or 2 QTL

• M-H step between 1-QTL and 2-QTL models
– model changes dimension (via careful bookkeeping)
– consider mixture over QTL models H
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collinear QTL = correlated effects
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• linked QTL = collinear genotypes
correlated estimates of effects (negative if in coupling phase)
sum of linked effects usually fairly constant
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sampling across QTL models A

action steps: draw one of three choices
• update QTL model A with probability 1-b(A)-d(A)

– update current model using full conditionals
– sample QTL loci, effects, and genotypes

• add a locus with probability b(A)
– propose a new locus along genome
– innovate new genotypes at locus and phenotype effect
– decide whether to accept the “birth” of new locus

• drop a locus with probability d(A)
– propose dropping one of existing loci
– decide whether to accept the “death” of locus

0 Lλ1 λm+1 λmλ2 …
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Gibbs sampler with loci indicators  
• consider only QTL at pseudomarkers

– every 1-2 cM
– modest approximation with little bias

• use loci indicators in each pseudomarker
– δ = 1 if QTL present
– δ = 0 if no QTL present

• Gibbs sampler on loci indicators δ
– relatively easy to incorporate epistasis
– Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)

• (see earlier work of Nengjun Yi and Ina Hoeschele)

 2211 qqq βδβδµµ ++=
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Bayesian shrinkage estimation  

• soft loci indicators
– strength of evidence for λj depends on variance of βj
– similar to γ > 0 on grey scale

• include all possible loci in model
– pseudo-markers at 1cM intervals

• Wang et al. (2005 Genetics)
– Shizhong Xu group at U CA Riverside
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4. Bayesian QTL model selection

• Bayes factor details
• Bayesian model averaging
• false discovery rate (FDR)
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Bayes factors
• ratio of model likelihoods

– ratio of posterior to prior odds for architectures
– averaged over unknowns

• roughly equivalent to BIC
– BIC maximizes over unknowns
– BF averages over unknowns
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issues in computing Bayes factors
• BF insensitive to shape of prior on A

– geometric, Poisson, uniform
– precision improves when prior mimics posterior

• BF sensitivity to prior variance on effects θ
– prior variance should reflect data variability
– resolved by using hyper-priors

• automatic algorithm; no need for user tuning

• easy to compute Bayes factors from samples
– sample posterior using MCMC
– posterior pr(A | y, m) is marginal histogram
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Bayes factors and genetic model A
• |A| = number of QTL

– prior pr(A) chosen by user
– posterior pr(A|y,m)

• sampled marginal histogram
• shape affected by prior pr(A)

• pattern of QTL across genome
• gene action and epistasis
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BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior
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Bayesian model averaging

• average summaries over multiple 
architectures

• avoid selection of “best” model
• focus on “better” models
• examples in data talk later
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1-D and 2-D marginals
pr(QTL at λ | Y,X, m)

unlinked loci linked loci
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false detection rates and thresholds
• multiple comparisons: test QTL across genome

– size = pr( LOD(λ) > threshold | no QTL at λ )
– threshold guards against a single false detection

• very conservative on genome-wide basis
– difficult to extend to multiple QTL

• positive false discovery rate (Storey 2001)
– pFDR = pr( no QTL at λ | LOD(λ) > threshold )
– Bayesian posterior HPD region based on threshold 

• Λ ={λ | LOD(λ) > threshold } ≈ {λ | pr(λ | Y,X,m ) large }
– extends naturally to multiple QTL
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pFDR and QTL posterior
• positive false detection rate

– pFDR = pr( no QTL at λ | Y,X, λ in Λ )
– pFDR = pr(H=0)*size

pr(m=0)*size+pr(m>0)*power
– power = posterior = pr(QTL in Λ | Y,X, m>0 )
– size = (length of Λ) / (length of genome)

• extends to other model comparisons
– m = 1 vs. m = 2 or more QTL
– pattern = ch1,ch2,ch3 vs. pattern > 2*ch1,ch2,ch3
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examples in detail
• simulation study (after Stephens & Fisch (1998) 2-3
• days to flower for Brassica napus (plant) (n = 108) 4-10

– single chromosome with 2 linked loci
– whole genome

• gonad shape in Drosophila spp. (insect) (n = 1000) 11-16
– multiple traits reduced by PC
– many QTL and epistasis

• expression phenotype (SCD1) in mice (n = 108) 17-26
– multiple QTL and epistasis

• obesity in mice (n = 421) 27-35
– epistatic QTLs with no main effects

• hypertension in mice set (n = 250) 36-48
– classic R/qtl example (used in R demo)
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simulation with 8 QTL
•simulated F2 intercross, 8 QTL

– (Stephens, Fisch 1998)
– n=200, heritability = 50%
– detected 3 QTL

•increase to detect all 8
– n=500, heritability to 97%

QTL chr loci effect
1 1 11 –3
2 1 50 –5
3 3 62 +2
4 6 107 –3
5 6 152 +3
6 8 32 –4
7 8 54 +1
8 9 195 +2
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loci pattern across genome
• notice which chromosomes have persistent loci
• best pattern found 42% of the time

Chromosome 
m 1 2 3 4 5 6 7 8 9 10 Count of 8000
8 2 0 1 0 0 2 0 2 1 0 3371
9 3 0 1 0 0 2 0 2 1 0 751
7 2 0 1 0 0 2 0 1 1 0 377
9 2 0 1 0 0 2 0 2 1 0 218
9 2 0 1 0 0 3 0 2 1 0 218
9 2 0 1 0 0 2 0 2 2 0 198
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Brassica napus: 1 chromosome
• 4-week & 8-week vernalization effect

– log(days to flower)

• genetic cross of
– Stellar (annual canola)
– Major (biennial rapeseed)

• 105 F1-derived double haploid (DH) lines
– homozygous at every locus (QQ or qq)

• 10 molecular markers (RFLPs) on LG9
– two QTLs inferred on LG9 (now chromosome N2)
– corroborated by Butruille (1998)
– exploiting synteny with Arabidopsis thaliana
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B. napus 8-week vernalization
whole genome study

• 108 plants from double haploid
– similar genetics to backcross: follow 1 gamete
– parents are Major (biennial) and Stellar (annual)

• 300 markers across genome
– 19 chromosomes
– average 6cM between markers

• median 3.8cM, max 34cM
– 83% markers genotyped

• phenotype is days to flowering
– after 8 weeks of vernalization (cooling)
– Stellar parent requires vernalization to flower

• Ferreira et al. (1994); Kole et al. (2001); Schranz et al. (2002)
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Bayesian model assessment 

row 1: # QTL
row 2: pattern

col 1: posterior
col 2: Bayes factor
note error bars on bf
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Bayesian estimates of  loci & effects

histogram of loci
blue line is density
red lines at estimates

estimate additive effects
(red circles)

grey points sampled
from posterior

blue line is cubic spline
dashed line for 2 SD
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Bayesian model diagnostics 
pattern: N2(2),N3,N16
col 1: density
col 2: boxplots by m

environmental variance
σ2 = .008, σ = .09

heritability
h2 = 52%

LOD = 16
(highly significant)

but note change with m
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shape phenotype in BC study
indexed by PC1

Liu et al. (1996) Genetics
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shape phenotype via PC

Liu et al. (1996) Genetics
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Zeng et al. (2000)
CIM vs. MIM

composite interval mapping
(Liu et al. 1996)
narrow peaks
miss some QTL

multiple interval mapping
(Zeng et al. 2000)
triangular peaks

both conditional 1-D scans
fixing all other "QTL"
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CIM, MIM and IM pairscan

mim

cim
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2 QTL + epistasis:
IM versus multiple imputation

IM pairscan multiple imputation
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multiple QTL: CIM, MIM and BIM

bim

cim

mim
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studying diabetes in an F2
• segregating cross of inbred lines

– B6.ob x BTBR.ob → F1 → F2
– selected mice with ob/ob alleles at leptin gene (chr 6)
– measured and mapped body weight, insulin, glucose at various ages 

(Stoehr et al. 2000 Diabetes)
– sacrificed at 14 weeks, tissues preserved

• gene expression data
– Affymetrix microarrays on parental strains, F1

• key tissues: adipose, liver, muscle, β-cells
• novel discoveries of differential expression (Nadler et al. 2000 PNAS; Lan et 

al. 2002 in review; Ntambi et al. 2002 PNAS)
– RT-PCR on 108 F2 mice liver tissues

• 15 genes, selected as important in diabetes pathways
• SCD1, PEPCK, ACO, FAS, GPAT, PPARgamma, PPARalpha, G6Pase, 

PDI,…
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SCD1: multiple QTL plus epistasis!
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Bayesian model assessment:
number of QTL for SCD1
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Bayesian LOD and h2 for SCD1
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Bayesian model assessment:
chromosome QTL pattern for SCD1
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trans-acting QTL for SCD1
(no epistasis yet: see Yi, Xu, Allison 2003)

dominance?
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2-D scan: assumes only 2 QTL!

epistasis
LOD
peaks

joint
LOD
peaks
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sub-peaks can be easily overlooked!
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epistatic model fit
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Cockerham epistatic effects
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obesity in CAST/Ei BC onto M16i

• 421 mice (Daniel Pomp)
– (213 male, 208 female)

• 92 microsatellites on 19 chromosomes
– 1214 cM map

• subcutaneous fat pads
– pre-adjusted for sex and dam effects

• Yi, Yandell, Churchill, Allison, Eisen, 
Pomp (2005) Genetics (in press)
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non-epistatic analysis
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posterior profile of main effects
in epistatic analysis  
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posterior profile of main effects
in epistatic analysis
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model selection
via

Bayes factors
for 

epistatic model

number of QTL

QTL pattern
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posterior probability of effects

Posterior probability

0.0 0.2 0.4 0.6 0.8 1.0

Chr2(72,85)
Chr13(20,42)
Chr15(1,31)

Chr18(43,71)
Chr1(26,54)

Chr19(15,45)
Chr7(50,75)

Chr14(12,41)
Chr1(26,54)*Chr18(43,71)
Chr2(72,85)*Chr13(20,42)
Chr15(1,31)*Chr19(15,45)
Chr2(72,85)*Chr14(12,41)
Chr7(50,75)*Chr19(15,45)
Chr13(20,42)*Chr15(1,31)
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scatterplot estimates of epistatic loci

QTL 2: Data Seattle SISG: Yandell © 2006 34

stronger epistatic effects
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model selection for pairs
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hyper data: scanone
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2log(BF) scan with 50% HPD region
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sampled QTL by chromosome
blue lines = markers
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hyper: number of QTL
posterior, prior, Bayes factors

prior

strength
of evidence

MCMC
error
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pattern of QTL on chromosomes
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Cockerham epistatic effects

% of samples with each epistatic pair
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relative importance of epistasis

prior
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2-D plot of 2logBF: chr 6 & 15
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1-D Slices of 2-D scans: chr 6 & 15
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1-D Slices of 2-D scans: chr 6 & 15
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1-D Slices of 2-D scans: chr 4 & 15
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1-D Slices of 2-D scans: chr 4 & 15
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diagnostic summaries
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R/qtl & R/qtlbim Tutorials

• R statistical graphics & language system
• R/qtl tutorial

– R/qtl web site: www.rqtl.org
– Tutorial: www.rqtl.org/tutorials/rqtltour.pdf
– R code: www.rqtl.org/tutorials/rqtltour.R

• R/qtlbim tutorial
– R/qtlbim web site: www.qtlbim.org
– Tutorial: www.stat.wisc.edu/~yandell/qtlbim/rqtltour.pdf
– R code: www.stat.wisc.edu/~yandell/qtlbim/rqtltour.R
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R/qtl tutorial (www.rqtl.org)
> library(qtl)
> data(hyper)
> summary(hyper)

Backcross

No. individuals:    250 

No. phenotypes:     2 
Percent phenotyped: 100 100

No. chromosomes:    20 
Autosomes:      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
X chr:          X 

Total markers:      174 
No. markers:        22 8 6 20 14 11 7 6 5 5 14 5 5 5 11 6 12 4 4 4 
Percent genotyped:  47.7 
Genotypes (%):      AA:50.2  AB:49.8 

> plot(hyper)
> plot.missing(hyper, reorder = TRUE)
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R/qtl: find genotyping errors
> hyper <- calc.errorlod(hyper, error.prob=0.01)
> top.errorlod(hyper)

chr  id    marker errorlod
1    1 118   D1Mit14 8.372794
2    1 162   D1Mit14 8.372794
3    1 170   D1Mit14 8.372794
4    1 159   D1Mit14 8.350341
5    1  73   D1Mit14 6.165395
6    1  65   D1Mit14 6.165395
7    1  88   D1Mit14 6.165395
8    1 184   D1Mit14 6.151606
9    1 241   D1Mit14 6.151606
...
16   1 215  D1Mit267 5.822192
17   1 108  D1Mit267 5.822192
18   1 138  D1Mit267 5.822192
19   1 226  D1Mit267 5.822192
20   1 199  D1Mit267 5.819250
21   1  84  D1Mit267 5.808400
> plot.geno(hyper, chr=1, ind=c(117:119,137:139,157:184))
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R/qtl: 1 QTL interval mapping
> hyper <- calc.genoprob(hyper, step=1, 

error.prob=0.01)
> out.em <- scanone(hyper)
> out.hk <- scanone(hyper, method="hk")
> summary(out.em, threshold=3)

chr pos  lod
c1.loc45   1 48.3 3.52
D4Mit164   4 29.5 8.02
> summary(out.hk, threshold=3)

chr pos  lod
c1.loc45   1 48.3 3.55
D4Mit164   4 29.5 8.09
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black = EM
blue = HK

note bias where
marker data
are missing
systematically
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R/qtl: permutation threshold
> operm.hk <- scanone(hyper, method="hk", 

n.perm=1000)
Doing permutation in batch mode ...
> summary(operm.hk, alpha=c(0.01,0.05))
LOD thresholds (1000 permutations)

lod
1% 3.79
5% 2.78
> summary(out.hk, perms=operm.hk, alpha=0.05, 

pvalues=TRUE)
chr pos  lod pval

1   1 48.3 3.55 0.015
2   4 29.5 8.09 0.000

QTL 2: Tutorial Seattle SISG: Yandell © 2007 10



QTL 2: Tutorial Seattle SISG: Yandell © 2007 11

R/qtl: 2 QTL scan
> hyper <- calc.genoprob(hyper, step=5, error.prob=0.01)
> 
> out2.hk <- scantwo(hyper, method="hk")
--Running scanone
--Running scantwo
(1,1)
(1,2)
...
(19,19)
(19,X)
(X,X)
> summary(out2.hk, thresholds=c(6.0, 4.7, 4.4, 4.7, 2.6))

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a lod.add lod.av1
c1 :c4   68.3  30.0    14.13    6.51   0.225      68.3  30.0   13.90   6.288
c2 :c19  47.7   0.0     6.71    5.01   3.458      52.7   0.0    3.25   1.552
c3 :c3   37.2  42.2     6.10    5.08   0.226      37.2  42.2    5.87   4.853
c6 :c15  60.0  20.5     7.17    5.22   3.237      25.0  20.5    3.93   1.984
c9 :c18  67.0  37.2     6.31    4.79   4.083      67.0  12.2    2.23   0.708
c12:c19   1.1  40.0     6.48    4.79   4.090       1.1   0.0    2.39   0.697
> plot(out2.hk, chr=c(1,4,6,15))
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R/qtl: ANOVA imputation at QTL
> hyper <- sim.geno(hyper, step=2, n.draws=16, error.prob=0.01)
> qtl <- makeqtl(hyper, chr = c(1, 1, 4, 6, 15), pos = c(50, 76, 30, 70, 20))

> my.formula <- y ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5
> out.fitqtl <- fitqtl(hyper$pheno[,1], qtl, formula=my.formula)
> summary(out.fitqtl)

Full model result
----------------------------------
Model formula is:  y ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5 

df SS        MS      LOD     %var Pvalue(Chi2) Pvalue(F)
Model   6  5789.089 964.84822 21.54994 32.76422            0    0
Error 243 11879.847  48.88826                                   
Total 249 17668.936                                             

Drop one QTL at a time ANOVA table: 
----------------------------------

df Type III SS      LOD     %var F value Pvalue(F)    
Chr1@50           1     297.149    1.341    1.682   6.078   0.01438 *  
Chr1@76           1     520.664    2.329    2.947  10.650   0.00126 ** 
Chr4@30           1    2842.089   11.644   16.085  58.134  5.50e-13 ***
Chr6@70           2    1435.721    6.194    8.126  14.684  9.55e-07 ***
Chr15@20          2    1083.842    4.740    6.134  11.085  2.47e-05 ***
Chr6@70:Chr15@20  1     955.268    4.199    5.406  19.540  1.49e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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R/qtlbim (www.qtlbim.org)
• cross-compatible with R/qtl
• model selection for genetic architecture

– epistasis, fixed & random covariates, GxE
– samples multiple genetic architectures
– examines summaries over nested models

• extensive graphics
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R/qtlbim: tutorial
(www.stat.wisc.edu/~yandell/qtlbim)

> data(hyper)
## Drop X chromosome (for now).
> hyper <- subset(hyper, chr=1:19)
> hyper <- qb.genoprob(hyper, step=2) 
## This is the time-consuming step:
> qbHyper <- qb.mcmc(hyper, pheno.col = 1)
## Here we get stored samples.
> qb.load(hyper, qbHyper)
> summary(qbHyper)

QTL 2: Tutorial Seattle SISG: Yandell © 2007 16

R/qtlbim: initial summaries
> summary(qbHyper)
Bayesian model selection QTL mapping object qbHyper on cross object hyper 
had 3000 iterations recorded at each 40 steps with 1200 burn-in steps.

Diagnostic summaries:
nqtl mean envvar varadd varaa var

Min.     2.000  97.42  28.07  5.112  0.000  5.112
1st Qu.  5.000 101.00  44.33 17.010  1.639 20.180
Median   7.000 101.30  48.57 20.060  4.580 25.160
Mean     6.543 101.30  48.80 20.310  5.321 25.630
3rd Qu.  8.000 101.70  53.11 23.480  7.862 30.370
Max.    13.000 103.90  74.03 51.730 34.940 65.220

Percentages for number of QTL detected:
2  3  4  5  6  7  8  9 10 11 12 13 
2  3  9 14 21 19 17 10  4  1  0  0 

Percentages for number of epistatic pairs detected:
pairs
1  2  3  4  5  6 

29 31 23 11  5  1 

Percentages for common epistatic pairs:
6.15  4.15   4.6   1.7 15.15   1.4   1.6   4.9  1.15  1.17   1.5  5.11   1.2  7.15   1.1 

63    18    10     6     6     5     4     4     3     3     3     2     2     2     2 
> plot(qb.diag(qbHyper, items = c("herit", "envvar")))
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diagnostic summaries
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R/qtlbim: 1-D (not 1-QTL!) scan
> one <- qb.scanone(qbHyper, chr = c(1,4,6,15), 

type = "LPD")
> summary(one)
LPD of bp for main,epistasis,sum

n.qtl pos m.pos e.pos main epistasis sum
c1  1.331 64.5  64.5 67.8  6.10     0.442  6.27
c4  1.377 29.5  29.5 29.5 11.49     0.375 11.61
c6  0.838 59.0  59.0 59.0 3.99     6.265  9.60
c15 0.961 17.5  17.5 17.5 1.30     6.325  7.28
> plot(one)
> plot(out.em, chr=c(1,4,6,15), add = TRUE, col = 

"red", lty = 2)
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hyper data: scanone
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R/qtlbim: automated QTL selection
> hpd <- qb.hpdone(qbHyper, profile = "2logBF")
> summary(hpd)

chr n.qtl pos lo.50% hi.50% 2logBF       A       H
1    1 0.829 64.5   64.5 72.1  6.692 103.611  99.090
4    4 3.228 29.5   25.1   31.7 11.169 104.584  98.020
6    6 1.033 59.0   56.8   66.7  6.054  99.637 102.965
15  15 0.159 17.5   17.5 17.5 5.837 101.972 100.702
> plot(hpd)



QTL 2: Tutorial Seattle SISG: Yandell © 2007 21

2log(BF) scan with 50% HPD region
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R/qtlbim: Bayes Factor evaluations
> tmp <- qb.BayesFactor(qbHyper)
> summary(tmp)
$nqtl

$pattern
posterior    prior     bf   bfse

7:2*1,2*15,2*4,6   0.00500 3.17e-07 220.00 56.700
6:1,2*15,2*4,6     0.01400 1.02e-06 192.00 29.400
7:1,2*15,2*4,5,6   0.00600 4.49e-07 186.00 43.800
7:1,2*15,2,2*4,6   0.00433 5.39e-07 112.00 31.000
5:1,15,2*4,6       0.00867 5.81e-06  20.80  4.060
5:1,15,4,2*6       0.00733 5.22e-06  19.60  4.170
4:1,15,4,6         0.03770 2.71e-05  19.40  1.790

$chrom
posterior  prior    bf  bfse

4     0.2100 0.0595 15.00 0.529
15    0.1470 0.0464 13.40 0.589
6     0.1280 0.0534 10.10 0.483
1     0.2030 0.0901  9.55 0.345
> plot(tmp)
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hyper: number of QTL
posterior, prior, Bayes factors

prior

strength
of evidence

MCMC
error
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R/qtlbim: 2-D (not 2-QTL) scans
> two <- qb.scantwo(qbHyper, chr = c(6,15),
type = "2logBF")

> plot(two)
> plot(two, chr = 6, slice = 15, show.locus = 

FALSE)
> plot(two, chr = 15, slice = 6, show.locus = 

FALSE)
> two <- qb.scantwo(qbHyper, chr = c(6,15),
type = "LPD")

> plot(two, chr = 6, slice = 15, show.locus = 
FALSE)

> plot(two, chr = 15, slice = 6, show.locus = 
FALSE)
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2-D plot of 2logBF: chr 6 & 15
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1-D Slices of 2-D scans: chr 6 & 15
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R/qtlbim: slice of epistasis
> slice = qb.slicetwo(qbHyper, c(6,15), c(59,19.5))
> summary(slice)
2logBF of bp for epistasis

n.qtl pos m.pos e.pos epistasis slice
c6  0.838 59.0  59.0 66.7      15.8  18.1
c15 0.961 17.5  17.5 17.5 15.5  60.6

cellmean of bp for AA,HA,AH,HH 

n.qtl pos m.pos AA  HA  AH    HH slice
c6  0.838 59.0  59.0 97.4 105 102 100.8  18.1
c15 0.961 17.5  17.5 99.8 103 104  98.5  60.6

estimate of bp for epistasis

n.qtl pos m.pos e.pos epistasis slice
c6  0.838 59.0  59.0 66.7     -7.86  18.1
c15 0.961 17.5  17.5 17.5 -8.72  60.6
> plot(slice, figs = c("effects", "cellmean", "effectplot"))
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1-D Slices of 2-D scans: chr 6 & 15
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selected publications
www.stat.wisc.edu/~yandell/statgen

• Broman et al. (2003 Bioinformatics)
– R/qtl introduction

• Broman (2001 Lab Animal)
– nice overview of QTL issues

• Basten, Weir, Zeng (1995) QTL Cartographer
• Yandell, Bradbury (2007) Plant Map book chapter

– overview/comparison of QTL methods
• Yandell et al. (2007 Bioinformatics)

– R/qtlbim introduction
• Yi et al. (2005 Genetics)

– methodology of R/qtlbim



A brief tour of R/qtl

Karl W Broman

Department of Biostatistics, Johns Hopkins University
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16 January 2007

Overview of R/qtl

R/qtl is an extensible, interactive environment for mapping quantitative trait loci (QTL) in experimental crosses. Itis imple-
mented as an add-on package for the freely available and widely used statistical language/software R (see www.r-project.org).
The development of this software as an add-on to R allows us totake advantage of the basic mathematical and statistical func-
tions, and powerful graphics capabilities, that are provided with R. Further, the user will benefit by the seamless integration of
the QTL mapping software into a general statistical analysis program. Our goal is to make complex QTL mapping methods
widely accessible and allow users to focus on modeling rather than computing.

A key component of computational methods for QTL mapping is the hidden Markov model (HMM) technology for dealing
with missing genotype data. We have implemented the main HMMalgorithms, with allowance for the presence of genotyping
errors, for backcrosses, intercrosses, and phase-known four-way crosses.

The current version of R/qtl includes facilities for estimating genetic maps, identifying genotyping errors, and performing
single-QTL genome scans and two-QTL, two-dimensional genome scans, by interval mapping (with the EM algorithm), Haley-
Knott regression, and multiple imputation. All of this may be done in the presence of covariates (such as sex, age or treatment).
One may also fit higher-order QTL models by multiple imputation.

R/qtl is distributed as source code for Unix or compiled codefor Windows or Mac OS X. R/qtl is released under the GNU
General Public License. To download the software, you must agree to the terms in that license.

Overview of R

R is an open-source implementation of the S language. As described on the R-project homepage (www.r-project.org):

R is a system for statistical computation and graphics. It consists of a language plus a run-time environment with
graphics, a debugger, access to certain system functions, and the ability to run programs stored in script files.

The core of R is an interpreted computer language which allows branching and looping as well as modular pro-
gramming using functions. Most of the user-visible functions in R are written in R. It is possible for the user to
interface to procedures written in the C, C++, or FORTRAN languages for efficiency. The R distribution con-
tains functionality for a large number of statistical procedures. Among these are: linear and generalized linear
models, nonlinear regression models, time series analysis, classical parametric and nonparametric tests, clustering
and smoothing. There is also a large set of functions which provide a flexible graphical environment for creating
various kinds of data presentations. Additional modules are available for a variety of specific purposes.

R is freely available for Windows, Unix and Mac OS X, and may bedownloaded from the Comprehensive R Archive
Network (CRAN; cran.r-project.org).

Learning R may require a formidable investment of time, but it will definitely be worth the effort. Numerous free documents
on getting started with R are available on CRAN. In additional, several books are available. The most important book on R
is Venables and Ripley (2002)Modern Applied Statistics with S, 4th edition. Dalgaard (2002)Introductory Statistics with R
provides a more gentle introduction.

Citation for R/qtl

To cite R/qtl in publications, use

Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mappingin experimental crosses. Bioinformatics
19:889-890

1

http://www.rqtl.org
http://www.r-project.org
http://www.r-project.org


Selected R/qtl functions
Sample data badorder An intercross with misplaced markers

bristle3 Data on bristle number for Drosophila chromosome 3
bristleX Data on bristle number for Drosophila X chromosome
fake.4way Simulated data for a 4-way cross
fake.bc Simulated data for a backcross
fake.f2 Simulated data for an F2 intercross
hyper Backcross data on salt-induced hypertension
listeria Intercross data on Listeria monocytogenes susceptibility
map10 A genetic map modeled after the mouse genome (10 cM spacing)

Input/output read.cross Read data for a QTL experiment
write.cross Write data for a QTL experiment to a file

Simulation sim.cross Simulate a QTL experiment
sim.map Generate a genetic map

Summaries geno.table Create table of genotype distributions
plot.cross Plot various features of a cross object
plot.missing Plot grid of missing genotypes
plot.pheno Histogram or bar plot of a phenotype
plot.info Plot the proportion of missing genotype data
summary.cross Print summary of QTL experiment
summary.map Print summary of a genetic map
nchr, nind, nmar, nphe, totmar, nmissing

Data manipulation clean.cross Remove intermediate calculations from a cross
drop.markers Remove a list of markers
drop.nullmarkers Remove markers without data
fill.geno Fill in holes in genotype data by imputation or Viterbi
pull.map Pull out the genetic map from a cross
replace.map Replace the genetic map of a cross
subset.cross Select a subset of chromosomes and/or individuals from a cross
switch.order Switch the order of markers on a chromosome
movemarker Move a marker from one chromosome to another

HMM engine argmax.geno Reconstruct underlying genotypes by the Viterbi algorithm
calc.genoprob Calculate conditional genotype probabilities
sim.geno Simulate genotypes given observed marker data

QTL mapping scanone Genome scan with a single QTL model
scantwo Two-dimensional genome scan with a two-QTL model
lodint Calculate a LOD support interval
bayesint Calculate an approximate Bayes credible interval
plot.scanone Plot output for a one-dimensional genome scan
plot.scantwo Plot output for a two-dimensional genome scan
summary.scanone Print summary of scanone output
summary.scantwo Print summary of scantwo output
effectplot Plot phenotype means of genotype groups defined by 1 or 2 markers
plot.pxg Like effectplot, but as a dot plot of the phenotypes

Genetic mapping est.map Estimate genetic map
est.rf Estimate pairwise recombination fractions
plot.map Plot genetic map(s)
plot.rf Plot recombination fractions
ripple Assess marker order by permuting groups of adjacent markers
summary.ripple Print summary of ripple output

Genotyping errors calc.errorlod Calculate Lincoln & Lander (1992) error LOD scores
top.errorlod List genotypes with highest error LOD values
plot.geno Plot observed genotypes, flagging likely errors

Multiple QTL models makeqtl Make a qtl object for use by fitqtl
fitqtl Fit a multiple QTL model, using multiple imputation
summary.fitqtl Get summary of the result of fitqtl
scanqtl Perform a multi-dimensional genome scan, using multiple imputation
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Preliminaries

Use of the R/qtl package requires considerable knowledge ofthe R language/environment. We hope that the examples presented
here will be understandable with little prior knowledge of R, especially because we neglect to explain the syntax of R. Several
books, as well as some free documents, are available to assist the user in learning R; see the R project website cited above. We
assume here that the user is running either Windows or Mac OS X.

1. To start R, double-click its icon.

2. To exit, type:

q()

Click yes or no to save or discard your work.

3. R keeps all of your work in RAM. If R should crash, all will belost, and you will have to start from the beginning. The
functionsave.image can be used to save your work to disk as you go along, so that, should R crash, you won’t have
to start from scratch. You would type:

save.image()

4. Load the R/qtl package:

library(qtl)

5. View the objects in your workspace:

ls()

6. The best way to get help on the functions and data sets in R (and in R/qtl) is via the html version of the help files. One
way to get access to this is to type

help.start()

This should open a browser with the main help menu. If you thenclick onPackages→ qtl, you can see all of the available
functions and datasets in R/qtl. For example, look at the help file for the functionread.cross .

An alternative method to view this help file is to type one of the following:

help(read.cross)
?read.cross

The html version of the help files are somewhat easier to read,and allow use of hotlinks between different functions.

7. All of the code in this tutorial is available as a file from which you may copy and paste into R, if you prefer that to typing.
Type the following within R to get access to the file:

url.show("http://www.rqtl.org/rqtltour.R")

Data import

A difficult first step in the use of most data analysis softwareis the import of data. With R/qtl, one may import data in several
different formats by use of the functionread.cross . (Example data files are available at www.rqtl.org/sampledata.) The
internal data structure used by R/qtl is rather complicated, and is described in the help file forread.cross . (Also see
example 6, below.) We won’t discuss data import any further here, except to say that the comma-delimited format ("csv" )
is recommended. If you have trouble importing data, send an email to Karl Broman (kbroman@jhsph.edu ), attaching
examples of your data files. (Such data will be kept confidential.)

Example 1: Hypertension

As a first example, we consider data from an experiment on hypertension in the mouse (Sugiyama et al., Genomics 71:70-77,
2001), kindly provided by Bev Paigen and Gary Churchill.

1. First, get access to the data, see that it is in your workspace, and view its help file. These data are included with the R/qtl
package, and so you can get access to the data with the function data() .

data(hyper)
ls()
?hyper
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2. We will postpone discussion of the internal data structure used by R/qtl until later. For now we’ll just say that the data
hyper has “class”"cross" . The functionsummary.cross prints summary information on such data. We can call
that function directly, or we may simply usesummary and the data is sent to the appropriate function according toits
class.

summary(hyper)

Several other utility functions are available for getting summary information on the data. Hopefully these are self-
explanatory.

nind(hyper)
nphe(hyper)
nchr(hyper)
totmar(hyper)
nmar(hyper)

3. Plot a summary of these data.

plot(hyper)

In the upper left, black pixels indicate missing genotype data. Note that one marker has no genotype data. In the upper
right, the genetic map of the markers is shown. In the lower left, a histogram of the phenotype is shown.

The Windows version of R has a slick method for recording graphs, so that one may page up and down through a series
of plots. To initiate this, click (on the menu bar)History→ Recording.

We may plot the individual components of the above multi-plot figure as follows.

plot.missing(hyper)
plot.map(hyper)
plot.pheno(hyper, pheno.col=1)

We can plot the genetic map with marker names, but they can be rather difficult to read. The following code plots the
map with marker names for chr 1, 4, 6, 7 and 15.

plot.map(hyper, chr=c(1, 4, 6, 7, 15), show.marker.names= TRUE)

4. Note the odd pattern of missing data; we may make this missing data plot with the individuals ordered according to the
value of their phenotype.

plot.missing(hyper, reorder=TRUE)

We see that, for most markers, only individuals with extremephenotypes were genotyped. At many markers (in regions
of interest), markers were typed only on recombinant individuals.

5. The functiondrop.nullmarkers may be used to remove markers that have no genotype data (suchas the marker on
chr 14). A call tototmar will show that there are now 173 markers (rather than 174, as there were initially).

hyper <- drop.nullmarkers(hyper)
totmar(hyper)

6. Estimate recombination fractions between all pairs of markers, and plot them. This also calculates LOD scores for the
test of H0: r = 1/2. The plot of the recombination fractions can be either with recombination fractions in the upper part
and LOD scores below, or with just recombination fractions or just LOD scores. Note that red corresponds to a small
recombination fraction or a big LOD score, while blue is the reverse. Gray indicates missing values.

hyper <- est.rf(hyper)
plot.rf(hyper)
plot.rf(hyper, chr=c(1,4))

There are some very strange patterns in the recombination fractions, but this is due to the fact that some markers were
typed largely on recombinant individuals.

For example, on chr 6, the tenth marker shows a high recombination fraction with all other markers on the chromosome,
but a plot of the missing data shows that this marker was typedonly on a selected number of individuals (largely those
showing recombination events across the interval).

plot.rf(hyper, chr=6)
plot.missing(hyper, chr=6)
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7. Re-estimate the genetic map (keeping the order of markersfixed), and plot the original map against the newly estimated
one.

newmap <- est.map(hyper, error.prob=0.01)
plot.map(hyper, newmap)

We see some map expansion, especially on chr 6, 13 and 18. It isquestionable whether we should replace the map or
not. Keep in mind that the previous map locations are based ona limited number of meioses. If one wished to replace
the genetic map with the estimated one, it could be done as follows:

hyper <- replace.map(hyper, newmap)

This replaces the map in thehyper data withnewmap.

8. We now turn to the identification of genotyping errors. In the following, we calculate the error LOD scores of Lincoln
and Lander (1992). A LOD score is calculated for each individual at each marker; large scores indicate likely genotyping
errors.

hyper <- calc.errorlod(hyper, error.prob=0.01)

This calculates the genotype error LOD scores and inserts them into thehyper object.

The functiontop.errorlod gives a list of genotypes that may be in error. Error LOD scores < 4 can probably be
ignored.

top.errorlod(hyper)

Note that the results will be different, depending on whether you usedreplace.map above. If you did, you will get an
indication of potential errors on chr 16. If you didn’t, you will get an indication of potential errors on chr 1, 11 and 17.

9. The functionplot.geno may be used to inspect the observed genotypes for a chromosome, with likely genotyping
errors flagged. Of course, it’s difficult to look at too many individuals at once. Note that white = AA and black = AB (for
a backcross).

plot.geno(hyper, chr=16, ind=c(24:34, 71:81))

We don’t have any utilities for fixing any apparent errors; itwould be best to go back to the raw data. (Of course, you
should edit a copy of the file; never discard the primary data.)

10. The functionplot.info plots a measure of the proportion of missing genotype information in the genotype data. The
missing information is calculated in two ways: as entropy, or via the variance of the conditional genotypes, given the
observed marker data. (See the help file, using?plot.info .)

plot.info(hyper)
plot.info(hyper, chr=c(1,4,15))
plot.info(hyper, chr=c(1,4,15), method="entropy")
plot.info(hyper, chr=c(1,4,15), method="variance")

11. We now, finally, get to QTL mapping.

The core of R/qtl is a set of functions which make use of the hidden Markov model (HMM) technology to calculate
QTL genotype probabilities, to simulate from the joint genotype distribution and to calculate the most likely sequenceof
underlying genotypes (all conditional on the observed marker data). This is done in a quite general way, with possible
allowance for the presence of genotyping errors. Of course,for convenience we assume no crossover interference.

The functioncalc.genoprob calculates QTL genotype probabilities, conditional on theavailable marker data. These
are needed for most of the QTL mapping functions. The argument step indicates the step size (in cM) at which the
probabilities are calculated, and determines the step sizeat which later LOD scores are calculated.

hyper <- calc.genoprob(hyper, step=1, error.prob=0.01)

We may now use the functionscanone to perform a single-QTL genome scan with a normal model. We may use
maximum likelihood via the EM algorithm (Lander and Botstein 1989) or use Haley-Knott regression (Haley and Knott
1992).

out.em <- scanone(hyper)
out.hk <- scanone(hyper, method="hk")

We may also use the multiple imputation method of Sen and Churchill (2001). This requires that we first usesim.geno
to simulate from the joint genotype distribution, given theobserved marker data. Again, the argumentstep indicates
the step size at which the imputations are performed and determines the step size at which LOD scores will be calculated.
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The n.draws indicates the number of imputations to perform. Larger values give more precise results but require
considerably more computer memory and computation time.

hyper <- sim.geno(hyper, step=2, n.draws=16, error.prob= 0.01)
out.imp <- scanone(hyper, method="imp")

12. The output of scanone has class"scanone" ; the functionsummary.scanone displays the maximum LOD score on
each chromosome for which the LOD exceeds a specified threshold.

summary(out.em)
summary(out.em, threshold=3)
summary(out.hk, threshold=3)
summary(out.imp, threshold=3)

13. The functionmax.scanone returns just the highest peak from output ofscanone .

max(out.em)
max(out.hk)
max(out.imp)

14. We may also plot the results.plot.scanone can plot up to three genome scans at once, provided that they conform
appropriately. Alternatively, one may use the argumentadd .

plot(out.em, chr=c(1,4,15))
plot(out.em, out.hk, out.imp, chr=c(1,4,15))
plot(out.em, chr=c(1,4,15))
plot(out.hk, chr=c(1,4,15), col="blue", add=TRUE)
plot(out.imp, chr=c(1,4,15), col="red", add=TRUE)

15. The functionscanone may also be used to perform a permutation test to get a genome-wide LOD significance threshold.
For Haley-Knott regression, this can be quite fast.

operm.hk <- scanone(hyper, method="hk", n.perm=1000)

The permutation output has class"scanoneperm" . The functionsummary.scanoneperm can be used to get
significance thresholds.

summary(operm.hk, alpha=0.05)

In addition, if the permutations results are included in a call to summary.scanone , you can estimated genome-scan-
adjusted p-values for inferred QTL, and can get a report of all chromosomes meeting a certain significance level, with
the corresponding LOD threshold calculated automatically.

summary(out.hk, perms=operm.hk, alpha=0.05, pvalues=TR UE)

16. We should mention at this point that the functionsave.image may be used to save your workspace to disk. If R
crashes, you will wish you had used this.

save.image()

17. The functionscantwo performs a two-dimensional genome scan with a two-QTL model. For every pair of positions, it
calculates a LOD score for the full model (two QTL plus interaction) and a LOD score for the additive model (two QTL
but no interaction). This be quite time consuming, and so youmay wish to do the calculations on a coarser grid.

hyper <- calc.genoprob(hyper, step=5, error.prob=0.01)
out2.hk <- scantwo(hyper, method="hk")

One can also usemethod="em" or method="imp" , but they are even more time consuming.

18. The output ofscantwo has class"scantwo" ; there are functions for obtaining summaries and plots, of course.

The summary function considers each pair of chromosomes, and calculates the maximum LOD score for the full model
(Mf ) and the maximum LOD score for the additive model (Ma). These two models are allowed to be maximized at
different positions. We futher calculate a LOD score for a test of epistasis,Mi = Mf − Ma, and two LOD scores that
concern evidence for a second QTL:Mfv1 is the LOD score comparing the full model to the best single-QTL model and
Mav1 is the LOD score comparing the additive model to the best single-QTL model.

In the summary, we must provide five thresholds, forMf , Mfv1, Mi, Ma, andMav1, respectively. Call theseTf , Tfv1,
Ti, Ta, andTav1. We then report those pairs of chromosomes for which at leastone of the following holds:
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• Mf ≥ Tf and (Mfv1 ≥ Tfv1 or Mi ≥ Ti)

• Ma ≥ Ta andMav1 ≥ Tav1

The thresholds can be obtained by a permutation test (see below), but this is extremely time-consuming. For a mouse
backcross, we suggest the thresholds (6.0, 4.7, 4.4, 4.7, 2.6) for the full, conditional-interactive, interaction, additive, and
conditional-additive LOD scores, respectively. For a mouse intercross, we suggest the thresholds (9.1, 7.1, 6.3, 6.3,3.3)
for the full, conditional-interactive, interaction, additive, and conditional-additive LOD scores, respectively.These were
obtained by 10,000 simulations of crosses with 250 individuals, markers at a 10 cM spacing, and analysis by Haley-Knott
regression.

summary(out2.hk, thresholds=c(6.0, 4.7, 4.4, 4.7, 2.6))

The appropriate decision rule is not yet completely clear. Iam inclined to ignoreMi and to choose genome-wide
thresholds for the other four based on a permutation, using acommon significance level for all four.Mi would be
ignored if we gave it a very large threshold, as follows.

summary(out2.hk, thresholds=c(6.0, 4.7, Inf, 4.7, 2.6))

19. Plots ofscantwo results are created viaplot.scantwo .

plot(out2.hk)
plot(out2.hk, chr=c(1,4,6,15))

By default, the upper-left triangle contains epistasis LODscores and the lower-right triangle contains the LOD scoresfor
the full model. The color scale on the right indicates separate scales for the epistasis and joint LOD scores (on the left
and right, respectively).

20. The functionmax.scantwo returns the two-locus positions with the maximum LOD score for the full and additive
models.

max(out2.hk)

21. One may also usescantwo to perform permutation tests in order to obtain genome-wideLOD significance thresholds.
These can be extremely time consuming, though with the Haley-Knott regression and multiple imputation methods,
there is a trick that may be used in some cases to dramaticallyspeed things up. So we’ll try 100 permutations by the
Haley-Knott regression method and hope that your computer is sufficiently fast.

operm2.hk <- scantwo(hyper, method="hk", n.perm=100)

We can again usesummary to get LOD thresholds.

summary(operm2.hk)

And again these may be used in the summary of thescantwo output to calculate thresholds and p-values. If you want
to ignore the LOD score for the interaction in the rule about what chromosome pairs to report, giveα = 0, corresponding
to a thresholdT = ∞.

summary(out2.hk, perms=operm2.hk, pvalues=TRUE,
alphas=c(0.05, 0.05, 0, 0.05, 0.05))

You can’t really trust these results. Haley-Knott regression performs poorly in the case of selective genotyping (as with
thehyper data). Standard interval mapping or imputation would be better, but Haley-Knott regression has the advantage
of speed, which is the reason we use it here.

22. Finally, we consider the fit of multiple-QTL models. Currently, only the use of multiple imputation has been imple-
mented. We first create a QTL object using the functionmakeqtl , with five QTL at specified, fixed positions.

chr <- c(1, 1, 4, 6, 15)
pos <- c(50, 76, 30, 70, 20)
qtl <- makeqtl(hyper, chr, pos)

Finally, we use the functionfitqtl to fit a model with five QTL, and allowing the QTL on chr 6 and 15 tointeract.

my.formula <- y ˜ Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5
out.fitqtl <- fitqtl(hyper$pheno[,1], qtl, formula=my.f ormula)
summary(out.fitqtl)

23. You may wish to clean up your workspace before we move on tothe next example.

ls()
rm(list=ls())
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Example 2: Genetic mapping

R/qtl includes some utilities for estimating genetics mapsand checking marker orders. In this example, we describe theuse of
these utilities.

1. Get access to some sample data. This is simulated data withsome errors in marker order.

data(badorder)
summary(badorder)
plot(badorder)

2. Estimate recombination fractions between all pairs of markers, and plot them.

badorder <- est.rf(badorder)
plot.rf(badorder)

It appears that markers on chr 2 and 3 have been switched.

Also note that, if we look more closely at the recombination fractions for chr 1, there seem to be some errors in marker
order.

plot.rf(badorder, chr=1)

3. Re-estimate the genetic map.

newmap <- est.map(badorder, verbose=TRUE)
plot.map(badorder, newmap)

This really shows the problems on chr 2 and 3.

4. Fix the problems on chr 2 and 3. First, we look more closely at the recombination fractions for these chromosoems

plot.rf(badorder, chr=2:3)

We need to move the sixth marker on chr 2 to chr 3, and the fifth marker on chr 3 to chr 2. We need to figure out which
markers these are.

pull.map(badorder, chr=2)
pull.map(badorder, chr=3)

Now we can use the functionmovemarker to move the markers. It seems like they should be exactly switched.

badorder <- movemarker(badorder, "D2M937", 3, 48)
badorder <- movemarker(badorder, "D3M160", 2, 28.8)

Now look at the recombination fractions again.

plot.rf(badorder, chr=2:3)

5. We can check the marker order on chr 1. The functionripple will consider all permutations of a sliding window of
adjacent markers. A quick-and-dirty approach is to count the number of obligate crossovers for each possible order,
to find the order with the minimum number of crossovers. A morerefined, but also more computationally intensive,
approach is to re-estimate the genetic map for each order, calculating LOD scores (log10 likelihood ratios) relative to
the initial order. (This may be done with allowance for the presence of genotyping errors.) The default approach is the
quick-and-dirty method.

The following checks the marker order on chr 1, permuting groups of six contiguous markers.

rip1 <- ripple(badorder, chr=1, window=6)
summary(rip1)

In the summary output, markers 9–11 clearly need to be flipped. There also seems to be a problem with the order of
markers 4–6.

6. The following performs the likelihood analysis, permuting groups of three adjacent markers, assuming a genotyping error
rate of 1%. It’s considerably slower, but more trustworthy.

rip2 <- ripple(badorder, chr=1, window=3, err=0.01, metho d="likelihood")
summary(rip2)

Note that positive LOD scores indicate that the alternate order has a higher likelihood than the original.
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7. We can switch the order of markers 9–11 with the functionswitch.order (which works only for a single chromo-
some) and then re-assess the order. Note that the second row of rip1 corresponds to the improved order.

badorder.rev <- switch.order(badorder, 1, rip1[2,])
rip1r <- ripple(badorder.rev, chr=1, window=6)
summary(rip1r)

It looks like the marker pairs (5,6) and (1,2) should each be inverted. We useswitch.order again, and then check
marker order using the likelihood method.

badorder.rev <- switch.order(badorder.rev, 1, rip1r[2,] )
rip2r <- ripple(badorder.rev, chr=1, window=3, err=0.01)
summary(rip2r)

It’s probably best to start out using the quick-and-dirty method, with a large window size, to find the marker order with
the minimum number of obligate crossovers, and then refine that order using the slower, but more trustworthy, likelihood
method.

8. We can look again at the recombination fractions for this chromosome.

badorder.rev <- est.rf(badorder.rev)
plot.rf(badorder.rev, 1)

Example 3: Listeria susceptibility

In order to demonstrate further uses of the functionscanone , we consider some data on susceptibility toListeria monocyto-
genes in mice (Boyartchuk et al., Nature Genetics 27:259-260, 2001). These data were kindly provided by Victor Boyartchuk
and Bill Dietrich.

1. Get access to the data and view some summaries.

data(listeria)
summary(listeria)
plot(listeria)
plot.missing(listeria)

Note that in the missing data plot, gray pixels are partiallymissing genotypes (e.g., a genotype may be known to be either
AA or AB, but not which).

The phenotype here is the survival time of a mouse (in hours) following infection withListeria monocytogenes. Individ-
uals with a survival time of 264 hours are those that recovered from the infection.

2. We’ll use the log survival time, rather than survival time, so we first need to create a new phenotype, which will end up
as the third phenotype (aftersex ).

listeria$pheno$logSurv <- log(listeria$pheno[,1])
plot(listeria)

3. Estimate pairwise recombination fractions.

listeria <- est.rf(listeria)
plot.rf(listeria)
plot.rf(listeria, chr=c(5,13))

4. Re-estimate the genetic map.

newmap <- est.map(listeria, error.prob=0.01)
plot.map(listeria, newmap)
listeria <- replace.map(listeria, newmap)

5. Investigate genotyping errors; nothing gets flagged witha cutoff of 4, but one genotype is indicated with error LOD∼3.6.

listeria <- calc.errorlod(listeria, error.prob=0.01)
top.errorlod(listeria)
top.errorlod(listeria, cutoff=3.5)
plot.geno(listeria, chr=13, ind=61:70, cutoff=3.5)

Note that in the plot given byplot.geno , for an intercross, white = AA, gray = AB, black = BB, green = AAor AB,
and orange = AB or BB.
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6. Now on to the QTL mapping. Recall that the phenotype distribution shows a clear departure from the standard assump-
tions for interval mapping; 30% of the mice survived longer than 264 hours, and were considered recovered from the
infection.

One approach for these data is to use the two-part model considered by Boyartchuk et al. (2001). In this model, a
mouse with genotypeg has probabilitypg of surviving the infection. If it does die, its log survival time is assumed to
be distributed normal(µg,σ2). Analysis proceeds by maximum likelihood via an EM algorithm. Three LOD scores are
calculated. LOD(p, µ) is for the test of the null hypothesispg ≡ p andµg ≡ µ. LOD(p) is for the test of the hypothesis
pg ≡ p but theµ are allowed to vary. LOD(µ) is for the test of the hypothesisµg ≡ µ but thep are allowed to vary.

The functionscanone will fit the above model when the argumentmodel="2part" . One must also specify the
argumentupper , which indicates whether the spike in the phenotype is the maximum phenotype (as it is with this phe-
notype; takeupper=TRUE ) or the minimum phenotype (takeupper=FALSE ). For this model, only the EM algorithm
has been implemented so far.

listeria <- calc.genoprob(listeria, step=2)
out.2p <- scanone(listeria, pheno.col=3, model="2part", upper=TRUE)

Note that, because this model has three extra parameters, the appropriate LOD threshold is higher—around 4.5 rather
than 3.5. The three different LOD curves are in columns 3–5 ofthe output. We can use thelodcolumn argument to
plot.scanone to plot these other LOD scores.

summary(out.2p)
summary(out.2p, threshold=4.5)

Alternatively, we may useformat="allpeaks" , in which case it displays the maximum LOD score or each column,
with the position at which each was maximized. You may provide either one threshold, which would be applied to all
LOD score columns, or a separate threshold for each column.

summary(out.2p, format="allpeaks", threshold=3)
summary(out.2p, format="allpeaks", threshold=c(4.5,3, 3))

7. By default,plot.scanone will plot the first LOD score column. Alternatively, we may indicate another column to
plot with thelodcolumn argument. Or we can plot up to three LOD scores at once by giving a vector.

plot(out.2p)
plot(out.2p, lodcolumn=2)
plot(out.2p, lodcolumn=1:3, chr=c(1,5,13,15))

Note that the locus on chr 1 shows effect mostly on the mean time-to-death, conditional on death; the locus on chr 5
shows effect mostly on the probability of survival; and the loci on chr 13 and 15 shows some effect on each.

8. Permutation tests may be performed as before. The output will have three columns, corresponding to the three LOD
scores.

operm.2p <- scanone(listeria, model="2part", pheno.col= 3,
upper=TRUE, n.perm=25)

summary(operm.2p, alpha=0.05)

We may again use the permutation results insummary.scanone to have thresholds calculated automatically and to
obtain genome-scan-adjusted p-values, but of course we would want to have performed more than 25 permutations.

summary(out.2p, format="allpeaks", perms=operm.2p,
alpha=0.05, pvalues=TRUE)

9. Alternatively, one may perform separate analyses of the log survival time, conditional on death, and the binary phenotype
survival/death. First we set up these phenotypes.

y <- listeria$pheno$logSurv
my <- max(y, na.rm=TRUE)
z <- as.numeric(y==my)
y[y==my] <- NA
listeria$pheno$logSurv2 <- y
listeria$pheno$binary <- z
plot(listeria)

We use standard interval mapping for the log survival time conditional on death; the results are slightly different from
LOD(µ).
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out.mu <- scanone(listeria, pheno.col=4)
plot(out.mu, out.2p, lodcolumn=c(1,3), chr=c(1,5,13,15 ), col=c("blue","red"))

We can usescanone with model="binary" to analyze the binary phenotype. Again, the results are onlyslight
different from LOD(p).

out.p <- scanone(listeria, pheno.col=5, model="binary")
plot(out.p, out.2p, lodcolumn=c(1,2), chr=c(1,5,13,15) , col=c("blue","red"))

10. A further approach is to use a non-parametric form of interval mapping. R/qtl uses an extension of the Kruskal-Wallis
test statistic. Usescanone with model="np" . In this case, the argumentmethod is ignored; the analysis method
is much like Haley-Knott regression. If the argumentties.random=TRUE , tied phenotypes are ranked at random. If
ties.random=FALSE , tied phenotypes are given the average rank and a correctionis applied to the LOD score.

out.np1 <- scanone(listeria, model="np", ties.random=TR UE)
out.np2 <- scanone(listeria, model="np", ties.random=FA LSE)

plot(out.np1, out.np2, col=c("blue","red"))
plot(out.2p, out.np1, out.np2, chr=c(1,5,13,15))

Note that the significance threshold for the non-parametricgenome scan will be quite a bit smaller than that for the
two-part model. The two approaches for dealing with ties give basically the same results. Randomizing ties for the non-
parametric approach can give quite variable results in the case of a great number of ties, and so we would recommend the
use ofties.random=FALSE in this case.

Example 4: Covariates in QTL mapping

As a further example, we illustrate the use of covariates in QTL mapping. We consider some simulated backcross data.

1. Get access to the data.

data(fake.bc)
summary(fake.bc)
plot(fake.bc)

2. Perform genome scans for the two phenotypes without covariates.

fake.bc <- calc.genoprob(fake.bc, step=2.5)
out.nocovar <- scanone(fake.bc, pheno.col=1:2)

3. Perform genome scans with sex as an additive covariate. Note that the covariates must be numeric. Factors may have to
be converted.

sex <- fake.bc$pheno$sex
out.acovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex)

Here, the average phenotype is allowed to be different in thetwo sexes, but the effect of the putative QTL is assumed to
be the same in the two sexes.

4. Note that the use of sex as an additive covariate resulted in an increase in the LOD scores for phenotype 1, but resulted
in a decreased LOD score at the chr 5 locus for phenotype 2.

summary(out.nocovar, threshold=3, format="allpeaks")
summary(out.acovar, threshold=3, format="allpeaks")

plot(out.nocovar, out.acovar, chr=c(2, 5))
plot(out.nocovar, out.acovar, chr=c(2, 5), lodcolumn=2)

5. Let us now perform genome scans with sex as an interactive covariate, so that the QTL is allowed to be different in the
two sexes.

out.icovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex, intcovar=sex)

6. The LOD score in the output is for the comparison of the fullmodel with terms for sex, QTL and QTL×sex interaction
to the reduced model with just the sex term. Thus, the degreesof freedom associated with the LOD score is 2 rather than
1, and so larger LOD scores will generally be obtained.

summary(out.icovar, threshold=3, format="allpeaks")
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plot(out.acovar, out.icovar, chr=c(2,5), col=c("blue", "red"))
plot(out.acovar, out.icovar, chr=c(2,5), lodcolumn=2,

col=c("blue", "red"))

7. The difference between the LOD score with sex as an interactive covariate and the LOD score with sex as an additive
covariate concerns the test of the QTL×sex interaction: does the QTL have the same effect in both sexes? The differences,
and a plot of the differences, may be obtained as follows.

out.sexint <- out.icovar - out.acovar
plot(out.sexint, lodcolumn=1:2, chr=c(2,5), col=c("gre en", "purple"))

The green and purple curves are for the first and second phenotypes, respectively.

8. To test for the QTL×sex interaction, we may perform a permutation test. This is not perfect, as the permutation test
eliminates the effect of the QTL, and so we must assume that the distribution of the LOD score for the QTL×sex
interaction is the same in the presence of a QTL as under the global null hypothesis of no QTL effect.

The permutation test requires some care. We must perform separate permutations with sex as an additive covariate and
with sex as an interactive covariate, but we must ensure, by setting the “seed” for the random number generator, that they
use matched permutations of the data.

For the sake of speed, we will use Haley-Knott regression, even though the results above were obtained by standard
interval mapping. Also, we will perform just 100 permutations, though 1000 would be preferred.

seed <- ceiling(runif(1, 0, 10ˆ8))
set.seed(seed)
operm.acovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,

method="hk", n.perm=100)
set.seed(seed)
operm.icovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,

intcovar=sex, method="hk", n.perm=100)

Again, the differences concern the QTL×sex interaction.

operm.sexint <- operm.icovar - operm.acovar

We can usesummary to get the genome-wide LOD thresholds.

summary(operm.sexint, alpha=c(0.05, 0.20))

We can also use these results to look at evidence for QTL×sex interaction in our initial scans.

summary(out.sexint, perms=operm.sexint, alpha=0.1,
format="allpeaks", pvalues=TRUE)

Example 5: Multiple QTL mapping

We return to thehyper data to illustrate some of the more advanced methods for exploring multiple QTL models. Note
that the multiple QTL mapping features are currently implemented only for the multiple imputation method, and some aspects
remain quite cumbersome. Also, we will rely here on functions that are not yet available in the released version of R/qtl.These
functions are available at www.rqtl.org/multqtlfunc.R.

The multiple-QTL aspects of R/qtl are under active development (as they should be!), and so the methods used below will
hopefully be improved in the near future. Our aim here is to give a flavor of what is possible.

1. First, let us delete everything in our workspace and then re-load thehyper data.

rm(list=ls())
data(hyper)

2. Now let’s load the additional, developmental functions for multiple QTL mapping.

source("http://www.rqtl.org/multqtlfunc.R")

3. We will be using the multiple imputation method throughout this example, and so we first need to perform the imputations.
Recall that more imputations give more precise results, buttake more time and memory. To speed things along, we will
use only 32 imputations, even though much more would be needed for a definitive analysis.

hyper <- sim.geno(hyper, step=2.5, n.draw=32, err=0.01)
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4. We first perform a single-QTL genome scan and inspect the results.

out1 <- scanone(hyper, method="imp")
plot(out1)

As you’ll recall from the results in Example 1, we have clear evidence for a QTL on chr 4, and strong evidence for a QTL
on chr 1. The LOD curve on chr 1 has an interesting double peak,suggestive of possibly two QTL.

There is a hint of further loci on chr 6 and 15 and elsewhere.

5. In the presence of a large-effect QTL, as seen on chr 4, one may wish to repeat the scan, controlling for that locus. This
can make the loci with more modest effect more apparent.

A simple (but rough) approach is to pull out the genotypes fora marker near the peak locus, and use that marker as an
additive covariate in a single-QTL scan. The peak marker forthese data was D4Mit164:

max(out1)

If the peak LOD score is not at a marker, we may usefind.marker to identify the marker closest to the LOD peak.

find.marker(hyper, 4, 29.5)

6. The functionpull.geno may be used to pull out the genotype data for that marker, but we’ll see that most individuals
were not typed at D4Mit164.

g <- pull.geno(hyper)[,"D4Mit164"]
mean(is.na(g))

We may fill in the genotype data using a single imputation, andthen use those imputed genotypes as if they were observed.
This is not ideal; we’ll do this analysis properly (though with more complex code) below.

g <- pull.geno(fill.geno(hyper))[,"D4Mit164"]

7. Now we perform the genome scan, controlling for the chr 4 locus. (Note that in an intercross, we would have to re-code
the genotype data to be a two-column numeric matrix.)

out1.c4 <- scanone(hyper, method="imp", addcovar=g)

We can plot the results together with the original genome scan.

plot(out1, out1.c4, col=c("blue", "red"))

The LOD curve on chr 1 went up quite a bit. (And, of course, the LOD curve on chr 4 went down to near 0.) To see the
effect of controlling for the chr 4 locus more clearly, we canplot the differences between the LOD scores.

plot(out1.c4 - out1, ylim=c(-3,3))
abline(h=0, lty=2, col="gray")

8. We may also look for loci that interact with the chr 4 locus,by including marker D4Mit164 as an interactive covariate.

out1.c4i <- scanone(hyper, method="imp", addcovar=g, int covar=g)

The difference between these LOD scores and those obtained with D4Mit164 as a strictly additive covariate indicates
evidence for an interaction with the chr 4 locus.

plot(out1.c4i - out1.c4)

There is nothing particularly interesting here.

9. Now let us perform a 2d scan. This will take a few minutes, aswe’re doing the scan at a 2.5 cM step size.

out2 <- scantwo(hyper, method="imp")

10. Let us look at some summaries for thescantwo results. Recall that we need to provide five thresholds (see Example 1).
We’ll ignore the threshold on the epistasis LOD score,Ti, and use the thresholds suggested above.

summary(out2, thr=c(6.0, 4.7, Inf, 4.7, 2.6))

Your results may be different from mine, since we are using sofew imputations, but I see evidence for loci on chr 1 and
4 (which don’t appear to interact) and loci on chr 6 and 15 (which do show evidence of epistasis).

This didn’t pick up evidence for two QTL on chr 1; we can look directly at the chr 1 results as follows.

summary( subset(out2, chr=1) )

The LOD score for a second, additive QTL on chr 2 (LODav1) is∼1.6; not strong, but not uninteresting.
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Evidence for an interaction between loci on chr 7 and 15 had been previously reported. Those results may be inspected
as follows.

summary( subset(out2, chr=c(7,15)) )

Again, this is interesting but not strong.

11. Let us look at some plots of thescantwo results. First we make the standard plot with selected chromosomes; the upper
triangle contains LODi and the lower triangle contains LODf .

plot(out2, chr=c(1,4,6,7,15))

The argumentslower andupper may be used to change what is plotted in the upper and lower triangles. For example,
with lower="cond-int" , LODfv1 (evidence for a second QTL, allowing for epistasis) is displayed in the lower
triangle, while withlower="cond-add" , LODav1 (evidence for a second QTL, assuming no epistasis) is displayed.

plot(out2, chr=1, lower="cond-add")
plot(out2, chr=c(6,15), lower="cond-int")
plot(out2, chr=c(7,15), lower="cond-int")

Again, evidence for a second QTL on chr 1 is not strong. Evidence for interacting QTL on chr 6 and 15 is quite strong;
the 7×15 interaction is not.

12. We can also perform the 2d scan conditional on the chr 4 locus. We’ll do this just for chr 1, 6, 7, and 15, to save time.

out2.c4 <- scantwo(hyper, method="imp", addcovar=g, chr= c(1,6,7,15))

If we look at the same summaries as before, we see decreased evidence for a second QTL on chr 1 and for the 7×15
interaction, but increased evidence for the 6×15 interaction.

summary(out2.c4, thr=c(6.0, 4.7, Inf, 4.7, 2.6))
summary( subset(out2.c4, chr=1) )
summary( subset(out2.c4, chr=c(7,15)) )

The sort of plots we made before remain interesting.

plot(out2.c4, chr=c(1,4,6,7,15))
plot(out2.c4, chr=1, lower="cond-int")
plot(out2.c4, chr=c(6,15), lower="cond-int")
plot(out2.c4, chr=c(7,15), lower="cond-int")

We can also look at the differences in the LOD scores, to see how much conditioning on D4Mit164 has affected the
results. We need to subset our original results, since we only scanned selected chromosomes in the conditional analysis.
The allow.neg argument is used to allow negative LOD scores in thescantwo plot, as they would generally be
replaced with 0.

out2sub <- subset(out2, chr=c(1,6,7,15))
plot(out2.c4 - out2sub, allow.neg=TRUE, lower="cond-int ")

13. Now let us turn to the fit of multiple-QTL models. The function fitqtl is used to fit a specific model.

One must first pull out the data on fixed QTL locations usingmakeqtl . We will consider the possibility of two QTL on
chr 1, but will ignore the putative QTL on chr 7. Also note thatfitqtl takes a vector of phenotypes as input, and so
we pull that from thehyper data to make things simpler.

qc <- c(1, 1, 4, 6, 15)
qp <- c(43.3, 78.3, 30.0, 62.5, 18.0)
qtl <- makeqtl(hyper, chr=qc, pos=qp)
phe <- hyper$pheno[,1]

We also create a “formula” which indicates which QTL are to beincluded in the fit and which interact.

myformula <- y ˜ Q1+Q2+Q3+Q4+Q5 + Q4:Q5

We can now fit a model, including the 6×15 interaction, and get a summary of the results.

out.fq <- fitqtl(phe, qtl, formula = myformula)
summary(out.fq)

The first part of the summary describes the overall fit; the LODscore of∼23 is the log10 likelihood ratio comparing the
full model to the null model.
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The second part of the summary gives results dropping one term at a time from the model. In the presence of an
interaction, if a term included in the interaction is omitted, the interaction is also omitted, and so the rows for the loci on
chr 6 and 15 indicate 2 degrees of freedom.

14. One may also usefitqtl to get estimated effects of the QTL in the context of the multiple-QTL model. We can use
drop=FALSE , so that the “drop one at a time” part of the analysis is not performed, andget.ests=TRUE to get the
estimated effects.

out.fq <- fitqtl(phe, qtl, formula = myformula, drop=FALSE , get.ests=TRUE)
summary(out.fq)

The estimated effects are the differences between the heterozygote and homozygote groups. The interaction effect is of
the difference between the differences.

15. The functionrefineqtl (developmental code in the"multqtlfunc.R" file that we loaded earlier) can be used to
refine the estimated positions of the QTL in the context of themultiple-QTL model.

out.rq <- refineqtl(hyper, chr=qc, pos=qp, formula = myfor mula)

The output has two columns: the chromosome IDs and new positions of the QTL. For me, a couple of the QTL moved,
but very slightly:

qp - out.rq[,2]

We can re-runmakeqtl andfitqtl to get a fit with the new positions; the overall LOD score should have increased
slightly. (For me, it increased from 23.0 to 23.7.)

qp2 <- out.rq[,2]
qtl2 <- makeqtl(hyper, chr=qc, pos=qp2)
out.fq2 <- fitqtl(phe, qtl2, formula=myformula)
summary(out.fq2)

16. Thescanqtl function is used to perform general genome scans in the context of a multiple QTL model. It is quite
flexible, but not simple to use.

We will first usescanqtl to perform a more precise version of our genome scan, conditional on the chr 4 locus.
Previously, we had conditioned on imputed genotypes at a marker near the LOD peak on chr 4. Withscanqtl we can
do this properly: take proper account of the missing genotype information at the chr 4 locus, rather than taking genotypes
from a single imputation as if they had been observed.

Like makeqtl , the scanqtl function takes the chromosome and positions of a set of QTL, as well as a formula
indicating which QTL interact. If the formula is omitted, all loci are assumed to be additive. The QTL positions may be a
single number (in which case the QTL location is fixed) or an interval (in which case a scan over that region is performed.

And so, the following performs a scan on all of chr 1 (indicated by(-Inf,Inf) ) with a QTL on chr 4 fixed at 29.5 cM.

out1.sq <- scanqtl(hyper, chr=c(1,4), pos = list( c(-Inf,I nf), 29.5) )

The output contains LOD scores comparing the two-QTL model to the null model. If we want the LOD score comparing
the two-QTL model to the model with just the chr 4 locus, we need to subtract off the LOD score for the latter, single-QTL
model.

The output ofscanqtl is not simple to work with (yet), but the"multqtlfunc.R" file we loaded earlier contains a
functionconvert.scanqtl that will convert the output to an object of the form producedby scanone or scantwo .

And so, we first calculate the LOD score for the model with a single QTL on chr 4, and then use the functionconvert.scanqtl
to convert thescanqtl output to a more useable form.

null <- scanqtl(hyper, chr=4, pos=list(29.5))
out1.c4r <- convert.scanqtl(out1.sq, null)

We may now plot these results with those obtained earlier. The results are not actually too different.

plot(out1.c4, out1.c4r, col=c("blue", "red"), chr=1)

17. The same approach may be used to perform a 2d scan on chr 1, conditioning on the locus on chr 4. We need to use
scanqtl twice, once with an additive model and once with the full model (two QTL plus interaction).

out2.sq.add <- scanqtl(hyper, chr=c(1,1,4),
pos=list(c(-Inf,Inf), c(-Inf,Inf), 29.5))

out2.sq.full <- scanqtl(hyper, chr=c(1,1,4),
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pos=list(c(-Inf,Inf), c(-Inf,Inf), 29.5),
formula=y˜Q1+Q2+Q3+Q1:Q2)

We again useconvert.scanqtl to convert the output to a more useable form.

out2.c4r <- convert.scanqtl(out2.sq.full, null, out2.sq .add)

We can plot the difference between these results and our previous results; we first need to subset the old results, since
here we have just looked at chr 1.

out2.c4sub <- subset(out2.c4, chr=1)
plot(out2.c4sub - out2.c4r, lower="cond-add", allow.neg =TRUE)

Again, things have hardly changed.

18. Finally, let us usescanqtl to scan for additional loci. Let us take the five-QTL model (with the loci on 6 and 15
interacting) as fixed, and look to add a further locus. Hereout.fq2 is taken as the null model, and we must scan each
chromosome, one at a time, for a further locus. We’ll skip theX chromosome.

The syntax of the QTL positions is perhaps most tricky. Well,without much knowledge of R, this is all likely mysterious.

newpos <- c( as.list(qp2), list(c(-Inf, Inf)) )
out.sq <- NULL
for(i in 1:19) {

temp <- scanqtl(hyper, chr=c(qc,i), pos=newpos,
formula = y ˜ Q1+Q2+Q3+Q4+Q5 + Q4:Q5 + Q6)

out.sq <- rbind(out.sq, convert.scanqtl(temp, out.fq2))
}

The result,out.sq , is just like the output fromscanone , and so we may plot it as follows:

plot(out.sq)

19. We may use the same approach to look for additional loci that might interact with the locus on chr 15. The code is the
same, but we add the additional interaction to the formula.

out.sqi <- NULL
for(i in 1:19) {

temp <- scanqtl(hyper, chr=c(qc,i), pos=newpos,
formula = y ˜ Q1+Q2+Q3+Q4+Q5 + Q4:Q5 + Q6 + Q5:Q6)

out.sqi <- rbind(out.sqi, convert.scanqtl(temp, out.fq2 ))
}

We can plot the results (which indicate evidence for an additional QTL, allowing for epistasis), or the differences between
these and our previous ones, which concern just the interaction.

plot(out.sqi)
plot(out.sqi - out.sq)

The possible 7×15 interaction is by far the most interesting thing going on here.
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Example 6: Internal data structure

Finally, let us briefly describe the rather complicated datastructure that R/qtl uses for QTL mapping experiments. Thiswill be
rather dull, and will require a good deal of familiarity withthe R (or S) language. The choice of data structure required some
balance between ease of programming and simplicity for the user interface. The syntax for references to certain pieces of the
internal data can become extremely complicated.

1. Get access to some sample data.

data(fake.bc)

2. First, the object has a “class,” which indicates that it corresponds to data for an experimental cross, and gives the
cross type. By having classcross , the functionsplot andsummary know to send the data toplot.cross and
summary.cross .

class(fake.bc)

3. Everycross object has two components, one containing the genotype dataand genetic maps and the other containing
the phenotype data.

names(fake.bc)

4. The phenotype data is simply a matrix (more strictly a data.frame) with rows corresponding to individuals and columns
corresponding to phenotypes.

fake.bc$pheno[1:10,]

5. The genotype data is a list with components correspondingto chromosomes. Each chromosome has a name and a class.
The class for a chromosome is either"A" or "X" , according to whether it is an autosome or the X chromosome.

names(fake.bc$geno)
sapply(fake.bc$geno, class)

6. Each component ofgeno contains two components,data (containing the marker genotype data) andmap (containing
the positions of the markers, in cM).

names(fake.bc$geno[[3]])
fake.bc$geno[[3]]$data[1:5,]
fake.bc$geno[[3]]$map

That’s it for the raw data.

7. When one runscalc.genoprob , sim.geno , argmax.geno or calc.errorlod , the output is the input cross
object with the derived data attached to each component (thechromosomes) of thegeno component.

names(fake.bc$geno[[3]])
fake.bc <- calc.genoprob(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])
fake.bc <- sim.geno(fake.bc, step=10, n.draws=8, err=0.0 1)
names(fake.bc$geno[[3]])
fake.bc <- argmax.geno(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])
fake.bc <- calc.errorlod(fake.bc, err=0.01)
names(fake.bc$geno[[3]])

8. Finally, when one runsest.rf , a matrix containing the pairwise recombination fractionsand LOD scores is added to
the cross object.

names(fake.bc)
fake.bc <- est.rf(fake.bc)
names(fake.bc)
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Abstract

Bayesian interval mapping of QTL library R/qtlbim provides Bayesian analysis of multiple quanti-
tative trait loci (QTL) models. This includes posterior estimates of the number and location of QTL,
and of their main and epistatic effects. This tutorial assumes the reader has read A brief tour of R/qtl
by Karl Broman, available at www.rqtl.org. We extend his hypertension example by analyzing the same
data with Bayesian methods. Some familiarity with Bayesian methods is helpful but not required.

1 Overview of R/qtlbim

R/qtlbim is an extensible, interactive environment for mapping quantitative trait loci (QTL) in exper-
imental crosses using Bayesian methods. It builds on R/qtl (www.rqtl.org), which in turn builds on
the widely used statistical language system R (www.r-project.org). R/qtlbim is distributed in the same
manner as R/qtl, and can be installed similarly.

This tutorial describes the MCMC sampling routines and some of the plotting facilities available
through the R/qtlbim package. The purpose of these plots is to provide graphical tools for

1. exploring putative single and multiple QTL,

2. producing interpretable graphics of the relative evidence in favor of a set of putative QTL,

3. visual diagnostics of the MCMC model selection algorithm.

The package provides graphical diagnostics that can help investigate several ”better” models. It also
provides a 1-D and 2-D genome scan. The R/qtlbim package provides plotting facilities for results
generated by the analytical tools in the R/qtlbim package. These plotting facilities include time series
plots of QTL model charactacteristics as basic MCMC diagnostic plots, visual tools for comparison of
putative QTL models and exploratory plots whose purpose is the aid in the identification of likely QTL.

This package is currently in ”beta” release. That is, most of the basic features are stable, but we
expect a learning curve. We would like feedback from experienced QTL mappers and R users especially.
Please note that the command qb.mcmc that creates the MCMC samples produces external files in an
output directory. These files are tens of Mb large. They are integral to R/qtlbim diagnostics. The proper
way to remove a qb object created by qb.mcmc is to use the qb.remove routine, as indicated below.

This document walks through the R/qtlbim package by demonstrating the following major functions:
creation of Bayesian samples from the posterior using MCMC sampling; use of plot and summary tools
to examine genetic architecture; data management in R/qtlbim.

2 Citation of R/qtlbim

To cite R/qtl in publications, use the following:

Yandell BS, Mehta T, Banerjee S, Shriner D, Venkataraman R, Moon JY, Neely WW, Wu H,
von Smith R, Yi N (2007) R/qtlbim: QTL with Bayesian interval mapping in experimental
crosses. Bioinformatics 23: 641-643.

The methodology is described in the following paper:

Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D (2005) Bayesian model
selection for genome-wide epistatic QTL analysis. Genetics 170: 1333–1344.
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3 Preliminaries

The Preliminaries of Broman’s brief tour, as well as steps 1, 16 and 23 of his Example 1, provide important
information on careful use of R.

This tutorial focuses on the hyper dataset from R/qtl. Please complete the R/qtl Tutorial for
Hypertension in A brief tour of R/qtl available at (www.rqtl.org). Steps 1-4, 11-14 and 17-20 of Example
1 provide an overview of the core analysis in R/qtl.

Some other steps and examples might be skipped in the interest of time. Steps 15 and 21 show how
to estimate permutation thresholds, which can take considerable time on slower machines. Step 22 of
Example 1 and Example 5 develop a strategy for multiple QTL mapping. Example 4 shows how to
incorporate covariates into R/qtl analysis.

The other skipped steps of Example 1 (5-10) concern further investigation of the marker genotypes
and map construction. In addition, Example 2 provides further detail on marker order. Example 6 shows
the internal data construct for cross objects for those familiar with R who want to dig deeper.

All of the code for this tutorial is available in a file. You can view this as

> url.show("http://www.stat.wisc.edu/~yandell/qtl/software/qtlbim/rqtlbimtour.R")

4 Hypertension Example

1. Run steps 1-4, 11-14 and 17-20 of Example 1 of Broman’s brief tour. This provides an overview of
R/qtl.

2. Load R/qtlbim package.

> library(qtlbim)

3. Remove the X chromosome. R/qtlbim does not currently handle the X chromosome properly.

> data(hyper)

> hyper <- subset(hyper, chr = 1:19)

4. Calculate genotype probabilities.

> hyper <- qb.genoprob(hyper, step = 2)

This is essentially calc.genoprob of Broman’s step 11, but with variable step width required for
R/qtlbim.

5. The time-consuming part of R/qtlbim involves creating the MCMC samples. We will NOT do this
step in the tutorial. The random seed of 1616 is included to allow reproducible samples. To obtain
different MCMC samples, simply use a different seed or drop the seed argument.

## The following command is commented out.

## qbHyper <- qb.mcmc(hyper, pheno.col = 1, seed = 1616)

Note that this step creates a uniquely named directory containing flat (text) files with the MCMC
samples, as well as constructing the qb object.

6. Alternatively, we can load already prepared MCMC samples.

> qb.load(hyper, qbHyper)

This step actually loads the hyper dataset with the X chromosome removed and genotype proba-
bilities properly calculated, as well as the qb object qbHyper.

7. Show detailed summary of MCMC samples. This includes how the MCMC samples were con-
structed, where they were stored, etc.

> summary(qbHyper)

The diagnostic summaries characterize the number of QTL samples (nqtl), the posteriors for the
mean and environmental variance (envvar), the explained variance components (varadd and varaa)
and the total variance (var). In addition, the percentages of samples for number of QTL, number
of epistatic pairs, and the most common epistatic pairs are shown.

8. A collection of diagnostic plots and summaries can be shown with the plot command:

> plot(qbHyper)

These include the following, which are identified by the separate routine that can be used to get
that particular plot.

2

http://www.rqtl.org


� Time series of mcmc runs. R/coda trace of MCMC samples to assess the Markov chain mixing.

> tmp <- qb.coda(qbHyper)

> summary(tmp)

> plot(tmp)

� Jittered plot of quantitative trait loci by chromosome. A plot of samples loci across chromo-
somes (separated by main loci, epistatic loci and any GxE loci).

> tmp <- qb.loci(qbHyper)

> summary(tmp)

> plot(tmp)

� Bayes Factor selection plots. Posteriors and Bayes factor ratios for number of QTL, pattern of
QTL across chromosomes, chromosomes and epistatic pairs.

> tmp <- qb.BayesFactor(qbHyper)

> summary(tmp)

> plot(tmp)

� HPD regions and best estimates. One dimensional scan of major QTL for test statistic (2logBF)
and means by genotype.

> tmp <- qb.hpdone(qbHyper)

> summary(tmp)

> plot(tmp)

� Epistatic effects. Size of epistatic effects for most common pairs of chromosomes.

> tmp <- qb.epistasis(qbHyper)

> summary(tmp)

> plot(tmp)

� Summary diagnostics as histograms and boxplots by number of QTL. Posterior distribution
overall and separately by number of QTL sampled for the overall mean, environmental variance,
explained variance and heritability.

> tmp <- qb.diag(qbHyper)

> summary(tmp)

> plot(tmp)

9. Perform log posterior density (LPD) scan of entire genome. This is analogous to R/qtl’s scanone,
which produces the LOD. However there are marginal LPD, adjusting for all other possible QTL,
rather than one QTL summaries.

> one <- qb.scanone(qbHyper, type = "LPD")

10. The plot for qb.scanone has separate LPD curves for overall (black), main effects (blue), epistatic
effects (purple) and QTL by environment (dark red).

> plot(one)

11. The summary shows the estimated peak by chromosome. There are two positions, m.pos for position
of main effect peak and e.pos for position of epistatic effect peak.

> summary(one)

12. We can filter the summary to only pick up chromosomes with large main effects and/or epistasis.
We can then save those chromosome IDs.

> sum.one <- summary(one, sort = "sum", threshold = c(sum = 4,

+ epistasis = 4))

> sum.one

> chrs <- sort(sum.one$chr)

> chrs

13. Now we can show a plot with this subset of chromosomes.

> plot(one, chr = chrs)

14. Now look at cell means by genotype. We restrict attention to the key chromosomes.

> onemean <- qb.scanone(qbHyper, chr = chrs, type = "cellmean")

> plot(onemean)

> summary(onemean)
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15. An alternative way to filter the chromosomes is to use the highest posterior density (HPD) region.
Here we ask for an LPD profile, rather than the default 2logBF.

> hpd <- qb.hpdone(qbHyper, profile = "LPD")

> summary(hpd)

> plot(hpd)

The summary includes the limits of the HPD interval for each chromosome. The HPD region is
computed across the entire genome.

16. Perform a two-dimensional scan on the key chromosomes.

> two <- qb.scantwo(qbHyper, chr = chrs, type = "LPD")

17. Summarize the 2-D scan, sorting by the upper triangle, which contains epistasis by default. Thresh-
old to include only values above 4.

> summary(two, sort = "upper", threshold = c(upper = 4))

18. Plot to visualize epistatic chromosome pairs.

> plot(two)

19. Slice along ridge relative to chromosome 15.

> plot(two, chr = c(4, 6, 7), slice = 15)

20. Slice to examine cell mean for epistasis with chr 15. Plot shows profile of means for chromosome 6
and 7 when genotype on chr 15 is A (top) and H (bottom).

> slice <- qb.sliceone(qbHyper, type = "cellmean", chr = c(4, 6,

+ 7), slice = 15)

> summary(slice)

> plot(slice, chr = 6:7)

21. Perform detailed slice at peak on chr 6 and 15. Rightmost plots are from R/qtl at nearest marker
to peak.

> slice = qb.slicetwo(qbHyper, c(6, 15), c(59, 19.5))

> plot(slice)

> summary(slice)

5 Hypertension Demo

An alternative demo of R/qtlbim run on the hypertension data can be run as

> library(qtlbim)

> demo(qb.hyper.tour)
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Multiple Traits & Microarrays

1. why study multiple traits together? 2-10
– diabetes case study 

2. design issues 11-13
– selective phenotyping

3. why are traits correlated? 14-17
– close linkage or pleiotropy?

4. modern high throughput 18-31
– principal components & discriminant analysis

5. graphical models 32-36
– building causal biochemical networks
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1. why study multiple traits together?
• avoid reductionist approach to biology

– address physiological/biochemical mechanisms
– Schmalhausen (1942); Falconer (1952)

• separate close linkage from pleiotropy
– 1 locus or 2 linked loci?

• identify epistatic interaction or canalization
– influence of genetic background

• establish QTL x environment interactions
• decompose genetic correlation among traits
• increase power to detect QTL
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Type 2 Diabetes Mellitus
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Insulin Requirement

from Unger & Orci FASEB J. (2001) 15,312

decompensation
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glucose insulin

(courtesy AD Attie)
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studying diabetes in an F2
• segregating cross of inbred lines

– B6.ob x BTBR.ob → F1 → F2
– selected mice with ob/ob alleles at leptin gene (chr 6)
– measured and mapped body weight, insulin, glucose at various 

ages (Stoehr et al. 2000 Diabetes)
– sacrificed at 14 weeks, tissues preserved

• gene expression data
– Affymetrix microarrays on parental strains, F1

• (Nadler et al. 2000 PNAS; Ntambi et al. 2002 PNAS)
– RT-PCR for a few mRNA on 108 F2 mice liver tissues

• (Lan et al. 2003 Diabetes; Lan et al. 2003 Genetics)
– Affymetrix microarrays on 60 F2 mice liver tissues

• design (Jin et al. 2004 Genetics tent. accept)
• analysis (work in prep.)
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why map gene expression
as a quantitative trait?

• cis- or trans-action?
– does gene control its own expression? 
– or is it influenced by one or more other genomic regions?
– evidence for both modes (Brem et al. 2002 Science)

• simultaneously measure all mRNA in a tissue
– ~5,000 mRNA active per cell on average
– ~30,000 genes in genome
– use genetic recombination as natural experiment

• mechanics of gene expression mapping
– measure gene expression in intercross (F2) population
– map expression as quantitative trait (QTL)
– adjust for multiple testing
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LOD map for PDI:
cis-regulation (Lan et al. 2003)
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mapping microarray data
• single gene expression as trait (single QTL)

– Dumas et al. (2000 J Hypertens)
• overview, wish lists

– Jansen, Nap (2001 Trends Gen); Cheung, Spielman
(2002); Doerge (2002 Nat Rev Gen); Bochner (2003 
Nat Rev Gen)

• microarray scan via 1 QTL interval mapping
– Brem et al. (2002 Science); Schadt et al. (2003 Nature); 

Yvert et al. (2003 Nat Gen)
– found putative cis- and trans- acting genes

• multivariate and multiple QTL approach
– Lan et al. (2003 Genetics)
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2. design issues for expensive phenotypes
(thanks to CF “Amy” Jin)

• microarray analysis ~ $1000 per mouse
– can only afford to assay 60 of 108 in panel
– wish to not lose much power to detect QTL

• selective phenotyping
– genotype all individuals in panel
– select subset for phenotyping
– previous studies can provide guide
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selective phenotyping
• emphasize additive effects in F2

– F2 design: 1QQ:2Qq:1qq
– best design for additive only: 1QQ:1Qq
– drop heterozygotes (Qq)
– reduce sample size by half with no power loss

• emphasize general effects in F2
– best design: 1QQ:1Qq:1qq
– drop half of heterozygotes (25% reduction)

• multiple loci
– same idea but care is needed
– drop 7/16 of sample for two unlinked loci
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is this relevant to large QTL studies?

• why not phenotype entire mapping panel?
– selectively phenotype subset of 50-67%
– may capture most effects
– with little loss of power

• two-stage selective phenotyping?
– genotype & phenotype subset of 100-300

• could selectively phenotype using whole genome
– QTL map to identify key genomic regions
– selectively phenotype subset using key regions
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3. why are traits correlated?
• environmental correlation

– non-genetic, controllable by design
– historical correlation (learned behavior)
– physiological correlation (same body)

• genetic correlation
– pleiotropy

• one gene, many functions
• common biochemical pathway, splicing variants

– close linkage
• two tightly linked genes
• genotypes Q are collinear
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interplay of pleiotropy & correlation

pleiotropy only bothcorrelation only
Korol et al. (2001)
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3 correlated traits
(Jiang Zeng 1995)

ellipses centered on genotypic value
width for nominal frequency
main axis angle environmental correlation
3 QTL, F2
27 genotypes

note signs of
genetic and
environmental
correlation
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pleiotropy or close linkage?
2 traits, 2 qtl/trait
pleiotropy @ 54cM
linkage @ 114,128cM
Jiang Zeng (1995)
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4. modern high throughput biology
• measuring the molecular dogma of biology

– DNA → RNA → protein → metabolites
– measured one at a time only a few years ago

• massive array of measurements on whole systems (“omics”)
– thousands measured per individual (experimental unit)
– all (or most) components of system measured simultaneously

• whole genome of DNA: genes, promoters, etc.
• all expressed RNA in a tissue or cell
• all proteins
• all metabolites

• systems biology: focus on network interconnections
– chains of behavior in ecological community
– underlying biochemical pathways

• genetics as one experimental tool
– perturb system by creating new experimental cross
– each individual is a unique mosaic
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coordinated expression in mouse 
genome (Schadt et al. 2003)

expression 
pleiotropy

in yeast genome
(Brem et al. 2002)
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• reduce 30,000 traits to 300-3,000 heritable traits

• probability a trait is heritable
pr(H|Y,Q) = pr(Y|Q,H) pr(H|Q) / pr(Y|Q) Bayes rule

pr(Y|Q) = pr(Y|Q,H) pr(H|Q) + pr(Y|Q, not H) pr(not H|Q)

• phenotype averaged over genotypic mean µ
pr(Y|Q, not H) = f0(Y) = ∫ f(Y|G ) pr(G) dG if not H

pr(Y|Q, H) = f1(Y|Q) = ∏q  f0(Yq ) if heritable

Yq = {Yi | Qi =q} = trait values with genotype Q=q

finding heritable traits
(from Christina Kendziorski)
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hierarchical model for expression phenotypes
(EB arrays: Christina Kendziorski)

( )⋅pr~qG

QqG qqG

( )QQQQ ~ GfY ⋅

( )QqQq ~ GfY ⋅

( )qqqq ~ GfY ⋅

QQG

mRNA phenotype models
given genotypic mean Gq

common prior on Gq across all mRNA
(use empirical Bayes to estimate prior)

qqGQqG

QQG
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expression meta-traits: pleiotropy
• reduce 3,000 heritable traits to 3 meta-traits(!)
• what are expression meta-traits?

– pleiotropy: a few genes can affect many traits
• transcription factors, regulators

– weighted averages: Z = YW
• principle components, discriminant analysis

• infer genetic architecture of meta-traits
– model selection issues are subtle

• missing data, non-linear search
• what is the best criterion for model selection?

– time consuming process
• heavy computation load for many traits
• subjective judgement on what is best
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PC for two correlated mRNA
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PC across microarray functional groups
Affy chips on 60 mice
~40,000 mRNA

2500+ mRNA show DE
(via EB arrays with
marker regression)

1500+ organized in
85 functional groups
2-35 mRNA / group

which are interesting? 
examine PC1, PC2 

circle size = # unique mRNA
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84 PC meta-traits by functional group
focus on 2 interesting groups

Traits NCSU QTL II: Yandell © 2005 26

red lines: peak
for PC meta-trait

black/blue: peaks
for mRNA traits

arrows: cis-action?
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(portion of) chr 4 region chr 15 region

?
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interaction plots for DA meta-traits
DA for all pairs of markers: 

separate 9 genotypes based on markers
(a) same locus pair found with PC meta-traits
(b) Chr 2 region interesting from biochemistry (Jessica Byers)
(c) Chr 5 & Chr 9 identified as important for insulin, SCD
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genotypes from 
Chr 4/Chr 15 
locus pair
(circle=centroid) 

PC captures 
spread without 
genotype

DA creates best 
separation by 
genotype
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note better
spread of circles

PC ignores genotype DA uses genotype
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relating meta-traits to mRNA traits

SC
D

 tr
ai

t
lo

g2
 e

xp
re

ss
io

n
D

A
 m

et
a-

tra
it

st
an

da
rd

 u
ni

ts



Traits NCSU QTL II: Yandell © 2005 31

DA: a cautionary tale
(184 mRNA with |cor| > 0.5; mouse 13 drives heritability)
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building graphical models

• infer genetic architecture of meta-trait
– E(Z | Q, M) = µq = β0 + ∑{q in M} βqk

• find mRNA traits correlated with meta-trait
– Z ≈ YW for modest number of traits Y

• extend meta-trait genetic architecture
– M = genetic architecture for Y
– expect subset of QTL to affect each mRNA
– may be additional QTL for some mRNA
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posterior for graphical models
•posterior for graph given multivariate trait & architecture
pr(G | Y, Q, M) = pr(Y | Q, G) pr(G | M) / pr(Y | Q)

–pr(G | M) = prior on valid graphs given architecture

•multivariate phenotype averaged over genotypic mean µ
pr(Y | Q, G) = f1(Y | Q, G) = ∏q f0(Yq | G)

f0(Yq | G) = ∫ f(Yq | µ, G) pr(µ) dµ

•graphical model G implies correlation structure on Y

•genotype mean prior assumed independent across traits
pr(µ) = ∏t pr(µt)
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from graphical models to pathways

• build graphical models
QTL → RNA1 → RNA2
– class of possible models
– best model = putative biochemical pathway

• parallel biochemical investigation
– candidate genes in QTL regions
– laboratory experiments on pathway components
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graphical models (with Elias Chaibub)
f1(Y | Q, G=g) = f1(Y1 | Q)  f1(Y2 | Q, Y1)

R2D2 P2

QTL R1D1 P1

observable
trans-action

unobservable
meta-traitQTL RNADNA

observable
cis-action?

protein
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summary
• expression QTL are complicated

– need to consider multiple interacting QTL
• coherent approach for high-throughput traits

– identify heritable traits
– dimension reduction to meta-traits
– mapping genetic architecture
– extension via graphical models to networks

• many open questions
– model selection
– computation efficiency
– inference on graphical models
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