Seattle Summer Institute 2007
Advanced QTL
Brian S. Yandell
University of Wisconsin-Madison

* Overview: Multiple QTL Approaches

* Bayesian QTL mapping & model selection
 data examples in detail

 software demo & automated strategy

» multiple phenotypes & microarrays

Real knowledge is to know the extent of one’s ignorance.
Confucius (on a bench in Seattle)
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contact information & resources

« email:  byandell@wisc.edu

+ web: www.stat.wisc.edu/~yandell/statgen
— QTL & microarray resources
— references, software, people

* thanks:

— students: Jaya Satagopan, Pat Gaffney, Fei Zou, Amy Jin,
W. Whipple Neely, Jee Young Moon

— faculty/staff: Alan Attie, Michael Newton, Nengjun Yi, Gary
Churchill, Hong Lan, Christina Kendziorski, Tom Osborn, Jason
Fine, Tapan Mehta, Hao Wu, Samprit Banerjee, Daniel Shriner

QTL 2: Overview Seattle SISG: Yandell © 2007 2




Overview of Multiple QTL

What is the goal of multiple QTL study?
Gene action and epistasis

Bayesian vs. classical QTL

QTL model selection

QTL software options

A e
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1. what is the goal of QTL study?

* uncover underlying biochemistry

— identify how networks function, break down

— find useful candidates for (medical) intervention

— epistasis may play key role

— statistical goal: maximize number of correctly identified QTL
* basic science/evolution

— how is the genome organized?

— identify units of natural selection

— additive effects may be most important (Wright/Fisher debate)

— statistical goal: maximize number of correctly identified QTL
+ select “elite” individuals

— predict phenotype (breeding value) using suite of characteristics
(phenotypes) translated into a few QTL

— statistical goal: mimimize prediction error
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cross two inbred lines
— linkage disequilibrium
— associations

— linked segregating QTL

(after Gary Churchill) QTL

Marker - == =---- » Trait
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problems of single QTL approach

« wrong model: biased view
— fool yourself: bad guess at locations, effects
— detect ghost QTL between linked loci
— miss epistasis completely

* low power
* bad science
— use best tools for the job
— maximize scarce research resources
— leverage already big investment in experiment
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advantages of multiple QTL approach

* improve statistical power, precision
— increase number of QTL detected
— Dbetter estimates of loci: less bias, smaller intervals
« improve inference of complex genetic architecture
— patterns and individual elements of epistasis
— appropriate estimates of means, variances, covariances
+ asymptotically unbiased, efficient
— assess relative contributions of different QTL
* improve estimates of genotypic values
— less bias (more accurate) and smaller variance (more precise)

— mean squared error = MSE = (bias)? + variance
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advantages of multiple QTL approach

* improve statistical power, precision
— increase number of QTL detected
— better estimates of loci: less bias, smaller intervals
» improve inference of complex genetic architecture
— patterns and individual elements of epistasis
— appropriate estimates of means, variances, covariances
 asymptotically unbiased, efficient
— assess relative contributions of different QTL
» improve estimates of genotypic values
— less bias (more accurate) and smaller variance (more precise)
— mean squared error = MSE = (bias)? + variance
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major QTL on
linkage map
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Pareto diagram of QTL effects
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2. Gene Action and Epistasis

additive, dominant, recessive, general effects
of a single QTL (Gary Churchill)
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additive effects of two QTL
(Gary Churchill)
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Epistasis (Gary Churchill)

The allelic state at one locus can mask or
uncover the effects of allelic variation at another.
- W. Bateson, 1907.
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epistasis in parallel pathways (GAC)

* Z keeps trait value low X< E;
\ ]
* neither E, nor E, is rate Y/E_Zv
limiting

* loss of function alleles are
segregating from parent A at
E, and from parent B at E,
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epistasis 1n a serial pathway (GAC)
» Z keeps trait value high

* neither El. nor E.2 1s rate
limiting

* loss of function alleles are
segregating from parent B at
E, and from parent A at E,
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epistatic interactions

* model space issues
— 2-QTL interactions only?
* or general interactions among multiple QTL?
— partition of effects
* Fisher-Cockerham or tree-structured or ?
* model search issues
— epistasis between significant QTL
+ check all possible pairs when QTL included?
+ allow higher order epistasis?
— epistasis with non-significant QTL
» whole genome paired with each significant QTL?
* pairs of non-significant QTL?

» see papers of Nengjun Yi (2000-7) in Genetics
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limits of epistatic inference

* power to detect effects
— epistatic model sizes grow quickly
* |4] =34 for general interactions

— power tradeoff

* depends sample size vs. model size 2 linked QTL
» want n /|4 to be fairly large (say > 5) empty cell
*« 3QTL,n=100F2:n/|4| =4 with n = 100
* rare genotypes may not be observed
— aa/BB & AA/bb rare for linked loci bb bB BB
— empty cells mess up balance aa 6 15 0

« adjusted tests (type III) are wrong

ad 15 25 15
A4 3 15 6

— confounds main effects & interactions
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limits of multiple QTL?

» limits of statistical inference

— power depends on sample size, heritability, environmental
variation

— “best” model balances fit to data and complexity (model size)
— genetic linkage = correlated estimates of gene effects
* limits of biological utility
— sampling: only see some patterns with many QTL
— marker assisted selection (Bernardo 2001 Crop Sci)
* 10 QTL ok, 50 QTL are too many
* phenotype better predictor than genotype when too many QTL
* increasing sample size may not give multiple QTL any advantage
— hard to select many QTL simultaneously
* 3mpossible genotypes to choose from
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QTL below detection level?

* problem of selection bias
— QTL of modest effect only detected sometimes
— effects overestimated when detected
— repeat studies may fail to detect these QTL
* think of probability of detecting QTL
— avoids sharp in/out dichotomy
— avoid pitfalls of one “best” model
— examine “better” models with more probable QTL
* rethink formal approach for QTL
— directly allow uncertainty in genetic architecture
— QTL model selection over genetic architecture
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3. Bayesian vs. classical QTL study

 classical study
— maximize over unknown effects
— test for detection of QTL at loci
— model selection in stepwise fashion
* Bayesian study
— average over unknown effects
—  estimate chance of detecting QTL
— sample all possible models
* both approaches

— average over missing QTL genotypes
— scan over possible loci
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QTL model selection: key players

* observed measurements
— y=phenotypic trait
— m = markers & linkage map observed m o

— i =individual index (1,...,n)
* missing data
— missing marker data el
— g = QT genotypes missing Q
« alleles QQ, Qq, or qq at locus

* unknown quantities

— A =QT locus (or loci)
— 4 = phenotype model parameters ~ UNKnown
— A = QTL model/genetic architecture

*  pr(g|m,A,A) genotype model

— grounded by linkage map, experimental cross

— recombination yields multinomial for ¢ given m
*  pr(ylg, s 4) phenotype model

— distribution shape (assumed normal here)

. fi
— unknown parameters u (could be non-parametric) after

Sen Churchill (2001)
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Bayes posterior vs. maximum likelihood

» LOD: classical Log ODds

— maximize likelihood over effects u
- R/gtl scanone/scantwo: method =

AN ”

em

* LPD: Bayesian Log Posterior Density

— average posterior over effects u
- R/gtl scanone/scantwo: method =

AN

imp

LOD(2) = log,, {max,, pr(y |m, y1, A)} + ¢
LPD(A) = log,, {pr(4 |m) [ pr(y |m, 1, A)pr(u)du} +C
likelihood mixes over missing QTL genotypes:

pr(y [m, u,2) =3 pr(v|q, m)pr(q|m,2)
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lod.phenotype

LOD & LPD: 1 QTL
n.ind = 100, 1 cM marker spacing
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lod.phenotype
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LOD & LPD: 1 QTL
n.ind = 100, 10 cM marker spacing
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black dash = LOD; blue solid = LPD; purple dot = THEORY
Map position (cM)
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marginal LOD or LPD

* compare two architectures at each locus

— with (4,) or without (4,) another QTL at separate locus 4,
» preserve model hierarchy (e.g. drop any epistasis with QTL at 4,)
— with (4,) or without (4,) epistasis with second locus 4,

 allow for multiple QTL besides locus being scanned
— allow for QTL at all other loci A, in architecture 4,

» use marginal LOD, LPD or other diagnostic
— posterior, Bayes factor, heritability

LOD(%J@ | Az) o LOD(ﬂl ‘ Al)
LPD(//I’U}’Z | Az) o LPD(ﬂq | A1)
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lod.phenotype

LPD: 1 QTL vs. multi-QTL

marginal contribution to LPD from QTL at A
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substitution effect: 1 QTL vs. multi-QTL
single QTL effect vs. marginal effect from QTL at A
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black solid = 1-QTL; red solid = multi-QTL; purple dot = 1-QTL THEORY
Map position (cM)
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4. QTL model selection

* select class of models
— see earlier slides above
* decide how to compare models
— coming below
* search model space
— see Bayesian QTL mapping & model selection talk
* assess performance of procedure

— some below
— see Kao (2000), Broman and Speed (2002)
— be wary of HK regression assessments
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pragmatics of multiple QTL

+ evaluate some objective for model given data
— classical likelihood
— Bayesian posterior
+ search over possible genetic architectures (models)
— number and positions of loci
— gene action: additive, dominance, epistasis
+ estimate “features” of model
— means, variances & covariances, confidence regions
— marginal or conditional distributions
+ art of model selection
— how select “best” or “better” model(s)?
— how to search over useful subset of possible models?
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comparing models

 balance model fit against model complexity
— want to fit data well (maximum likelihood)
— without getting too complicated a model

smaller model  bigger model
fit model miss key features fits better
estimate phenotype may be biased  no bias
predict new data may be biased  no bias

interpret model easier more complicated
estimate effects low variance high variance
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information criteria
to balance fit against complexity

» classical information criteria
— penalize likelihood L by model size |4]
—1C=-2log L(4 | y) + penalty(4)
— maximize over unknowns
 Bayes factors
— marginal posteriors pr(y | 4)
— average over unknowns
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classical information criteria

« start with likelihood L(4 | y, m)
— measures fit of architecture (4) to phenotype (v)
» given marker data (m)
— architecture (4) depends on parameters
* have to estimate loci (u) and effects (1)
» complexity related to number of parameters

— p = |A| = size of genetic architecture

— with n.gtl =4 QTL and all 2-QTL epistasis terms
* BC: p=1+ngqgtl+nqtllngtl-1)=1+4+12=17
* F2: p=1+2ngqgtl +4 n.qtl(n.qtl - 1)=1+ 8 +48 =57
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classical information criteria

* construct information criteria
— balance fit to complexity
— Akaike AIC =-2log(L)+2p
— Bayes/Schwartz BIC =-2 log(L) + p log(n)
— Broman  BIC;=-2log(L) + o p log(n)
— general form: IC =-2 log(L) + p D(n)
» compare models
— hypothesis testing: designed for one comparison
* 210g[LR(p,,py)] = L(y|m.A4,) — L(y|m.4,)
— model selection: penalize complexity
* IC(p.p,y) =2 10g[LR(p,.p,)] + (p, — py) D(n)
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Bayes factors

« ratio of model likelihoods
— ratio of posterior to prior odds for architectures
— averaged over unknowns
B, - pr(4 | y,m)/pr(4, |y,m) _ pr(y|m, 4)
pr(4,)/pr(4,) pr(y [m, 4,)
 roughly equivalent to BIC

— BIC maximizes over unknowns

— BF averages over unknowns
—2log(By,) = —21og(LR) = (p, — p,)log(n)
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information criteria vs. model size

d
« WinQTL 2.0 2 - o
* SCD data on F2 / P
° A:AIC ‘%g 1 d/z
« 1=BIC(1) g / )
« 2=BIC(2) g8 L
_ 8 g 2/
« d=BIC(Y) SR R
e models §_A\ 1//11/
~ 1234QTL \M N
. 2454942 AR A—n

A
T T T T T T
3 4 5 6 7 8 9
model parameters p\ /'
epistasis
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scan of marginal Bayes factor & effect
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5. QTL software options

» methods
— approximate QTL by markers
— exact multiple QTL interval mapping
* software platforms
— MapMaker/QTL (obsolete)
— QTLCart (statgen.ncsu.edu/qtlcart)
— R/qtl (www.rqtl.org)
— R/qtlbim (www.qtlbim.org)
— Yandell, Bradbury (2007) book chapter
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approximate QTL methods

* marker regression
— locus & effect confounded
— lose power with missing data
» Haley-Knott (least squares) regression
— correct mean, wrong variance
— biased by pattern of missing data (Kao 2000)
« extended HK regression
— correct mean and variance
— minimizes bias issue (R/qtl “ehk” method)
« composite interval mapping (QTLCart)
— use markers to approximate other QTL
— properties depend on marker spacing, missing data
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exact QTL methods

« interval mapping (Lander, Botstein 1989)
— scan whole genome for single QTL
— bias for linked QTL, low power

« multiple interval mapping (Kao, Zeng, Teasdale 1999)
— sequential scan of all QTL
— stepwise model selection

» multiple imputation (Sen, Churchill 2001)
— fill in (impute) missing genotypes along genome
— average over multiple imputations

» Bayesian interval mapping (Y1 et al. 2005)
— sample most likely models
— marginal scans conditional on other QTL
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QTL software platforms

QTLCart (statgen.ncsu.edu/qtlcart)
— includes features of original MapMaker/QTL
* not designed for building a linkage map
easy to use Windows version WinQTLCart
based on Lander-Botstein maximum likelihood LOD
+ extended to marker cofactors (CIM) and multiple QTL (MIM)
* cpistasis, some covariates (GXE)
* stepwise model selection using information criteria
— some multiple trait options
OK graphics
* R/qtl (www.rqtl.org)
— includes functionality of classical interval mapping
— many useful tools to check genotype data, build linkage maps
— excellent graphics
— several methods for 1-QTL and 2-QTL mapping
* epistasis, covariates (GXE)
— tools available for multiple QTL model selection
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Bayesian QTL software options

* Bayesian Haley-Knott approximation: no epistasis
— Berry C (1998)
* R/bqtl (www.r-project.org contributed package)
+ multiple imputation: epistasis, mostly 1-2 QTL but some multi-QTL
— Sen and Churchill (2000)

« matlab/pseudomarker (www.jax.org/staff/churchill/labsite/software)
— Broman et al. (2003)
* R/qtl (www.rqtl.org)
* Bayesian interval mapping via MCMC: no epistasis
— Satagopan et al. (1996); Satagopan, Yandell (1996) Gaffney (2001)
* R/bim (Wwww.r-project.org contributed package)
*  WinQTLCart/bmapqtl (statgen.ncsu.edu/qtlcart)
— Stephens & Fisch (1998): no code release
— Sillanpéd Arjas (1998)
* multimapper (www.rni.helsinki.fi/~mjs)
* Bayesian interval mapping via MCMC: epistasis
— Yandell et al. (2007)
* R/qtlbim (www.qtlbim.org)
* Bayesian shrinkage: no epistasis
— Wang et al. Xu (2005): no code release
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R/qtlbim: www.qtlbim.org

 Properties
— cross-compatible with R/qtl
— new MCMC algorithms

* Gibbs with loci indicators; no reversible jump
— epistasis, fixed & random covariates, GxE
— extensive graphics

» Software history
— initially designed (Satagopan Yandell 1996)
— major revision and extension (Gaffney 2001)
— R/bim to CRAN (Wu, Gaffney, Jin, Yandell 2003)
— R/qtlbim to CRAN (Yi, Yandell et al. 2006)
* Publications
— Yietal. (2005); Yandell et al. (2007); ...
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Bayesian Interval Mapping

Bayesian strategy 3-17
Markov chain sampling 18-25
sampling genetic architectures 26-33
Bayesian QTL model selection 34-44

A
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QTL model selection: key players

* observed measurements
— y=phenotypic trait
— m = markers & linkage map observed m o

— i =individual index (1,...,n)
* missing data
— missing marker data

— g = QT genotypes
« alleles QQ, Qq, or qq at locus

* unknown quantities
— A =QT locus (or loci)
— 4 = phenotype model parameters ~ UNKNown
— H = QTL model/genetic architecture

*  pr(q|m,A,H) genotype model
— grounded by linkage map, experimental cross
— recombination yields multinomial for ¢ given m
*  pr(ylg, 1 H) phenotype model
— distribution shape (assumed normal here)
— unknown parameters u (could be non-parametric)

mlssmg

after
Sen Churchill (2001)
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1. Bayesian strategy for QTL study

* augment data (y,m) with missing genotypes ¢
» study unknowns (g 4,4) given augmented data (y,m,q)
— find better genetic architectures 4
— find most likely genomic regions = QTL =4
— estimate phenotype parameters = genotype means = 4
» sample from posterior in some clever way
— multiple imputation (Sen Churchill 2002)

- Markov chain Monte Carlo (MCMC)
« (Satagopan et al. 1996; Yi et al. 2005)

. likelihood * prior
posterior = ————
constant

posterior for g 11,4, A= phenotype likelihood * [prior for g, 1, A, A]

constant
pr(q 11, A| y,m) = pr(y g, u, A)*[pr(g|m,A, A)pr(s| A)pr(4 | m, A)pr(4)]
’ ’ pr(y|m)
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Bayesian idea

» Reverend Thomas Bayes (1702-1761)
— part-time mathematician
— buried in Bunhill Cemetary, Moongate, London
— famous paper in 1763 Phil Trans Roy Soc London
— was Bayes the first with this idea? (Laplace?)
basic idea (from Bayes’ original example)
— two billiard balls tossed at random (uniform) on table

— where is first ball if the second is to its left?
* prior: anywhere on the table
* posterior: more likely toward right end of table
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Bayes posterior for normal data
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y = phenotype values y = phenotype values
small prior variance large prior variance
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Bayes posterior for normal data
model v,=ute,
environment e~N(0, 6?), o known
likelihood y~N(u o)
prior U~ N( iy, k6%), kK known
posterior: mean tends to sample mean
single individual H~N(py+b,(v, — 1), b0
sample of » individuals g~ N (bny. +(1-5,) ,uo,bnaz / n)
with y, = <§111m}y,. /n
fudge factor b o
(shrinks to 1) "o+l
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what values are the genotypic means?
(phenotype mean for genotype g is £,)

data means prior mean data mean

)

i

o . .
o | = u
< T In
- T T f T T
6 8 10 12 14 16
99 Qq y = phenotype values QQ
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Bayes posterior QTL means

posterior centered on sample genotypic mean
but shrunken slightly toward overall mean
prior: u, ~ N()_/_, KO.Z)

posterior: H, ~ N(bq)_/q +(1- bq))—;.,bqo-Z /nq)

n =count{qg. =q},y =sumy./n
‘ t9; =4}, y, =sumy./n,

fudge factor: b, ar +1
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QTL with epistasis

» same phenotype model overview
Y =p, +e,var(e) = o’

» partition of genotypic value with epistasis
My =1+ P+ B+ P

* partition of genetic variance & heritability

2 2 2 2
var(u,) = o, = o} +0, + 07,
2

o
2 2 2 2
h,=——"— —=h +hy +h,
o +0
q
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partition of multiple QTL effects

* partition genotype-specific mean into QTL effects
4, = mean + main effects + epistatic interactions
Hg=p+ f,=p+sum; , B,

* priors on mean and effects

7, ~ Ny, €,0%)  grand mean
,Bq ~ N0, k,6?) model-independent genotypic effect
,Bq- ~ N0, x,6%/|A4]) effects down-weighted by size of 4

* determine hyper-parameters via empirical Bayes

2 2
O-q

U, =Y, and k| =

q
2 2
l—hq o
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posterior mean =~ LS estimate

#,1Y,m~N(B,f1,,B,C,0")
~N(4,.C,0%)

A

LS estimate /z, = sum,[sum JJ=sumw ¥

jeM I gji
variance V(4 )=sumw’o’ =C o
q Loqr q

shrinkage B =x/(k+C,)—1
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pr(q|m, A) recombination model
pr(g|m,A) = pr(geno | map, locus) =
pr(geno | flanking markers, locus)

m, m, q 7 omy om, ms Mg
markers

ﬂ/ distance along chromosome
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bp

what are likely QTL genotypes g?

how does phenotype y improve guess?

D4Mit41

D4Mit214
120 | o — . o what are probabilities
o for genotype ¢
110 4 between markers?
o
8 .
100 | <’g,§ + recombinants AA:AB
@O
all 1:1 if ignore y
90 . )
- and if we use y?
AA AB AA
AA AA AB
Genotype
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posterior on QTL genotypes g

« full conditional of ¢ given data, parameters
— proportional to prior pr(q | m, 1)
» weight toward ¢ that agrees with flanking markers

— proportional to likelihood pr(y|q, 1)

» weight toward ¢ with similar phenotype values
— posterior recombination model balances these two

* this is the E-step of EM computations

pr(y|q,u)*pr(q|m,A)
pr(y |m,u,A)

pr(g|y,m,u,A)=
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Where are the loci A on the genome?

« prior over genome for QTL positions
— flat prior = no prior idea of loci
— or use prior studies to give more weight to some regions
« posterior depends on QTL genotypes ¢
pr(A | m,q) = pr(A) pr(g | m,A) / constant
— constant determined by averaging
* over all possible genotypes g

» over all possible loci A on entire map

* no easy way to write down posterior

QTL 2: Bayes Seattle SISG: Yandell © 2006 15

what is the genetic architecture 4?

 which positions correspond to QTLs?
— priors on loci (previous slide)
» which QTL have main effects?

— priors for presence/absence of main effects
* same prior for all QTL
* can put prior on each d.f. (1 for BC, 2 for F2)
» which pairs of QTL have epistatic interactions?

— prior for presence/absence of epistatic pairs
* depends on whether 0,1,2 QTL have main effects
* epistatic effects less probable than main effects

QTL 2: Bayes Seattle SISG: Yandell © 2006 16




Bayesian priors & posteriors

* augmenting with missing genotypes ¢
— prior is recombination model
— posterior is (formally) E step of EM algorithm
» sampling phenotype model parameters u
— prior is “flat” normal at grand mean (no information)
— posterior shrinks genotypic means toward grand mean
— (details for unexplained variance omitted here)
» sampling QTL loci 4
— prior is flat across genome (all loci equally likely)
» sampling QTL model 4
— number of QTL
* prior is Poisson with mean from previous IM study

— genetic architecture of main effects and epistatic interactions
* priors on epistasis depend on presence/absence of main effects

QTL 2: Bayes Seattle SISG: Yandell © 2006

2. Markov chain sampling

* construct Markov chain around posterior
— want posterior as stable distribution of Markov chain
— in practice, the chain tends toward stable distribution
* initial values may have low posterior probability
* burn-in period to get chain mixing well
+ sample QTL model components from full conditionals
— sample locus A given ¢,4 (using Metropolis-Hastings step)
— sample genotypes g given A, 1,y,4 (using Gibbs sampler)
— sample effects u given g,y,4 (using Gibbs sampler)
— sample QTL model 4 given 4, 1,y,q (using Gibbs or M-H)

(/1961»/'1’ A) ~ pl’(/?,, qaluaA | y’m)
(/13 q, U, A)l - (ﬂ'a q, 4, A)z > (/13 q, H, A)N

QTL 2: Bayes Seattle SISG: Yandell © 2006




MCMC sampling of (4,q,u)

* Gibbs sampler q~pr(q| yiami»ﬂ,/l)
— genotypes g
_ effects _pr(y g, 1)pr(n)
— notloci A4 pr(y | q)
4, pr(g|m, A)pr(4|m)
pr(q|m)

* Metropolis-Hastings sampler
— extension of Gibbs sampler
— does not require normalization

* pr(q|m)=sum; pr(q|m, A)pr(4)

QTL 2: Bayes Seattle SISG: Yandell © 2006 19

Gibbs sampler

for two genotypic means

* want to study two correlated effects
— could sample directly from their bivariate distribution
— assume correlation p is known
 instead use Gibbs sampler:
— sample each effect from its full conditional given the other
— pick order of sampling at random
— repeat many times

(B

My~ N(pluz,l—pz)
My, ~ N(p/‘pl _pz)

QTL 2: Bayes Seattle SISG: Yandell © 2006 20




Gibbs: mean 1

Gibbs: mean 2
0 1

Gibbs sampler samples: p= 0.6

N =50 samples N =200 samples
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full conditional for locus

* cannot easily sample from locus full conditional
pr(4 y.mu,q) =pr( A|mgq)
=pr( g |m, A)pr(4)/ constant
 constant is very difficult to compute explicitly

— must average over all possible loci A over genome
— must do this for every possible genotype ¢

» Gibbs sampler will not work in general
— but can use method based on ratios of probabilities
— Metropolis-Hastings is extension of Gibbs sampler

QTL 2: Bayes Seattle SISG: Yandell © 2006 22




Metropolis-Hastings 1dea

* want to study distribution f{4) 3 AN
— take Monte Carlo samples B
* unless too complicated S A
— take samples using ratios of f i
* Metropolis-Hastings samples: 2

— propose new value A* o 2 4 6 8 10
* near (?) current value 4
+ from some distribution g

— accept new value with prob a
* Gibbs sampler: a = 1 always

0
oQ
N
T
=3
~

a= min(l,—f(/1 g4 _:1)] o |
S(Mgl-1) S T T \ T T
-4 -2 0 2 4
QTL 2: Bayes Seattle SISG: Yandell © 2006 23

mcmc sequence
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Metropolis-Hastings for locus A4
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Metropolis-Hastings samples

N=200 samples N = 1000 samples
narrow g wide g narrow g wide g
5 5 8 ] 8 & A == .
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g g7 | &l s o1 ot
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3. sampling genetic architectures

* search across genetic architectures 4 of various sizes
— allow change in number of QTL
— allow change in types of epistatic interactions
* methods for search
— reversible jump MCMC
— Gibbs sampler with loci indicators
» complexity of epistasis
— Fisher-Cockerham effects model
— general multi-QTL interaction & limits of inference

QTL 2: Bayes Seattle SISG: Yandell © 2006 26




reversible jump MCMC

« consider known genotypes ¢ at 2 known loci 4
— models with 1 or 2 QTL

* M-H step between 1-QTL and 2-QTL models

— model changes dimension (via careful bookkeeping)
— consider mixture over QTL models H

n.qtlzl:Y=ﬁ0+,Bql+e
ngtl =2:Y = f, +,Bq1+ﬂq2+e

QTL 2: Bayes Seattle SISG: Yandell © 2006 27
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geometry of reversible jump
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geometry allowing g and A to change

a short sequence

0.0

first 1000 with m<3

!
<&

1

B
1 02 03 04

0.0 0.1

1

]
-

0.05
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collinear QTL = correlated effects

4-week

8-week

cor =-0.81

effect 2

effect 2

-0.6

04

effect 1

* linked QTL = collinear genotypes
» correlated estimates of effects (negative if in coupling phase)
» sum of linked effects usually fairly constant

QTL 2: Bayes
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sampling across QTL models 4

QA Ay o A L

m

T T 1 i
action steps: draw one of three choices
» update QTL model 4 with probability 1-b(4)-d(A)
— update current model using full conditionals
— sample QTL loci, effects, and genotypes
* add a locus with probability H(4)
— propose a new locus along genome
— innovate new genotypes at locus and phenotype effect
— decide whether to accept the “birth” of new locus
 drop a locus with probability d(4)
— propose dropping one of existing loci
— decide whether to accept the “death” of locus

QTL 2: Bayes Seattle SISG: Yandell © 2006 31

Gibbs sampler with loci indicators

+ consider only QTL at pseudomarkers
— every 1-2 cM
— modest approximation with little bias
* use loci indicators in each pseudomarker
— 0=1if QTL present
— 0=0ifno QTL present
» Gibbs sampler on loci indicators o
— relatively easy to incorporate epistasis

— Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)
* (see earlier work of Nengjun Yi and Ina Hoeschele)

H, = H + 5lﬂql + 5218(12
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Bayesian shrinkage estimation

* soft loci indicators
— strength of evidence for 4; depends on variance of S,
— similar to > 0 on grey scale

* include all possible loci in model
— pseudo-markers at 1cM intervals

+ Wang et al. (2005 Genetics)
— Shizhong Xu group at U CA Riverside

Y=p,+B,(q)+b,(q)+..+e

2 2
ﬂ]. (q].) ~ N(O, o, ), o~ inverse - chisquare

QTL 2: Bayes Seattle SISG: Yandell © 2006 33

4. Bayesian QTL model selection

» Bayes factor details
* Bayesian model averaging
« false discovery rate (FDR)

QTL 2: Bayes Seattle SISG: Yandell © 2006 34




Bayes factors

« ratio of model likelihoods
— ratio of posterior to prior odds for architectures
— averaged over unknowns

B, - pr(4 | y,m)/pr(4, |y,m) _ pr(y|m, 4)
pr(4,)/pr(4,) pr(y|[m,4,)
 roughly equivalent to BIC
— BIC maximizes over unknowns
— BF averages over unknowns

—2log(B,,) =-2log(LR)—(p, — p,) log(n)

QTL 2: Bayes Seattle SISG: Yandell © 2006 35

1ssues 1n computing Bayes factors

» BF insensitive to shape of prior on 4
— geometric, Poisson, uniform
— precision improves when prior mimics posterior
» BF sensitivity to prior variance on effects €
— prior variance should reflect data variability

— resolved by using hyper-priors
* automatic algorithm; no need for user tuning

* easy to compute Bayes factors from samples
— sample posterior using MCMC
— posterior pr(4 | y, m) is marginal histogram

QTL 2: Bayes Seattle SISG: Yandell © 2006 36




Bayes factors and genetic model 4

* |A| = number of QTL §\ S
— prior pr(4) chosen by user %: )( p_p\* inform
— posterior pr(A4|y,m) R AN
 sampled marginal histogram =5 p/ T\e\&g\g
* shape affected by prior pr(4) gl 1 Pz
BF, . = pr(Aly,m)/pr(A4) S
’ pr(A+1y,m)/pr(A+1)

» pattern of QTL across genome

 gene action and epistasis

QTL 2: Bayes Seattle SISG: Yandell © 2006 37

BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior

hyper-prior density 2*Beta(a,b) insensitivity to hyper-prior

27 i _ 873‘~ e pem3cm == 3
4 e SRR S et
o | i o 19 28
2% | B = fl%o R 23 Bos
& ’\T \ : 8 —1- B12
g,‘-'|||§f<;*--‘:~~ T
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hyper-parameter heritability h” E(h®)
B, ~N(0,62/m) o2 = 62, L h* ~Beta(a,b)
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Bayesian model averaging
 average summaries over multiple
architectures
* avoid selection of “best” model
» focus on “better” models
« examples in data talk later
Seattle SISG: Yandell © 2006 40
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1-D and 2-D marginals
pr(QTL at A | Y, X, m)

unlinked loci linked loci
joint posterior ] joint posterior i
; o : :
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false detection rates and thresholds

» multiple comparisons: test QTL across genome
— size = pr( LOD(A) > threshold | no QTL at 4)
— threshold guards against a single false detection
* very conservative on genome-wide basis

— difficult to extend to multiple QTL
* positive false discovery rate (Storey 2001)
— pFDR = pr( no QTL at A | LOD(A) > threshold )
— Bayesian posterior HPD region based on threshold
* A={A|LOD(A) > threshold } = {1|pr(1| Y, X,;m ) large }
— extends naturally to multiple QTL
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pFDR and QTL posterior

* positive false detection rate
— pFDR=pr(no QTLat 1|V, X, Ain A)
— pFDR = pr(H=0)*size

pr(m=0)*size+pr(m>0)*power
— power = posterior = pr(QTL in A | ¥,.X, m>0)
— size = (length of A) / (length of genome)
* extends to other model comparisons
— m=1vs.m=2ormore QTL
— pattern = ch1,ch2,ch3 vs. pattern > 2*ch1,ch2,ch3

QTL 2: Bayes Seattle SISG: Yandell © 2006 43
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pFDR for SCD1 analysis
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QTL 2: Bayes Seattle SISG: Yandell © 2006 44

0.2 0.3

Storey pFDR(-)

0.1




examples 1n detail

+ simulation study (after Stephens & Fisch (1998) 2-3
» days to flower for Brassica napus (plant) (n = 108) 4-10
— single chromosome with 2 linked loci
— whole genome
+ gonad shape in Drosophila spp. (insect) (n = 1000) 11-16
— multiple traits reduced by PC
— many QTL and epistasis
+ expression phenotype (SCD1) in mice (n = 108) 17-26
— multiple QTL and epistasis
* obesity in mice (n = 421) 27-35
— epistatic QTLs with no main effects
* hypertension in mice set (n = 250) 36-48
— classic R/qtl example (used in R demo)
QTL 2: Data Seattle SISG: Yandell © 2006 1
simulation with 8 QTL
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— (Stephens, Fisch 1998) PR P
— n=200, heritability = 50% g,
— detected 3 QTL ET
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loci pattern across genome

 notice which chromosomes have persistent loci
* best pattern found 42% of the time

Chromosome

ml 2 3 4 5 6 7 8 9 10 Countof8000
8§82 0 1.0 02 02 1 0 3371

93 0 1 0 02 02 1 0 751

72 0 1 0 02 021 1 0 377

92 0 I 0 02 02 1 0 218

92 0 1 0 03 02 1 0 218

92 0 1 0 02 02 2 0 198
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Brassica napus: 1 chromosome

* 4-week & 8-week vernalization effect
— log(days to flower)
» genetic cross of
— Stellar (annual canola)
— Major (biennial rapeseed)
105 F1-derived double haploid (DH) lines
— homozygous at every locus (QQ or gq)
10 molecular markers (RFLPs) on LG9
— two QTLs inferred on LG9 (now chromosome N2)
— corroborated by Butruille (1998)
— exploiting synteny with Arabidopsis thaliana
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Brassica 4 & 8-week data

8-week
3.0 35

25

25

0 2 4 6 8
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B. napus 8-week vernalization

whole genome study
» 108 plants from double haploid

— similar genetics to backcross: follow 1 gamete

— parents are Major (biennial) and Stellar (annual)
* 300 markers across genome

— 19 chromosomes

— average 6¢cM between markers
* median 3.8cM, max 34cM

— 83% markers genotyped
* phenotype is days to flowering
— after 8 weeks of vernalization (cooling)

— Stellar parent requires vernalization to flower
* Ferreira et al. (1994); Kole et al. (2001); Schranz et al. (2002)

QTL 2: Data Seattle SISG: Yandell © 2006 7

Bayesian model assessment

QTL posterior Bayes factor ratios
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Bayesian estimates of loci & effects

napus8 summaries with pattern 1,1,2,3 and m >4
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Bayesian model diagnostics
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shape phenotype in BC study
indexed by PCI1

mauritiana Fi
44 L4 A AL A LA pRRR
-1 MF a4 Eit] - Bkl 28 207 w3 BLi) Ly A2 EE) 1
mawrinians backoros simulany backcross
AL a4 A A A0 04 R LR
13 W <B4 a2 el 210 03 Ny Bty A8 a3 23 a1y
Iy 'yl n 3 M .~ )
Y/ S/ /| B | O/ S O/ N A A A N 8
4 s -2 1Y 154 Rt prT a5 anp “ ad - b
r n o] ~ >N / '
I 20U nRr CCLcle
123 -n7 e 108 Ty a1 M . 114 [ = 164
N T SYS Y Yo Y
;7 oRR. cCe (¢ (
4’; % J’x_:l L;_: }n\ r’lr”e [{ ll?" ) lT; e
Fl ";'f"‘
~ ) M (
Ny e ', (el 2l el ¢
mum—.r x—buhuh‘u‘nndpurru-mhu“:m
at even intervals from o of varistion). The n
mwl(lk&“"MW"KIMNHUMMMWHIMMMMJMMM
Liu et al. (1996) Genetics
QTL 2: Data Seattle SISG: Yandell © 2006 11
h henot 1a PC
001 a . o x x x
. 1 3
; -".' .rl/—\ A
2 X I AN _,/ S
3] .
B

i s LI - M .
“og . ; 0 25
- " a . ® = "’. -
’ - > b
01 . = * xn "ot

N
o . Ficitug 2—The effect of karmonic mumber om the acow
n ey of sevomtnaction of a paserior lobe outline by elliptcal

Fouricr anabyis

a0

e
1

o

0.017]

sz

s
L0

PC1 (80.2%)

" simulans . maritiana . Fl1
o mauritiona backross ® stmulans backcross

Ficure 5.—A plot of the first o principal components n[ the Fourier coefficients from posterior lobe outlines. Many
individuals from each of five classes are d. Each point rep an average of scores from the left and
right sides of an individual (with a few exceptions for which the score is from one side only). The percentage of variation in
the Fourier coefficients accounted for by each principal component is given in parentheses. [ jy et al. (1996) Genetics

QTL 2: Data Seattle SISG: Yandell © 2006 12




Zeng et al. (2000)

CIM vs. MIM |
composite interval mapping :: ﬂ\ féﬁ J i ﬂ )
(Liu et al. 1996) Nik> VA A [ R ARV

narrow peaks
miss some QTL "

||||||||

multiple interval mapping
(Zeng et al. 2000)
triangular peaks

both conditional 1-D scans
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Posibons

2 QTL + epistasis:
IM versus multiple imputation
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studying diabetes in an F2

» segregating cross of inbred lines
— B6.0b x BTBR.ob » F1 —» F2
— selected mice with ob/ob alleles at leptin gene (chr 6)
— measured and mapped body weight, insulin, glucose at various ages
(Stoehr et al. 2000 Diabetes)
— sacrificed at 14 weeks, tissues preserved
* gene expression data
— Affymetrix microarrays on parental strains, F1
« key tissues: adipose, liver, muscle, -cells
« novel discoveries of differential expression (Nadler et al. 2000 PNAS; Lan et
al. 2002 in review; Ntambi et al. 2002 PNAS)
— RT-PCR on 108 F2 mice liver tissues
* 15 genes, selected as important in diabetes pathways
» SCDI, PEPCK, ACO, FAS, GPAT, PPARgamma, PPARalpha, G6Pase,
PDL,...
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Bayesian model assessment:
number of QTL for SCD1

QTL posterior Bayes factor ratios
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Bayesian model assessment:
chromosome QTL pattern for SCD1

pattern posterior

Bayes factor ratios
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(no epistasis yet: see Yi, Xu, Allison 2003)
c hong7scd.bim summaries with pattern = ch2,ch5,chg
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2-D scan: assumes only 2 QTL!

SCDon chr 2,59
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sub-peaks can be easily overlooked!

SCD: peak LOD = 11.02 SCD: peak LOD = 10.74

| ===

0 0

ke
! @

K

2 g

QTL 2: Data Seattle SISG: Yandell © 2006 24




100

epistatic model fit
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epistatic effect

Cockerham epistatic effects
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obesity in CAST/E1 BC onto M16i1

421 mice (Daniel Pomp)

— (213 male, 208 female)

92 microsatellites on 19 chromosomes
— 1214 cM map

subcutaneous fat pads

— pre-adjusted for sex and dam effects

Y1, Yandell, Churchill, Allison, Eisen,
Pomp (2005) Genetics (in press)
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non-epistatic analysis
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posterior profile of main effects
in epistatic analysis
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posterior profile of main effects
in epistatic analysis

result 5b summaries with pattern= 12,7 13,15 18 18
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QTL posterior Bayes factor ratios

1
1
ds

4567 8.9
number of QTL

model selection .| ./ 3 AN
1 5 - =] & Etron,
via B2 / -E‘e | u B |
Bayes factors 2 / D Bof A |rom
g n\" QN il weak
for E —DD |:||:|‘l‘L
1 13

¥
w

"

epistatic model 23455

789 1
number of QTL

T
13

pattern posteror Bayes factor ratios
2 - i g | w 4
50 E: = g | K <+
number of QTL z- 2= 8 5B e A
B dlls| & Gfe 25
E =2 E: E oo E % =] moderate
Ez % [ o & g
QTL pattern 5 D N -
E T T T T T T m#\‘
T2 03 4 8 8§ 7 T2 3 4 & 2
model index model index
QTL 2: Data Seattle SISG: Yandell © 2006 31
A Chr13(20,42)*Chr15(1,31)
A Chr7(50,75)*Chr19(15,45)
A Chr2(72,85)*Chr14(12,41)
A Chr15(1,31)*Chr19(15,45)
A Chr2(72,85)*Chr13(20,42)
A Chr1(26,54)*Chr18(43,71)
* Chr14(12,41)
3 Chr7(50,75)
° Chr19(15,45)
. Chr1(26,54)
® Chr18(43,71)
. Chr15(1,31)
* Chr13(20,42)
Chr2(72,85)
T T T T T T
00 02 04 06 08 10
Posterior probability
QTL 2: Data Seattle SISG: Yandell © 2006 32




chrig

scatterplot estimates of epistatic loci
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ag

model selection for pairs
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hyper data: scanone
LPD of bp for main+epistasis+sum
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2log(BF) scan with 50% HPD region

2logBF of bp for main+epistasis+sum
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sampled QTL by chromosome

blue lines = markers
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hyper: number of QTL
posterior, prior, Bayes factors

QTL posterior Bayes factor ratios
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Cockerham epistatic effects
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2-D plot of 2logBF: chr 6 & 15
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2logBF

LPD

1-D Slices of 2-D scans: chr 6 & 15
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1-D Slices of 2-D scans: chr 6 & 15

estimate of for epistasis
chr= 6 slice= 15

cellmean of for effects
chr= 6 slice= 15

chr 6, chr 15
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1-D Slices of 2-D scans: chr4 & 15

cellmean of for effects
chr= 4 slice= 15

estimate of for epistasis
chr= 4 slice= 15

chr 4, chr 15
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R/qtl & R/qtlbim Tutorials

R statistical graphics & language system

» R/qtl tutorial
— R/qtl web site: www.rqtl.org
— Tutorial: www.rqtl.org/tutorials/rqtltour.pdf
— R code: www.rqtl.org/tutorials/rqtltour.R
» R/qtlbim tutorial
— R/qtlbim web site: www.qtlbim.org
— Tutorial: www.stat.wisc.edu/~yandell/qtlbim/rqtltour.pdf
— R code: www.stat.wisc.edu/~yandell/qtlbim/rqtltour.R

QTL 2: Tutorial Seattle SISG: Yandell © 2007 1

R/qtl tutorial (www.rqtl.org)

> library(qtl)
> data (hyper)
> summary (hyper)

Backcross
No. individuals: 250
No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 20
Autosomes: 1234567891011 12 13 14 15 16 17 18 19
X chr: X
Total markers: 174
No. markers: 22 86 20 1411 76 551455511612 4 4 4
Percent genotyped: 47.7
Genotypes (%) : AA:50.2 AB:49.8

> plot (hyper)
> plot.missing(hyper, reorder = TRUE)
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Genetic map
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R/qtl: find genotyping errors

> hyper <- calc.errorlod(hyper, error.prob=0.01)
> top.errorlod (hyper)
chr id marker errorlod

1 1118 DIMitl4 8.372794
2 1162 DIMitl4 8.372794
3 1170 DIMitl4 8.372794
4 1 159 DIMitl4 8.350341
5 1 73 DIMitl4 6.165395
6 1 65 DIMitl4 6.165395
7 1 88 DIMitl4 6.165395
8 1184 DIMitl4 6.151606
9 1 241 DIMitl4 6.151606
16 1 215 DI1Mit267 5.822192
17 1 108 DIMit267 5.822192
18 1 138 DIMit267 5.822192
19 1 226 DIMit267 5.822192
20 1 199 DI1Mit267 5.819250
21 1 84 DIMit267 5.808400

> plot.geno (hyper, chr=1, ind=c(117:119,137:139,157:184))
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R/gtl: 1 QTL interval mapping

> hyper <- calc.genoprob (hyper, step=1,

error.prob=0.01)
> out.em <- scanone (hyper)

> out.hk <- scanone (hyper, method="hk")

> summary (out.em, threshold=3)
chr pos lod

cl.loc45 1 48.3 3.52

D4Mitle4 4 29.5 8.02

> summary (out.hk, threshold=3)
chr pos lod

cl.loc45 1 48.3 3.55

D4Mitle4 4 29.5 8.09

QTL 2: Tutorial Seattle SISG: Yandell © 2007
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R/gtl: permutation threshold

> operm.hk <- scanone (hyper, method="hk",
n.perm=1000)

Doing permutation in batch mode
> summary (operm.hk, alpha=c(0.01,0.05))
LOD thresholds (1000 permutations)
lod
1% 3.79
5% 2.78

> summary (out.hk, perms=operm.hk, alpha=0.05,
pvalues=TRUE)

chr pos lod pval
1 1 48.3 3.55 0.015
2 4 29.5 8.09 0.000
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> hyper <- calc.genoprob (hyper, step=5, error.prob=0.01)

>

R/qtl: 2 QTL scan

> out2.hk <- scantwo (hyper, method="hk")

--Running scanone
--Running scantwo

(1,1)
(1,2)

) '(i9,19)

> summary (out2.hk, thresholds=c(6.0, 4.7, 4.4,
poslf pos2f lod.full lod.fvl lod.
30.

c
C.
[}
c
c
[}

(19,X)
(X,X)

1 :c4
2 :cl9
3 :c3
6 :cl5
9 :cl8
12:cl19
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> plot(out2.
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R/qtl: ANOVA imputation at QTL

hyper <- sim.geno (hyper, step=2, n.draws=16, error.prob=0.01)
qtl <- makeqtl (hyper, chr = c¢(1, 1, 4, 6, 15), pos = c(50, 76, 30, 70, 20))

v Vv

v

my.formula <- y ~ Q1L + Q2 + Q3 + Q4 + Q5 + Q4:05
out.fitqtl <- fitqtl (hyper$pheno[,1], gqtl, formula=my.formula)
summary (out.fitqtl)

v Vv

Full model result

Model formula is: y ~ Ql + Q2 + Q3 + Q4 + Q5 + Q4:05

df ss MS LOD %$var Pvalue (Chi2) Pvalue (F)
Model 6 5789.089 964.84822 21.54994 32.76422 0 0
Error 243 11879.847 48.88826
Total 249 17668.936

Drop one QTL at a time ANOVA table:

df Type III SS LOD $var F value Pvalue (F)
Chrl@50 1 297.149 1.341 1.682 6.078 0.01438 *
Chrl@76 520.664 2.329 2.947 10.650 0.00126 **

1
Chr4@30 1 2842.089 11.644 16.085 58.134 5.50e-13 ***
Chré@70 2 1435.721 6.194 8.126 14.684 9.55e-07 ***
Chrl5@20 2 1083.842 4.740 6.134 11.085 2.47e-05 ***
Chré@70:Chrl5@20 1 955.268 4.199 5.406 19.540 1.49e-05 ***

Signif. codes: 0 'v%! 0.001 '¥! 0.01 x' 0.05 .0 0.1 ' 1
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R/qtlbim (www.qtlbim.org)

* cross-compatible with R/qtl
» model selection for genetic architecture
— epistasis, fixed & random covariates, GXE
— samples multiple genetic architectures
— examines summaries over nested models
* extensive graphics
QTL 2: Tutorial Seattle SISG: Yandell © 2007 14




R/qtlbim: tutorial

(www.stat.wisc.edu/~yandell/qtlbim)

> data (hyper)

## Drop X chromosome (for now).

> hyper <- subset (hyper, chr=1:19)

> hyper <- gb.genoprob (hyper, step=2)

## This is the time-consuming step:

> gbHyper <- gb.mcmc (hyper, pheno.col = 1)
## Here we get stored samples.

> gb.load (hyper, gbHyper)

> summary (gbHyper)

QTL 2: Tutorial Seattle SISG: Yandell © 2007 15

R/qgtlbim: initial summaries

> summary (gbHyper)
Bayesian model selection QTL mapping object gbHyper on cross object hyper
had 3000 iterations recorded at each 40 steps with 1200 burn-in steps.

Diagnostic summaries:
nqgtl mean envvar varadd varaa var

Min. 2.000 97.42 28.07 5.112 0.000 5.112
1st Qu. 5.000 101.00 44.33 17.010 1.639 20.180
Median  7.000 101.30 48.57 20.060 4.580 25.160
Mean 6.543 101.30 48.80 20.310 5.321 25.630
3rd Qu. 8.000 101.70 53.11 23.480 7.862 30.370
Max. 13.000 103.90 74.03 51.730 34.940 65.220

Percentages for number of QTL detected:
2 3 4 5 6 7 8 91011 12 13
2 3 91421191710 4 1 0 O

Percentages for number of epistatic pairs detected:
5 6
29 31 2311 5 1
Percentages for common epistatic pairs:
6.15 4.15 4.6 1.7 15.15 1.4 1.6 4.9 1.15 1.17 1.5 5.11 1.2 7.15 1.1
63 18 10 6 6 5 4 4 3 3 3 2 2 2 2
> plot(gb.diag(gbHyper, items = c("herit", "envvar")))
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R/gtlbim: 1-D (not 1-QTL!) scan

> one <- gb.scanone (gbHyper, chr = c(1,4,6,15),
type = "LPD")

> summary (one)

LPD of bp for main,epistasis,sum

n.gqtl pos m.pos e.pos main epistasis sum
cl 1.331 64.5 64.5 67.8 6.10 0.442 6.27
c4d 1.377 29.5 29.5 29.5 11.49 0.375 11.61
c6 0.838 59.0 59.0 59.0 3.99 6.265 9.60
cl5 0.961 17.5 17.5 17.5 1.30 6.325 7.28

> plot(one)
> plot(out.em, chr=c(1,4,6,15), add = TRUE, col =
"red", 1lty = 2)
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LPD

hyper data: scanone

LPD of bp for main+epistasis+sum
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main=blue, epistasis=purple, sum=black
1-QTL scan=red dash
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R/qtlbim: automated QTL selection

> hpd <- gb.hpdone (gbHyper, profile = "2logBF")
> summary (hpd)

chr n.qtl pos 1o0.50% hi.50% 2logBF A H
1 1 0.829 64.5 64.5 72.1 6.692 103.611 99.090
4 4 3.228 29.5 25.1 31.7 11.169 104.584 98.020
6 6 1.033 59.0 56.8 66.7 6.054 99.637 102.965
15 15 0.159 17.5 17.5 17.5 5.837 101.972 100.702
> plot (hpd)
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2logBF

cellmean

2log(BF) scan with 50% HPD region

2logBF of bp for main+epistasis+sum
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R/gtlbim: Bayes Factor evaluations

> tmp <- gb.BayesFactor (gbHyper)
> summary (tmp)

$nqtl

$pattern

:1,15,2%4,6
:1,15,4,2%6
:1,15,4,6

BN NO0

$chrom
posterior
4 0.2100
15 0.1470
[3 0.1280
1 0.2030
> plot(tmp)

QTL 2: Tutorial

posterior prior bf bfse

:2%1,2%15,2%4,6 0
:1,2%15,2%4, 0
:1,2%15,2%4, 0
:1,2%15,2,2%4,6 0
0
0
0

6
5,6

prior

.00500 3
.01400 1
.00600 4
.00433 5.39e-07 112.00 31.000
.00867 5
.00733 5
.03770 2

.17e-07 220.00 56.700
.02e-06 192.00 29.400
.49e-07 186.00 43.800

.8le-06 20.80 4.060

.22e-06 19.60 4.170
.7le-05 19.40 1.790

bf bfse

0.0595 15.00 0.529
0.0464 13.40 0.589
0.0534 10.10 0.483

0.0901

9.55 0.345

Seattle SISG: Yandell © 2007
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QTL posterior
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R/qtlbim: 2-D (not 2-QTL) scans

> two <- gb.scantwo (gbHyper, chr = c(6,15),
type = "21logBF")

> plot(two)

> plot(two, chr = 6, slice = 15, show.locus =
FALSE)

> plot(two, chr = 15, slice = 6, show.locus =
FALSE)

> two <- gb.scantwo (gbHyper, chr = c(6,15),
type = "LPD")

> plot(two, chr
FALSE)

> plot(two, chr
FALSE)

6, slice = 15, show.locus =

15, slice = 6, show.locus =

QTL 2: Tutorial Seattle SISG: Yandell © 2007
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2-D plot of 2logBF: chr 6 & 15

2logBF of epistasis | 2logBF of joint
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2logBF

LPD

1-D Slices of 2-D scans: chr 6 & 15

2logBF of for epistasis 2logBF of for epistasis
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R/qtlbim: slice of epistasis

> slice =

> summary (slice)
21ogBF of bp for epistasis

n.qgtl pos
c6 0.838 59.0
cl5 0.961 17.5

cellmean of bp
n.qtl pos
c6 0.838 59.0
cl5 0.961 17.5
estimate of bp
n.qtl pos

c6 0.838 59.0
cl5 0.961 17.5

m.pos e.pos epistasis slice

59.0
17.5

for AA,HA,AH,HH

m.pos

66.7 15.8 18.1
17.5 15.5 60.6
AA HA AH HH slice

59.0 97.4 105 102 100.8 18.1

17.5 99.8 103 104

for epistasis

98.5 60.6

m.pos e.pos epistasis slice

59.0
17.5

> plot(slice, figs

QTL 2: Tutorial

66.
17.
c("effects",

7
5

-7.86 18.1
-8.72 60.6
"cellmean",
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gb.slicetwo (gbHyper, c(6,15), <(59,19.5))

"effectplot"))
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eslimate

estimate

1-D Slices of 2-D scans: chr 6 & 15

estimate of for epistasis
chr= 6 slice= 15

cellmean of for effects
chr= 6 slice= 15
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selected publications
www.stat.wisc.edu/~yandell/statgen

* Broman et al. (2003 Bioinformatics)
— R/qtl introduction
* Broman (2001 Lab Animal)

— nice overview of QTL issues
» Basten, Weir, Zeng (1995) QTL Cartographer
* Yandell, Bradbury (2007) Plant Map book chapter

— overview/comparison of QTL methods

* Yandell et al. (2007 Bioinformatics)
— R/qtlbim introduction

* Yietal. (2005 Genetics)
— methodology of R/qtlbim
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A brief tour of R/qtl

Karl W Broman

Department of Biostatistics, Johns Hopkins University
http://www.rgtl.org
16 January 2007

Overview of R/qtl

R/qtl is an extensible, interactive environment for magmnantitative trait loci (QTL) in experimental crossesslimple-
mented as an add-on package for the freely available andywided statistical language/software R (see www.r-piayeg).
The development of this software as an add-on to R allows tektadvantage of the basic mathematical and statistinal fu
tions, and powerful graphics capabilities, that are preglidith R. Further, the user will benefit by the seamless natémn of
the QTL mapping software into a general statistical analpsbgram. Our goal is to make complex QTL mapping methods
widely accessible and allow users to focus on modeling rdttean computing.

A key component of computational methods for QTL mappinféshidden Markov model (HMM) technology for dealing
with missing genotype data. We have implemented the main Hijdrithms, with allowance for the presence of genotyping
errors, for backcrosses, intercrosses, and phase-knauswimy crosses.

The current version of R/qtl includes facilities for estiing genetic maps, identifying genotyping errors, and gening
single-QTL genome scans and two-QTL, two-dimensional genscans, by interval mapping (with the EM algorithm), Haley
Knott regression, and multiple imputation. All of this mag @hone in the presence of covariates (such as sex, age onéreht
One may also fit higher-order QTL models by multiple impuiati

R/qtl is distributed as source code for Unix or compiled cfudéNVindows or Mac OS X. R/qtl is released under the GNU
General Public License. To download the software, you myigteato the terms in that license.

Overview of R

R is an open-source implementation of the S language. Asidledon the R-project homepage (www.r-project.org):

R is a system for statistical computation and graphics. isigis of a language plus a run-time environment with
graphics, a debugger, access to certain system functiodshe ability to run programs stored in script files.

The core of R is an interpreted computer language which allornching and looping as well as modular pro-
gramming using functions. Most of the user-visible funeidn R are written in R. It is possible for the user to
interface to procedures written in the C, C++, or FORTRANglaages for efficiency. The R distribution con-
tains functionality for a large number of statistical prdaees. Among these are: linear and generalized linear
models, nonlinear regression models, time series anabjassical parametric and nonparametric tests, clugterin
and smoothing. There is also a large set of functions whiokige a flexible graphical environment for creating
various kinds of data presentations. Additional modulesaamilable for a variety of specific purposes.

R is freely available for Windows, Unix and Mac OS X, and maydosvnloaded from the Comprehensive R Archive
Network (CRAN; cran.r-project.org).

Learning R may require a formidable investment of time, bwili definitely be worth the effort. Numerous free docunrent
on getting started with R are available on CRAN. In additipsaveral books are available. The most important book on R
is Venables and Ripley (200%Jodern Applied Satistics with S, 4th edition. Dalgaard (2002htroductory Satistics with R
provides a more gentle introduction.

Citation for R/qtl

To cite R/qgtl in publications, use

Broman KW, Wu H, Sen S, Churchill GA (2003) R/qgtl: QTL mappiimgexperimental crosses. Bioinformatics
19:889-890


http://www.rqtl.org
http://www.r-project.org
http://www.r-project.org

Selected R/qtl functions

Sample data badorder An intercross with misplaced markers
bristle3 Data on bristle number for Drosophila chromosome 3
bristleX Data on bristle number for Drosophila X chromosome
fake.4way Simulated data for a 4-way cross
fake.bc Simulated data for a backcross
fake.f2 Simulated data for an, fntercross
hyper Backcross data on salt-induced hypertension
listeria Intercross data on Listeria monocytogenes suixiy
map10 A genetic map modeled after the mouse genome (10 cNhgpac
I nput/output read.cross Read data for a QTL experiment
write.cross Write data for a QTL experiment to a file
Simulation sim.cross Simulate a QTL experiment
sim.map Generate a genetic map
Summaries geno.table Create table of genotype distributions
plot.cross Plot various features of a cross object
plot.missing Plot grid of missing genotypes
plot.pheno Histogram or bar plot of a phenotype
plot.info Plot the proportion of missing genotype data
summary.cross Print summary of QTL experiment

summary.map

Print summary of a genetic map

nchr, nind, nmar, nphe, totmar, nmissing

Data manipulation

clean.cross
drop.markers
drop.nullmarkers
fill.geno

pull.map
replace.map
subset.cross
switch.order
movemarker

Remove intermediate calculations from a cross

Remove a list of markers

Remove markers without data
Fill in holes in genotype data by imputation or Viée
Pull out the genetic map from a cross

Replace the genetic map of a cross

Select a subset of chromosomes and/or indisifilom a cross
Switch the order of markers on a chromosome

Move a marker from one chromosome to another

HMM engine argmax.geno Reconstruct underlying genotypes by thebyisdgorithm
calc.genoprob Calculate conditional genotype probaslit
sim.geno Simulate genotypes given observed marker data
QTL mapping scanone Genome scan with a single QTL model
scantwo Two-dimensional genome scan with a two-QTL model
lodint Calculate a LOD support interval
bayesint Calculate an approximate Bayes credible interval

plot.scanone
plot.scantwo

Plot output for a one-dimensional genome scan
Plot output for a two-dimensional genome scan

summary.scanone Print summary of scanone output
summary.scantwo Print summary of scantwo output
effectplot Plot phenotype means of genotype groups defigddds 2 markers
plot.pxg Like effectplot, but as a dot plot of the phenotypes
Genetic mapping est.map Estimate genetic map
est.rf Estimate pairwise recombination fractions
plot.map Plot genetic map(s)
plot.rf Plot recombination fractions
ripple Assess marker order by permuting groups of adjacenkens

summary.ripple

Print summary of ripple output

Genotypingerrors

calc.errorlod
top.errorlod

Calculate Lincoln & Lander (1992) error LOEbges
List genotypes with highest error LOD values

plot.geno Plot observed genotypes, flagging likely errors
Multiple QTL models makeqtl Make a qtl object for use by fitgtl
fitqtl Fit a multiple QTL model, using multiple imputation
summary:.fitqtl Get summary of the result of fitgtl
scanqtl Perform a multi-dimensional genome scan, usingiphelimputation
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Preliminaries

Use of the R/qtl package requires considerable knowledtieed® language/environment. We hope that the examplesyiesse
here will be understandable with little prior knowledge oféRpecially because we neglect to explain the syntax of Rergke
books, as well as some free documents, are available td #esisser in learning R; see the R project website cited abdfee
assume here that the user is running either Windows or Mac OS X

1. To start R, double-click its icon.

2. To exit, type:
q0

Click yes or no to save or discard your work.

3. R keeps all of your work in RAM. If R should crash, all will best, and you will have to start from the beginning. The
functionsave.image can be used to save your work to disk as you go along, so that|&R crash, you won't have
to start from scratch. You would type:

save.image()

4. Load the R/qtl package:
library(qtl)

5. View the objects in your workspace:
Is()

6. The best way to get help on the functions and data sets imdRiaR/qtl) is via the html version of the help files. One
way to get access to this is to type
help.start()

This should open a browser with the main help menu. If you thiek on Packages- qtl, you can see all of the available
functions and datasets in R/qtl. For example, look at thp fikel for the functiorread.cross
An alternative method to view this help file is to type one & thllowing:

help(read.cross)
?read.cross

The html version of the help files are somewhat easier to matiallow use of hotlinks between different functions.

7. All of the code in this tutorial is available as a file fromialhyou may copy and paste into R, if you prefer that to typing.
Type the following within R to get access to the file:

url.show("http://www.rqtl.org/rgtltour.R")

Dataimport

A difficult first step in the use of most data analysis softwiarhe import of data. With R/qtl, one may import data in sever
different formats by use of the functioead.cross . (Example data files are available at www.rgtl.org/samatiedl The
internal data structure used by R/qtl is rather complicatedl is described in the help file foead.cross . (Also see
example 6, below.) We won'’t discuss data import any furtrerehexcept to say that the comma-delimited formies\(" )

is recommended. If you have trouble importing data, sendnaaile¢o Karl Broman kbroman@jhsph.edu ), attaching
examples of your data files. (Such data will be kept confidénti

Example 1. Hypertension

As a first example, we consider data from an experiment onrtgmpsion in the mouse (Sugiyama et al., Genomics 71:70-77,
2001), kindly provided by Bev Paigen and Gary Churchill.

1. First, get access to the data, see that it is in your wodesgzand view its help file. These data are included with thel R/q
package, and so you can get access to the data with the fudetia()
data(hyper)

Is()
?hyper


http://www.rqtl.org/sampledata

2. We will postpone discussion of the internal data striectised by R/qtl until later. For now we'll just say that theadat
hyper has “class™cross" . The functionsummary.cross prints summary information on such data. We can call
that function directly, or we may simply useimmary and the data is sent to the appropriate function accordiitg to
class.

summary(hyper)

Several other utility functions are available for gettingrsnary information on the data. Hopefully these are self-
explanatory.

nind(hyper)

nphe(hyper)

nchr(hyper)

totmar(hyper)

nmar(hyper)

3. Plot a summary of these data.

plot(hyper)
In the upper left, black pixels indicate missing genotyptadalote that one marker has no genotype data. In the upper
right, the genetic map of the markers is shown. In the lowigraehistogram of the phenotype is shown.

The Windows version of R has a slick method for recording bsapo that one may page up and down through a series
of plots. To initiate this, click (on the menu batl)story — Recording

We may plot the individual components of the above multitfiure as follows.

plot.missing(hyper)
plot.map(hyper)
plot.pheno(hyper, pheno.col=1)

We can plot the genetic map with marker names, but they caatherrdifficult to read. The following code plots the
map with marker names for chr 1, 4, 6, 7 and 15.

plot.map(hyper, chr=c(1, 4, 6, 7, 15), show.marker.names= TRUE)

4. Note the odd pattern of missing data; we may make this ngsata plot with the individuals ordered according to the
value of their phenotype.

plot.missing(hyper, reorder=TRUE)

We see that, for most markers, only individuals with extrgzhenotypes were genotyped. At many markers (in regions
of interest), markers were typed only on recombinant irttliais.

5. The functiordrop.nullmarkers may be used to remove markers that have no genotype datagstich marker on
chr 14). A call tototmar  will show that there are now 173 markers (rather than 17he=twere initially).

hyper <- drop.nullmarkers(hyper)
totmar(hyper)

6. Estimate recombination fractions between all pairs ofkers, and plot them. This also calculates LOD scores for the
test of Hy: » = 1/2. The plot of the recombination fractions can be either wétbombination fractions in the upper part
and LOD scores below, or with just recombination fractiongust LOD scores. Note that red corresponds to a small
recombination fraction or a big LOD score, while blue is thearse. Gray indicates missing values.

hyper <- est.rf(hyper)

plot.rf(hyper)

plot.rf(hyper, chr=c(1,4))

There are some very strange patterns in the recombinatetidns, but this is due to the fact that some markers were
typed largely on recombinant individuals.

For example, on chr 6, the tenth marker shows a high recoribdimaaction with all other markers on the chromosome,
but a plot of the missing data shows that this marker was typéyglon a selected number of individuals (largely those
showing recombination events across the interval).

plot.rf(hyper, chr=6)
plot.missing(hyper, chr=6)



7.

10.

11.

Re-estimate the genetic map (keeping the order of mafiked), and plot the original map against the newly estimated
one.

newmap <- est.map(hyper, error.prob=0.01)
plot.map(hyper, newmap)

We see some map expansion, especially on chr 6, 13 and 18queiionable whether we should replace the map or
not. Keep in mind that the previous map locations are baseallonited number of meioses. If one wished to replace
the genetic map with the estimated one, it could be done s\l

hyper <- replace.map(hyper, newmap)
This replaces the map in tigper data withnewmap

. We now turn to the identification of genotyping errors. he following, we calculate the error LOD scores of Lincoln

and Lander (1992). A LOD score is calculated for each indiglét each marker; large scores indicate likely genotyping
errors.

hyper <- calc.errorlod(hyper, error.prob=0.01)
This calculates the genotype error LOD scores and insezis thto thehyper object.

The functiontop.errorlod gives a list of genotypes that may be in error. Error LOD ssere4 can probably be
ignored.

top.errorlod(hyper)

Note that the results will be different, depending on wheyloel usedeplace.map above. If you did, you will get an
indication of potential errors on chr 16. If you didn’t, youliget an indication of potential errors on chr 1, 11 and 17.

. The functionplot.geno  may be used to inspect the observed genotypes for a chronegsath likely genotyping

errors flagged. Of course, it’s difficult to look at too mangiiduals at once. Note that white = AA and black = AB (for
a backcross).

plot.geno(hyper, chr=16, ind=c(24:34, 71:81))

We don't have any utilities for fixing any apparent errorsyaduld be best to go back to the raw data. (Of course, you
should edit a copy of the file; never discard the primary Jata.

The functiorplot.info plots a measure of the proportion of missing genotype in&ion in the genotype data. The
missing information is calculated in two ways: as entropyyia the variance of the conditional genotypes, given the
observed marker data. (See the help file, uSiplgt.info )

plot.info(hyper)

plot.info(hyper, chr=c(1,4,15))

plot.info(hyper, chr=c(1,4,15), method="entropy")
plot.info(hyper, chr=c(1,4,15), method="variance")

We now, finally, get to QTL mapping.

The core of R/qtl is a set of functions which make use of theldidMarkov model (HMM) technology to calculate
QTL genotype probabilities, to simulate from the joint ggme distribution and to calculate the most likely sequesfce
underlying genotypes (all conditional on the observed miadata). This is done in a quite general way, with possible
allowance for the presence of genotyping errors. Of coios€onvenience we assume no crossover interference.

The functioncalc.genoprob  calculates QTL genotype probabilities, conditional onakailable marker data. These
are needed for most of the QTL mapping functions. The argtistep indicates the step size (in cM) at which the
probabilities are calculated, and determines the stepasiaich later LOD scores are calculated.

hyper <- calc.genoprob(hyper, step=1, error.prob=0.01)

We may now use the functioscanone to perform a single-QTL genome scan with a normal model. Wg oz
maximum likelihood via the EM algorithm (Lander and Botst&P89) or use Haley-Knott regression (Haley and Knott
1992).

out.em <- scanone(hyper)
out.hk <- scanone(hyper, method="hk")

We may also use the multiple imputation method of Sen and&@lill¢2001). This requires that we first usen.geno
to simulate from the joint genotype distribution, given titeserved marker data. Again, the argunsap indicates
the step size at which the imputations are performed andrdites the step size at which LOD scores will be calculated.
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12.

13.

14.

15.

16.

17.

18.

The n.draws indicates the number of imputations to perform. Larger @salgive more precise results but require
considerably more computer memory and computation time.

hyper <- sim.geno(hyper, step=2, n.draws=16, error.prob= 0.01)
out.imp <- scanone(hyper, method="imp")

The output of scanone has cldssanone" ; the functionsummary.scanone displays the maximum LOD score on
each chromosome for which the LOD exceeds a specified thoesho

summary(out.em)

summary(out.em, threshold=3)
summary(out.hk, threshold=3)
summary(out.imp, threshold=3)

The functiormax.scanone returns just the highest peak from outpusgcfnone .

max(out.em)
max(out.hk)
max(out.imp)

We may also plot the resultplot.scanone  can plot up to three genome scans at once, provided that trdgren
appropriately. Alternatively, one may use the argunasiut.

plot(out.em, chr=c(1,4,15))

plot(out.em, out.hk, out.imp, chr=c(1,4,15))

plot(out.em, chr=c(1,4,15))

plot(out.hk, chr=c(1,4,15), col="blue", add=TRUE)

plot(out.imp, chr=c(1,4,15), col="red", add=TRUE)

The functiorscanone may also be used to perform a permutation test to get a gemodes-OD significance threshold.
For Haley-Knott regression, this can be quite fast.
operm.hk <- scanone(hyper, method="hk", n.perm=1000)

The permutation output has clascanoneperm” . The functionsummary.scanoneperm can be used to get
significance thresholds.

summary(operm.hk, alpha=0.05)

In addition, if the permutations results are included in htcasummary.scanone , you can estimated genome-scan-
adjusted p-values for inferred QTL, and can get a reportlafrabmosomes meeting a certain significance level, with
the corresponding LOD threshold calculated automatically

summary(out.hk, perms=operm.hk, alpha=0.05, pvalues=TR UE)

We should mention at this point that the functgave.image may be used to save your workspace to disk. If R
crashes, you will wish you had used this.

save.image()

The functiorscantwo performs a two-dimensional genome scan with a two-QTL mdel@l every pair of positions, it

calculates a LOD score for the full model (two QTL plus int#i@an) and a LOD score for the additive model (two QTL
but no interaction). This be quite time consuming, and somiay wish to do the calculations on a coarser grid.

hyper <- calc.genoprob(hyper, step=5, error.prob=0.01)
out2.hk <- scantwo(hyper, method="hk")

One can also usmethod="em" or method="imp" , but they are even more time consuming.

The output ofcantwo has clas$scantwo" ; there are functions for obtaining summaries and plotspofse.

The summary function considers each pair of chromosomes;anulates the maximum LOD score for the full model
(M) and the maximum LOD score for the additive mod&l). These two models are allowed to be maximized at
different positions. We futher calculate a LOD score forst td epistasis)/; = My — M,, and two LOD scores that
concern evidence for a second QT is the LOD score comparing the full model to the best singld-@hodel and
M1 is the LOD score comparing the additive model to the bestsiQy L model.

In the summary, we must provide five thresholds, £y, M¢,1, M;, M,, andM,,1, respectively. Call thesgy, Ty,
T;, T,, andT,,,. We then report those pairs of chromosomes for which at meesof the following holds:
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19.

20.

21.

22.

23.

o My >Tyand Ms, > Trpr OF M; > T5)
L4 Ma Z Ta andMavl Z Ta'ul

The thresholds can be obtained by a permutation test (see}ddut this is extremely time-consuming. For a mouse
backcross, we suggest the thresholds (6.0, 4.7, 4.4, £)fa2 the full, conditional-interactive, interaction,ditive, and
conditional-additive LOD scores, respectively. For a neoinsercross, we suggest the thresholds (9.1, 7.1, 6.33@B,

for the full, conditional-interactive, interaction, atide, and conditional-additive LOD scores, respectiv@lyese were
obtained by 10,000 simulations of crosses with 250 indiaidlumarkers at a 10 cM spacing, and analysis by Haley-Knott
regression.

summary(out2.hk, thresholds=c(6.0, 4.7, 4.4, 4.7, 2.6))
The appropriate decision rule is not yet completely cleaaml inclined to ignorelM,; and to choose genome-wide

thresholds for the other four based on a permutation, usiognamon significance level for all fourM; would be
ignored if we gave it a very large threshold, as follows.

summary(out2.hk, thresholds=c(6.0, 4.7, Inf, 4.7, 2.6))

Plots ofscantwo results are created v@ot.scantwo
plot(out2.hk)
plot(out2.hk, chr=c(1,4,6,15))

By default, the upper-left triangle contains epistasis L&20res and the lower-right triangle contains the LOD scfues
the full model. The color scale on the right indicates sefgasaales for the epistasis and joint LOD scores (on the left
and right, respectively).

The functiormax.scantwo returns the two-locus positions with the maximum LOD scarethe full and additive
models.

max(out2.hk)

One may also uskantwo to perform permutation tests in order to obtain genome-Wwid® significance thresholds.
These can be extremely time consuming, though with the He&fegtt regression and multiple imputation methods,
there is a trick that may be used in some cases to dramatgjdigd things up. So we'll try 100 permutations by the
Haley-Knott regression method and hope that your compsisufficiently fast.

operm2.hk <- scantwo(hyper, method="hk", n.perm=100)

We can again ussummary to get LOD thresholds.

summary(operm2.hk)

And again these may be used in the summary osttantwo output to calculate thresholds and p-values. If you want

to ignore the LOD score for the interaction in the rule aboltxchromosome pairs to report, give= 0, corresponding
to a threshold” = oc.

summary(out2.hk, perms=operm?2.hk, pvalues=TRUE,
alphas=c(0.05, 0.05, 0, 0.05, 0.05))

You can't really trust these results. Haley-Knott regresgierforms poorly in the case of selective genotyping (dls wi
thehyper data). Standard interval mapping or imputation would bésbgbut Haley-Knott regression has the advantage
of speed, which is the reason we use it here.

Finally, we consider the fit of multiple-QTL models. Gamtly, only the use of multiple imputation has been imple-
mented. We first create a QTL object using the functimakeqtl , with five QTL at specified, fixed positions.

chr <- ¢(1, 1, 4, 6, 15)

pos <- ¢(50, 76, 30, 70, 20)

gtl <- makeqtl(hyper, chr, pos)

Finally, we use the functiofitqgtl to fit a model with five QTL, and allowing the QTL on chr 6 and 15rtteract.
my.formula <- y " Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5

out.fitgtl <- fitgti(hyper$pheno[,1], qtl, formula=my.f ormula)

summary(out.fitqtl)

You may wish to clean up your workspace before we move tinetmext example.

Is()
rm(list=Is())



Example 2: Genetic mapping

R/qtl includes some utilities for estimating genetics mapd checking marker orders. In this example, we describasbef
these utilities.

1. Get access to some sample data. This is simulated dataawith errors in marker order.
data(badorder)
summary(badorder)
plot(badorder)

2. Estimate recombination fractions between all pairs afkers, and plot them.

badorder <- est.rf(badorder)
plot.rf(badorder)

It appears that markers on chr 2 and 3 have been switched.

Also note that, if we look more closely at the recombinatiactions for chr 1, there seem to be some errors in marker
order.

plot.rf(badorder, chr=1)

3. Re-estimate the genetic map.

newmap <- est.map(badorder, verbose=TRUE)
plot.map(badorder, newmap)

This really shows the problems on chr 2 and 3.

4. Fix the problems on chr 2 and 3. First, we look more closttii@recombination fractions for these chromosoems
plot.ri(badorder, chr=2:3)

We need to move the sixth marker on chr 2 to chr 3, and the fifttkenan chr 3 to chr 2. We need to figure out which
markers these are.

pull.map(badorder, chr=2)
pull.map(badorder, chr=3)

Now we can use the functianovemarker to move the markers. It seems like they should be exactlycheit.

badorder <- movemarker(badorder, "D2M937", 3, 48)
badorder <- movemarker(badorder, "D3M160", 2, 28.8)

Now look at the recombination fractions again.
plot.ri(badorder, chr=2:3)

5. We can check the marker order on chr 1. The functipple  will consider all permutations of a sliding window of
adjacent markers. A quick-and-dirty approach is to couatrthmber of obligate crossovers for each possible order,
to find the order with the minimum number of crossovers. A mmefined, but also more computationally intensive,
approach is to re-estimate the genetic map for each ordeylaang LOD scores (log likelihood ratios) relative to
the initial order. (This may be done with allowance for thegance of genotyping errors.) The default approach is the
quick-and-dirty method.

The following checks the marker order on chr 1, permutingigeoof six contiguous markers.

ripl <- ripple(badorder, chr=1, window=6)
summary(ripl)

In the summary output, markers 9-11 clearly need to be flipféttre also seems to be a problem with the order of
markers 4-6.

6. The following performs the likelihood analysis, permgtgroups of three adjacent markers, assuming a genotyping e
rate of 1%. It's considerably slower, but more trustworthy.

rip2 <- ripple(badorder, chr=1, window=3, err=0.01, metho d="likelihood")
summary(rip2)

Note that positive LOD scores indicate that the alternadieionas a higher likelihood than the original.



7. We can switch the order of markers 9-11 with the functwitch.order (which works only for a single chromo-
some) and then re-assess the order. Note that the second ripd o corresponds to the improved order.

badorder.rev <- switch.order(badorder, 1, rip1[2,])
riplr <- ripple(badorder.rev, chr=1, window=6)
summary(riplr)

It looks like the marker pairs (5,6) and (1,2) should eachriverited. We usswitch.order again, and then check
marker order using the likelihood method.

badorder.rev <- switch.order(badorder.rev, 1, riplr[2,] )
rip2r <- ripple(badorder.rev, chr=1, window=3, err=0.01)
summary(rip2r)

It's probably best to start out using the quick-and-dirtytinoel, with a large window size, to find the marker order with
the minimum number of obligate crossovers, and then refiasoitier using the slower, but more trustworthy, likelihood
method.

8. We can look again at the recombination fractions for thimmosome.

badorder.rev <- est.rf(badorder.rev)
plot.rf(badorder.rev, 1)

Example 3: Listeria susceptibility

In order to demonstrate further uses of the funcioanone , we consider some data on susceptibilitytsteria monocyto-
genesin mice (Boyartchuk et al., Nature Genetics 27:259-260,1200hese data were kindly provided by Victor Boyartchuk
and Bill Dietrich.

1. Get access to the data and view some summaries.

data(listeria)

summary(listeria)

plot(listeria)

plot.missing(listeria)

Note that in the missing data plot, gray pixels are partialigsing genotypes (e.g., a genotype may be known to be either
AA or AB, but not which).

The phenotype here is the survival time of a mouse (in hootl\ing infection withListeria monocytogenes. Individ-
uals with a survival time of 264 hours are those that recal/&mm the infection.

2. We'll use the log survival time, rather than survival tinse we first need to create a new phenotype, which will end up
as the third phenotype (aftsex ).

listeria$pheno$logSurv <- log(listeria$phenol,1])
plot(listeria)

3. Estimate pairwise recombination fractions.

listeria <- est.rf(listeria)
plot.rf(listeria)
plot.rf(listeria, chr=c(5,13))

4. Re-estimate the genetic map.

newmap <- est.map(listeria, error.prob=0.01)
plot.map(listeria, newmap)
listeria <- replace.map(listeria, newmap)

5. Investigate genotyping errors; nothing gets flagged avithtoff of 4, but one genotype is indicated with error LOB.6.

listeria <- calc.errorlod(listeria, error.prob=0.01)
top.errorlod(listeria)

top.errorlod(listeria, cutoff=3.5)

plot.geno(listeria, chr=13, ind=61:70, cutoff=3.5)

Note that in the plot given bplot.geno , for an intercross, white = AA, gray = AB, black = BB, green = AAAB,
and orange = AB or BB.



6. Now on to the QTL mapping. Recall that the phenotype distion shows a clear departure from the standard assump-
tions for interval mapping; 30% of the mice survived londeart 264 hours, and were considered recovered from the
infection.

One approach for these data is to use the two-part modeldsmesi by Boyartchuk et al. (2001). In this model, a
mouse with genotypg has probabilityp, of surviving the infection. If it does die, its log survivairte is assumed to
be distributed normal(,,c%). Analysis proceeds by maximum likelihood via an EM aldurit Three LOD scores are
calculated. LODY, 1) is for the test of the null hypothesig = p andu, = . LOD(p) is for the test of the hypothesis
pg = p but they are allowed to vary. LODY) is for the test of the hypothesig, = p but thep are allowed to vary.

The functionscanone will fit the above model when the argumembdel="2part" . One must also specify the
argumentpper , which indicates whether the spike in the phenotype is themam phenotype (as it is with this phe-
notype; takaupper=TRUE) or the minimum phenotype (takeper=FALSE ). For this model, only the EM algorithm
has been implemented so far.

listeria <- calc.genoprob(listeria, step=2)
out.2p <- scanone(listeria, pheno.col=3, model="2part", upper=TRUE)

Note that, because this model has three extra parameterapgropriate LOD threshold is higher—around 4.5 rather
than 3.5. The three different LOD curves are in columns 3-thefoutput. We can use thhedcolumn argument to
plot.scanone  to plot these other LOD scores.

summary(out.2p)
summary(out.2p, threshold=4.5)

Alternatively, we may uséormat="allpeaks" , in which case it displays the maximum LOD score or each calum
with the position at which each was maximized. You may prewither one threshold, which would be applied to all
LOD score columns, or a separate threshold for each column.

summary(out.2p, format="allpeaks", threshold=3)
summary(out.2p, format="allpeaks", threshold=c(4.5,3, 3))

7. By default,plot.scanone  will plot the first LOD score column. Alternatively, we mayditate another column to
plot with thelodcolumn argument. Or we can plot up to three LOD scores at once bygwaivector.

plot(out.2p)
plot(out.2p, lodcolumn=2)
plot(out.2p, lodcolumn=1:3, chr=c(1,5,13,15))

Note that the locus on chr 1 shows effect mostly on the meae-tovdeath, conditional on death; the locus on chr 5
shows effect mostly on the probability of survival; and theilon chr 13 and 15 shows some effect on each.

8. Permutation tests may be performed as before. The outifittave three columns, corresponding to the three LOD
scores.

operm.2p <- scanone(listeria, model="2part", pheno.col= 3,
upper=TRUE, n.perm=25)
summary(operm.2p, alpha=0.05)

We may again use the permutation resultsimmary.scanone to have thresholds calculated automatically and to
obtain genome-scan-adjusted p-values, but of course wilwa@nt to have performed more than 25 permutations.

summary(out.2p, format="allpeaks", perms=operm.2p,
alpha=0.05, pvalues=TRUE)

9. Alternatively, one may perform separate analyses ofdgaurvival time, conditional on death, and the binary plgm®
survival/death. First we set up these phenotypes.

y <- listeria$pheno$logSurv
my <- max(y, na.rm=TRUE)
z <- as.numeric(y==my)
yly==my] <- NA
listeria$pheno$logSurv2 <- y
listeria$pheno$binary <- z
plot(listeria)

We use standard interval mapping for the log survival timeditional on death; the results are slightly different from
LOD(u).
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10.

out.mu <- scanone(listeria, pheno.col=4)
plot(out.mu, out.2p, lodcolumn=c(1,3), chr=c(1,5,13,15 ), col=c("blue","red"))

We can usescanone with model="binary" to analyze the binary phenotype. Again, the results are sligjt
different from LODg).

out.p <- scanone(listeria, pheno.col=5, model="binary")
plot(out.p, out.2p, lodcolumn=c(1,2), chr=c(1,5,13,15) , col=c("blue","red"))

A further approach is to use a non-parametric form ofrualemapping. R/qgtl uses an extension of the Kruskal-Wallis
test statistic. Usscanone with model="np" . In this case, the argumemtethod is ignored; the analysis method
is much like Haley-Knott regression. If the arguméas.random=TRUE , tied phenotypes are ranked at random. If
ties.random=FALSE |, tied phenotypes are given the average rank and a corréstamplied to the LOD score.

out.npl <- scanone(listeria, model="np", ties.random=TR UE)
out.np2 <- scanone(listeria, model="np", ties.random=FA LSE)

plot(out.np1, out.np2, col=c("blue","red"))
plot(out.2p, out.npl, out.np2, chr=c(1,5,13,15))

Note that the significance threshold for the non-parameggitome scan will be quite a bit smaller than that for the
two-part model. The two approaches for dealing with tieg d¢pasically the same results. Randomizing ties for the non-
parametric approach can give quite variable results indlse of a great number of ties, and so we would recommend the
use ofties.random=FALSE in this case.

Example4: Covariatesin QTL mapping

As a further example, we illustrate the use of covariatesTih @apping. We consider some simulated backcross data.

1.

Get access to the data.

data(fake.bc)
summary(fake.bc)
plot(fake.bc)

. Perform genome scans for the two phenotypes without zdear

fake.bc <- calc.genoprob(fake.bc, step=2.5)
out.nocovar <- scanone(fake.bc, pheno.col=1:2)

. Perform genome scans with sex as an additive covariate. tNat the covariates must be numeric. Factors may have to

be converted.

sex <- fake.bc$pheno$sex
out.acovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex)

Here, the average phenotype is allowed to be different itvtloesexes, but the effect of the putative QTL is assumed to
be the same in the two sexes.

. Note that the use of sex as an additive covariate resuitad increase in the LOD scores for phenotype 1, but resulted

in a decreased LOD score at the chr 5 locus for phenotype 2.

summary(out.nocovar, threshold=3, format="allpeaks")
summary(out.acovar, threshold=3, format="allpeaks")

plot(out.nocovar, out.acovar, chr=c(2, 5))
plot(out.nocovar, out.acovar, chr=c(2, 5), lodcolumn=2)

. Let us now perform genome scans with sex as an interacivariate, so that the QTL is allowed to be different in the

two sexes.
out.icovar <- scanone(fake.bc, pheno.col=1:2, addcovar= sex, intcovar=sex)

. The LOD score in the output is for the comparison of therfudidel with terms for sex, QTL and QHsex interaction

to the reduced model with just the sex term. Thus, the de@fdesedom associated with the LOD score is 2 rather than
1, and so larger LOD scores will generally be obtained.

summary(out.icovar, threshold=3, format="allpeaks")
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plot(out.acovar, out.icovar, chr=c(2,5), col=c("blue", "red")
plot(out.acovar, out.icovar, chr=c(2,5), lodcolumn=2,
col=c("blue", "red"))

7. The difference between the LOD score with sex as an irtfeeacovariate and the LOD score with sex as an additive
covariate concerns the test of the Qd&ex interaction: does the QTL have the same effect in bo#s®eXhe differences,
and a plot of the differences, may be obtained as follows.
out.sexint <- out.icovar - out.acovar
plot(out.sexint, lodcolumn=1:2, chr=c(2,5), col=c("gre en", "purple™)

The green and purple curves are for the first and second pfpasytrespectively.

8. To test for the QTkxsex interaction, we may perform a permutation test. Thisoisperfect, as the permutation test
eliminates the effect of the QTL, and so we must assume tleadigtribution of the LOD score for the Q™ sex
interaction is the same in the presence of a QTL as under tibaighull hypothesis of no QTL effect.

The permutation test requires some care. We must perforarateppermutations with sex as an additive covariate and
with sex as an interactive covariate, but we must ensuregtting the “seed” for the random number generator, that they
use matched permutations of the data.

For the sake of speed, we will use Haley-Knott regressioanetiough the results above were obtained by standard
interval mapping. Also, we will perform just 100 permutaitsp though 1000 would be preferred.

seed <- ceiling(runif(1, 0, 107°8))

set.seed(seed)

operm.acovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,
method="hk", n.perm=100)

set.seed(seed)

operm.icovar <- scanone(fake.bc, pheno.col=1:2, addcova r=sex,
intcovar=sex, method="hk", n.perm=100)

Again, the differences concern the QXkex interaction.

operm.sexint <- operm.icovar - operm.acovar

We can ussummary to get the genome-wide LOD thresholds.

summary(operm.sexint, alpha=c(0.05, 0.20))

We can also use these results to look at evidence for<EX interaction in our initial scans.

summary(out.sexint, perms=operm.sexint, alpha=0.1,
format="allpeaks", pvalues=TRUE)

Example5: Multiple QTL mapping

We return to thényper data to illustrate some of the more advanced methods fooarglmultiple QTL models. Note
that the multiple QTL mapping features are currently impdated only for the multiple imputation method, and some etspe
remain quite cumbersome. Also, we will rely here on funditirat are not yet available in the released version of Rigikse
functions are available at www.rgtl.org/multqtifunt.R.

The multiple-QTL aspects of R/qtl are under active develepnfas they should be!), and so the methods used below will
hopefully be improved in the near future. Our aim here is t@ @i flavor of what is possible.

1. First, let us delete everything in our workspace and teeoad thenyper data.
rm(list=Is())
data(hyper)

2. Now let’s load the additional, developmental functiomsrhultiple QTL mapping.
source("http://www.rqgtl.org/multgtifunc.R")

3. We will be using the multiple imputation method througtthis example, and so we first need to perform the imputations
Recall that more imputations give more precise resultstdkg more time and memory. To speed things along, we will
use only 32 imputations, even though much more would be mEfeda definitive analysis.

hyper <- sim.geno(hyper, step=2.5, n.draw=32, err=0.01)
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10.

. We first perform a single-QTL genome scan and inspect thétee

outl <- scanone(hyper, method="imp")
plot(outl)

As you'll recall from the results in Example 1, we have cleadence for a QTL on chr 4, and strong evidence for a QTL
on chr 1. The LOD curve on chr 1 has an interesting double ajgestive of possibly two QTL.

There is a hint of further loci on chr 6 and 15 and elsewhere.

. In the presence of a large-effect QTL, as seen on chr 4, @yewish to repeat the scan, controlling for that locus. This

can make the loci with more modest effect more apparent.

A simple (but rough) approach is to pull out the genotypesafanarker near the peak locus, and use that marker as an
additive covariate in a single-QTL scan. The peak marketifese data was D4Mit164:

max(outl)
If the peak LOD score is not at a marker, we may fisé.marker  to identify the marker closest to the LOD peak.
find.marker(hyper, 4, 29.5)

. The functiorpull.geno  may be used to pull out the genotype data for that marker, biit gee that most individuals

were not typed at D4Mit164.

g <- pull.geno(hyper)[,"D4Mit164"]
mean(is.na(g))

We may fill in the genotype data using a single imputation,thed use those imputed genotypes as if they were observed.
This is not ideal; we’ll do this analysis properly (thougtlwimore complex code) below.

g <- pull.geno(fill.geno(hyper))[,"D4Mit164"]

. Now we perform the genome scan, controlling for the chroi$o (Note that in an intercross, we would have to re-code

the genotype data to be a two-column numeric matrix.)
outl.c4 <- scanone(hyper, method="imp", addcovar=g)
We can plot the results together with the original genoma.sca
plot(outl, outl.c4, col=c("blue", "red"))

The LOD curve on chr 1 went up quite a bit. (And, of course, t@¥Lcurve on chr 4 went down to near 0.) To see the
effect of controlling for the chr 4 locus more clearly, we qdot the differences between the LOD scores.

plot(outl.c4 - outl, ylim=c(-3,3))

abline(h=0, Ity=2, col="gray")

. We may also look for loci that interact with the chr 4 locoig,including marker D4Mit164 as an interactive covariate.

outl.c4i <- scanone(hyper, method="imp", addcovar=g, int covar=g)

The difference between these LOD scores and those obtaiileddMit164 as a strictly additive covariate indicates
evidence for an interaction with the chr 4 locus.

plot(outl.c4i - outl.c4)
There is nothing particularly interesting here.

. Now let us perform a 2d scan. This will take a few minutesy@se doing the scan at a 2.5 cM step size.

out2 <- scantwo(hyper, method="imp")

Let us look at some summaries for rantwo results. Recall that we need to provide five thresholds (seeple 1).
We'll ignore the threshold on the epistasis LOD scdrgand use the thresholds suggested above.
summary(out2, thr=c(6.0, 4.7, Inf, 4.7, 2.6))

Your results may be different from mine, since we are usinfeaoimputations, but | see evidence for loci on chr 1 and
4 (which don’t appear to interact) and loci on chr 6 and 15 @ilto show evidence of epistasis).

This didn’t pick up evidence for two QTL on chr 1; we can looketitly at the chr 1 results as follows.
summary( subset(out2, chr=1) )
The LOD score for a second, additive QTL on chr 2 (LQD is ~1.6; not strong, but not uninteresting.
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11.

12.

13.

Evidence for an interaction between loci on chr 7 and 15 had Ipeeviously reported. Those results may be inspected
as follows.

summary( subset(out2, chr=c(7,15)) )
Again, this is interesting but not strong.

Let us look at some plots of tlseantwo results. First we make the standard plot with selected chsmmes; the upper
triangle contains LOPand the lower triangle contains LQD
plot(out2, chr=c(1,4,6,7,15))

The argumentwer andupper may be used to change what is plotted in the upper and loveergies. For example,
with lower="cond-int" , LOD¢,1 (evidence for a second QTL, allowing for epistasis) is digptl in the lower
triangle, while withlower="cond-add" ,LOD,,; (evidence for a second QTL, assuming no epistasis) is gisgla

plot(out2, chr=1, lower="cond-add")

plot(out2, chr=c(6,15), lower="cond-int")

plot(out2, chr=c(7,15), lower="cond-int")

Again, evidence for a second QTL on chr 1 is not strong. Exéddnor interacting QTL on chr 6 and 15 is quite strong;
the 7x 15 interaction is not.

We can also perform the 2d scan conditional on the chruslod/e’ll do this just for chr 1, 6, 7, and 15, to save time.
out2.c4 <- scantwo(hyper, method="imp", addcovar=g, chr= c(1,6,7,15))

If we look at the same summaries as before, we see decreaseti@y for a second QTL on chr 1 and for thelIb
interaction, but increased evidence for thelfs interaction.

summary(out2.c4, thr=c(6.0, 4.7, Inf, 4.7, 2.6))
summary( subset(out2.c4, chr=1) )
summary( subset(out2.c4, chr=c(7,15)) )

The sort of plots we made before remain interesting.

plot(out2.c4, chr=c(1,4,6,7,15))

plot(out2.c4, chr=1, lower="cond-int")

plot(out2.c4, chr=c(6,15), lower="cond-int")

plot(out2.c4, chr=c(7,15), lower="cond-int")

We can also look at the differences in the LOD scores, to seerhoch conditioning on D4Mit164 has affected the
results. We need to subset our original results, since wesmanned selected chromosomes in the conditional analysis
Theallow.neg argument is used to allow negative LOD scores ingbantwo plot, as they would generally be
replaced with 0.

out2sub <- subset(out2, chr=c(1,6,7,15))

plot(out2.c4 - out2sub, allow.neg=TRUE, lower="cond-int "

Now let us turn to the fit of multiple-QTL models. The fuioctfitqtl is used to fit a specific model.

One must first pull out the data on fixed QTL locations usimakeqtl . We will consider the possibility of two QTL on
chr 1, but will ignore the putative QTL on chr 7. Also note tffiédtl takes a vector of phenotypes as input, and so
we pull that from thenyper data to make things simpler.

gc <- c(1, 1, 4, 6, 15)
gp <- c(43.3, 78.3, 30.0, 62.5, 18.0)
gtl <- makeqtl(hyper, chr=gc, pos=qgp)
phe <- hyper$pheno[,1]

We also create a “formula” which indicates which QTL are tari@uded in the fit and which interact.
myformula <- y 7 Q1+Q2+Q3+Q4+Q5 + Q4:Q5
We can now fit a model, including the<d 5 interaction, and get a summary of the results.

out.fq <- fitgtl(phe, qtl, formula = myformula)
summary(out.fq)

The first part of the summary describes the overall fit; the L$8bre of~23 is the log, likelihood ratio comparing the
full model to the null model.

14



14.

15.

16.

17.

The second part of the summary gives results dropping ome &tra time from the model. In the presence of an
interaction, if a term included in the interaction is onlttéhe interaction is also omitted, and so the rows for thedac
chr 6 and 15 indicate 2 degrees of freedom.

One may also ud#qtl to get estimated effects of the QTL in the context of the mldQTL model. We can use
drop=FALSE , so that the “drop one at a time” part of the analysis is notguered, andyet.ests=TRUE to get the
estimated effects.

out.fq <- fitgtl(phe, qtl, formula = myformula, drop=FALSE , get.ests=TRUE)
summary(out.fq)

The estimated effects are the differences between thedzgtgste and homozygote groups. The interaction effect is of
the difference between the differences.

The functiorrefineqtl (developmental code in tHenultgtlfunc.R" file that we loaded earlier) can be used to
refine the estimated positions of the QTL in the context ofrthetiple-QTL model.
out.rqg <- refineqtl(hyper, chr=qc, pos=gp, formula = myfor mula)

The output has two columns: the chromosome IDs and new positf the QTL. For me, a couple of the QTL moved,
but very slightly:

qp - outrq[,2]

We can re-rumakeqtl andfitqtl to get a fit with the new positions; the overall LOD score sddwve increased
slightly. (For me, it increased from 23.0 to 23.7.)

gp2 <- out.rq[,2]

gtl2 <- makeqtl(hyper, chr=qc, pos=qp2)

out.fg2 <- fitgtl(phe, qtl2, formula=myformula)

summary(out.fq2)

Thescangtl function is used to perform general genome scans in the xoote multiple QTL model. It is quite
flexible, but not simple to use.

We will first usescangtl to perform a more precise version of our genome scan, condition the chr 4 locus.
Previously, we had conditioned on imputed genotypes at &enaear the LOD peak on chr 4. Witltanqgtl we can

do this properly: take proper account of the missing gemoigformation at the chr 4 locus, rather than taking genatype
from a single imputation as if they had been observed.

Like makeqtl , the scangtl function takes the chromosome and positions of a set of Q$lwell as a formula
indicating which QTL interact. If the formula is omitted| kdci are assumed to be additive. The QTL positions may be a
single number (in which case the QTL location is fixed) or darval (in which case a scan over that region is performed.

And so, the following performs a scan on all of chr 1 (indichtg (-Inf,Inf) ) with a QTL on chr 4 fixed at 29.5 cM.
outl.sq <- scanqtl(hyper, chr=c(1,4), pos = list( c(-Inf,l nf), 29.5) )

The output contains LOD scores comparing the two-QTL manlthé null model. If we want the LOD score comparing
the two-QTL model to the model with just the chr 4 locus, wedhteesubtract off the LOD score for the latter, single-QTL
model.

The output olscangtl is not simple to work with (yet), but thenultqtlfunc.R" file we loaded earlier contains a
functionconvert.scanqtl that will convert the output to an object of the form produbgdcanone orscantwo .

And so, we first calculate the LOD score for the model with gl&®QTL on chr 4, and then use the functammvert.scanqtl
to convert thescangtl  output to a more useable form.

null <- scanqgtl(hyper, chr=4, pos=list(29.5))
outl.c4r <- convert.scangtl(outl.sq, null)

We may now plot these results with those obtained earliee. r€kults are not actually too different.

plot(outl.c4, outl.c4r, col=c("blue”, "red"), chr=1)

The same approach may be used to perform a 2d scan on abmditiening on the locus on chr 4. We need to use
scangtl twice, once with an additive model and once with the full mdteo QTL plus interaction).

out2.sg.add <- scanqtl(hyper, chr=c(1,1,4),
pos=list(c(-Inf,Inf), c(-Inf,Inf), 29.5))
out2.sq.full <- scanqtl(hyper, chr=c(1,1,4),
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19.

pos=list(c(-Inf,Inf), c(-Inf,Inf), 29.5),
formula=y"Q1+Q2+Q3+Q1:Q2)

We again useonvert.scanqtl to convert the output to a more useable form.
out2.c4r <- convert.scangtl(out2.sq.full, null, out2.sq .add)

We can plot the difference between these results and ourgpievesults; we first need to subset the old results, since
here we have just looked at chr 1.

out2.c4sub <- subset(out2.c4, chr=1)
plot(out2.c4sub - out2.c4r, lower="cond-add", allow.neg =TRUE)

Again, things have hardly changed.

Finally, let us usecangtl to scan for additional loci. Let us take the five-QTL modeltfwihe loci on 6 and 15
interacting) as fixed, and look to add a further locus. Herrefq2  is taken as the null model, and we must scan each
chromosome, one at a time, for a further locus. We'll skipXhghromosome.

The syntax of the QTL positions is perhaps most tricky. Weihout much knowledge of R, this is all likely mysterious.

newpos <- c( as.list(qp2), list(c(-Inf, Inf)) )
out.sq <- NULL
for(i in 1:19) {
temp <- scangtl(hyper, chr=c(qc,i), pos=newpos,
formula = y 7 Q1+Q2+Q3+Q4+Q5 + Q4:Q5 + Q6)
out.sq <- rbind(out.sq, convert.scanqtl(temp, out.fq2))

}

The resultput.sq , is just like the output fronscanone , and so we may plot it as follows:
plot(out.sq)

We may use the same approach to look for additional l@tirtiight interact with the locus on chr 15. The code is the
same, but we add the additional interaction to the formula.

out.sqgi <- NULL
for(i in 1:19) {
temp <- scangtl(hyper, chr=c(qc,i), pos=newpos,

formula = y 7 Q1+Q2+Q3+Q4+Q5 + Q4:Q5 + Q6 + Q5:Q6)
out.sgi <- rbind(out.sqgi, convert.scanqtl(temp, out.fq2 )

}

We can plot the results (which indicate evidence for an &fthl QTL, allowing for epistasis), or the differences beén
these and our previous ones, which concern just the interact

plot(out.sqi)
plot(out.sqi - out.sq)

The possible %15 interaction is by far the most interesting thing going eneh
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Example 6: Internal data structure

Finally, let us briefly describe the rather complicated ddtacture that R/qtl uses for QTL mapping experiments. Whilisbe
rather dull, and will require a good deal of familiarity withe R (or S) language. The choice of data structure requaoetes
balance between ease of programming and simplicity for fee imterface. The syntax for references to certain pietteo
internal data can become extremely complicated.

1.

Get access to some sample data.
data(fake.bc)

. First, the object has a “class,” which indicates that itresponds to data for an experimental cross, and gives the

cross type. By having claggoss , the functiongplot andsummary know to send the data folot.cross and
summary.cross

class(fake.bc)

. Everycross object has two components, one containing the genotypeatiatgenetic maps and the other containing

the phenotype data.
names(fake.bc)

. The phenotype data is simply a matrix (more strictly a da@ae) with rows corresponding to individuals and columns

corresponding to phenotypes.
fake.bc$pheno[1:10,]

. The genotype data is a list with components corresportdingromosomes. Each chromosome has a name and a class.

The class for a chromosome is eitliai' or"X" , according to whether it is an autosome or the X chromosome.

names(fake.bc$geno)
sapply(fake.bc$geno, class)

. Each component @feno contains two componentdata (containing the marker genotype data) anap (containing

the positions of the markers, in cM).

names(fake.bc$genol[[3]])
fake.bc$geno[[3]]$data[1:5,]
fake.bc$geno[[3]]$map

That's it for the raw data.

. When one runsalc.genoprob  , sim.geno , argmax.geno or calc.errorlod , the output is the input cross

object with the derived data attached to each componentfittenosomes) of thgeno component.

names(fake.bc$genol[[3]])

fake.bc <- calc.genoprob(fake.bc, step=10, err=0.01)
names(fake.bc$geno[[3]])

fake.bc <- sim.geno(fake.bc, step=10, n.draws=8, err=0.0 1)
names(fake.bc$geno[[3]])

fake.bc <- argmax.geno(fake.bc, step=10, err=0.01)
names(fake.bc$genol[3]])

fake.bc <- calc.errorlod(fake.bc, err=0.01)

names(fake.bc$genol[[3]])

. Finally, when one runest.rf | a matrix containing the pairwise recombination fractiansl LOD scores is added to

the cross object.

names(fake.bc)
fake.bc <- est.rf(fake.bc)
names(fake.bc)
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A brief tour of R/qtlbim

Brian S. Yandell
Departments of Statistics and Horticulture, UW-Madison
www.qtlbim.org

June 7, 2007

Abstract
Bayesian interval mapping of QTL library R/qtlbim provides Bayesian analysis of multiple quanti-
tative trait loci (QTL) models. This includes posterior estimates of the number and location of QTL,
and of their main and epistatic effects. This tutorial assumes the reader has read A brief tour of R/qtl
by Karl Broman, available at www.rqtl.org. We extend his hypertension example by analyzing the same
data with Bayesian methods. Some familiarity with Bayesian methods is helpful but not required.

1 Overview of R/qtlbim

R/qtlbim is an extensible, interactive environment for mapping quantitative trait loci (QTL) in exper-
imental crosses using Bayesian methods. It builds on R/qtl (www.rqtl.org), which in turn builds on
the widely used statistical language system R (www.r-project.org). R/qtlbim is distributed in the same
manner as R/qtl, and can be installed similarly.

This tutorial describes the MCMC sampling routines and some of the plotting facilities available
through the R/qtlbim package. The purpose of these plots is to provide graphical tools for

1. exploring putative single and multiple QTL,
2. producing interpretable graphics of the relative evidence in favor of a set of putative QTL,
3. visual diagnostics of the MCMC model selection algorithm.

The package provides graphical diagnostics that can help investigate several ”"better” models. It also
provides a 1-D and 2-D genome scan. The R/qtlbim package provides plotting facilities for results
generated by the analytical tools in the R/qtlbim package. These plotting facilities include time series
plots of QTL model charactacteristics as basic MCMC diagnostic plots, visual tools for comparison of
putative QTL models and exploratory plots whose purpose is the aid in the identification of likely QTL.

This package is currently in ”beta” release. That is, most of the basic features are stable, but we
expect a learning curve. We would like feedback from experienced QTL mappers and R users especially.
Please note that the command gb.mcmc that creates the MCMC samples produces external files in an
output directory. These files are tens of Mb large. They are integral to R/qt1lbim diagnostics. The proper
way to remove a gb object created by gb.mcmc is to use the gb.remove routine, as indicated below.

This document walks through the R/qtlbim package by demonstrating the following major functions:
creation of Bayesian samples from the posterior using MCMC sampling; use of plot and summary tools
to examine genetic architecture; data management in R/qtlbim.

2 Citation of R/qtlbim

To cite R/qtl in publications, use the following:

Yandell BS, Mehta T, Banerjee S, Shriner D, Venkataraman R, Moon JY, Neely WW, Wu H,
von Smith R, Yi N (2007) R/qtlbim: QTL with Bayesian interval mapping in experimental
crosses. |Bioinformatics 23: 641-643.

The methodology is described in the following paper:

Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D (2005) Bayesian model
selection for genome-wide epistatic QTL analysis. |Genetics 170: 1333-1344.


http://www.qtlbim.org
http://www.rqtl.org
http://www.rqtl.org
http://www.r-project.org
http://dx.doi.org/10.1093/bioinformatics/btm011
http://www.genetics.org/cgi/content/abstract/170/3/1333

3 Preliminaries

The Preliminaries of Broman’s brief tour, as well as steps 1, 16 and 23 of his Example 1, provide important
information on careful use of R.

This tutorial focuses on the hyper dataset from R/qtl. Please complete the R/qtl Tutorial for
Hypertension in A brief tour of R/qtl available at (www.rqtl.org). Steps 1-4, 11-14 and 17-20 of Example
1 provide an overview of the core analysis in R/qtl.

Some other steps and examples might be skipped in the interest of time. Steps 15 and 21 show how
to estimate permutation thresholds, which can take considerable time on slower machines. Step 22 of
Example 1 and Example 5 develop a strategy for multiple QTL mapping. Example 4 shows how to
incorporate covariates into R/qtl analysis.

The other skipped steps of Example 1 (5-10) concern further investigation of the marker genotypes
and map construction. In addition, Example 2 provides further detail on marker order. Example 6 shows
the internal data construct for cross objects for those familiar with R who want to dig deeper.

All of the code for this tutorial is available in a file. You can view this as

> url.show("http://www.stat.wisc.edu/ yandell/qtl/software/qtlbim/rqtlbimtour.R")

4 Hypertension Example

1. Run steps 1-4, 11-14 and 17-20 of Example 1 of Broman’s brief tour. This provides an overview of
R/qtl.

2. Load R/qtlbim package.
> library(qtlbim)
3. Remove the X chromosome. R/qtlbim does not currently handle the X chromosome properly.

> data(hyper)
> hyper <- subset (hyper, chr = 1:19)

4. Calculate genotype probabilities.
> hyper <- gb.genoprob(hyper, step = 2)

This is essentially calc.genoprob of Broman’s step 11, but with variable step width required for
R/qtlbim.

5. The time-consuming part of R/qtlbim involves creating the MCMC samples. We will NOT do this
step in the tutorial. The random seed of 1616 is included to allow reproducible samples. To obtain
different MCMC samples, simply use a different seed or drop the seed argument.

## The following command is commented out.
## gbHyper <- gb.mcmc (hyper, pheno.col = 1, seed = 1616)

Note that this step creates a uniquely named directory containing flat (text) files with the MCMC
samples, as well as constructing the gb object.

6. Alternatively, we can load already prepared MCMC samples.
> gb.load(hyper, gbHyper)

This step actually loads the hyper dataset with the X chromosome removed and genotype proba-
bilities properly calculated, as well as the gb object gbHyper.

7. Show detailed summary of MCMC samples. This includes how the MCMC samples were con-
structed, where they were stored, etc.

> summary (qbHyper)

The diagnostic summaries characterize the number of QTL samples (nqtl), the posteriors for the
mean and environmental variance (envvar), the explained variance components (varadd and varaa)
and the total variance (var). In addition, the percentages of samples for number of QTL, number
of epistatic pairs, and the most common epistatic pairs are shown.

8. A collection of diagnostic plots and summaries can be shown with the plot command:
> plot(gbHyper)

These include the following, which are identified by the separate routine that can be used to get
that particular plot.


http://www.rqtl.org

10.

11.

12.

13.

14.

e Time series of mcmc runs. R/coda trace of MCMC samples to assess the Markov chain mixing.
> tmp <- gb.coda(gbHyper)
> summary (tmp)
> plot (tmp)

e Jittered plot of quantitative trait loci by chromosome. A plot of samples loci across chromo-
somes (separated by main loci, epistatic loci and any GxE loci).
> tmp <- gb.loci(gbHyper)
> summary (tmp)
> plot (tmp)

e Bayes Factor selection plots. Posteriors and Bayes factor ratios for number of QTL, pattern of
QTL across chromosomes, chromosomes and epistatic pairs.
> tmp <- gb.BayesFactor (qbHyper)
> summary (tmp)
> plot (tmp)

e HPD regions and best estimates. One dimensional scan of major QTL for test statistic (2logBF)
and means by genotype.
> tmp <- gb.hpdone (gqbHyper)
> summary (tmp)
> plot(tmp)

e Epistatic effects. Size of epistatic effects for most common pairs of chromosomes.
> tmp <- gb.epistasis(gbHyper)
> summary (tmp)
> plot (tmp)

e Summary diagnostics as histograms and boxplots by number of QTL. Posterior distribution
overall and separately by number of QTL sampled for the overall mean, environmental variance,
explained variance and heritability.
> tmp <- gb.diag(gbHyper)
> summary (tmp)
> plot(tmp)

Perform log posterior density (LPD) scan of entire genome. This is analogous to R/qtl’s scanone,
which produces the LOD. However there are marginal LPD, adjusting for all other possible QTL,
rather than one QTL summaries.

> one <- gb.scanone(gbHyper, type = "LPD")

The plot for qb.scanone has separate LPD curves for overall (black), main effects (blue), epistatic
effects (purple) and QTL by environment (dark red).

> plot(one)

The summary shows the estimated peak by chromosome. There are two positions, m. pos for position
of main effect peak and e.pos for position of epistatic effect peak.

> summary (one)

We can filter the summary to only pick up chromosomes with large main effects and/or epistasis.
We can then save those chromosome IDs.

> sum.one <- summary(one, sort = "sum", threshold = c(sum = 4,
+ epistasis = 4))

> sum.one

> chrs <- sort(sum.one$chr)

> chrs

Now we can show a plot with this subset of chromosomes.
> plot(one, chr = chrs)
Now look at cell means by genotype. We restrict attention to the key chromosomes.

> onemean <- gb.scanone(qbHyper, chr = chrs, type = "cellmean")
> plot(onemean)
> summary (onemean)



15.

16.

17.

18.

19.

20.

21.

5

An alternative way to filter the chromosomes is to use the highest posterior density (HPD) region.
Here we ask for an LPD profile, rather than the default 21ogBF.

> hpd <- gb.hpdone (gqbHyper, profile = "LPD")
> summary (hpd)
> plot (hpd)

The summary includes the limits of the HPD interval for each chromosome. The HPD region is
computed across the entire genome.

Perform a two-dimensional scan on the key chromosomes.
> two <- gb.scantwo(gbHyper, chr = chrs, type = "LPD")

Summarize the 2-D scan, sorting by the upper triangle, which contains epistasis by default. Thresh-
old to include only values above 4.

> summary(two, sort = "upper", threshold = c(upper = 4))
Plot to visualize epistatic chromosome pairs.

> plot (two)

Slice along ridge relative to chromosome 15.

> plot(two, chr = c(4, 6, 7), slice = 15)

Slice to examine cell mean for epistasis with chr 15. Plot shows profile of means for chromosome 6
and 7 when genotype on chr 15 is A (top) and H (bottom).

> slice <- gb.sliceone(gbHyper, type = "cellmean", chr = c(4, 6,

+ 7), slice = 15)

> summary(slice)

> plot(slice, chr = 6:7)

Perform detailed slice at peak on chr 6 and 15. Rightmost plots are from R/qtl at nearest marker
to peak.

> slice = gb.slicetwo(gbHyper, c(6, 15), c(59, 19.5))

> plot(slice)

> summary(slice)

Hypertension Demo

An alternative demo of R/qtlbim run on the hypertension data can be run as

> library(qtlbim)
> demo(gb.hyper. tour)
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1. why study multiple traits together?

avoid reductionist approach to biology

— address physiological/biochemical mechanisms
— Schmalhausen (1942); Falconer (1952)

separate close linkage from pleiotropy
— 1 locus or 2 linked loci?

identify epistatic interaction or canalization
— influence of genetic background

establish QTL x environment interactions
decompose genetic correlation among traits
increase power to detect QTL

Traits NCSU QTL II: Yandell © 2005 2




Type 2 Diabetes Mellitus
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Insulin Resistant Mice
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(courtesy AD Attie)

Time (weeks)

G studying diabetes in an F2

» segregating cross of inbred lines
— B6.ob x BTBR.ob > F1 — F2
— selected mice with ob/ob alleles at leptin gene (chr 6)
— measured and mapped body weight, insulin, glucose at various
ages (Stoehr et al. 2000 Diabetes)
— sacrificed at 14 weeks, tissues preserved

* gene expression data

— Affymetrix microarrays on parental strains, F1
* (Nadler et al. 2000 PNAS; Ntambi et al. 2002 PNAS)

— RT-PCR for a few mRNA on 108 F2 mice liver tissues
* (Lan et al. 2003 Diabetes; Lan et al. 2003 Genetics)

— Affymetrix microarrays on 60 F2 mice liver tissues
* design (Jin et al. 2004 Genetics tent. accept)
* analysis (work in prep.)
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why map gene expression
as a quantitative trait?

* cis- or trans-action?
— does gene control its own expression?
— or is it influenced by one or more other genomic regions?
— evidence for both modes (Brem et al. 2002 Science)
» simultaneously measure all mRNA in a tissue
— ~5,000 mRNA active per cell on average
— ~30,000 genes in genome
— use genetic recombination as natural experiment
* mechanics of gene expression mapping
— measure gene expression in intercross (F2) population
— map expression as quantitative trait (QTL)
— adjust for multiple testing

Traits NCSU QTL II: Yandell © 2005 7

¢ l LOD map for PDI:

cis-regulation (Lan et al. 2003)
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mapping microarray data

single gene expression as trait (single QTL)
— Dumas et al. (2000 J Hypertens)
overview, wish lists
— Jansen, Nap (2001 Trends Gen); Cheung, Spielman
(2002); Doerge (2002 Nat Rev Gen); Bochner (2003
Nat Rev Gen)
microarray scan via 1 QTL interval mapping

— Brem et al. (2002 Science); Schadt et al. (2003 Nature);
Yvert et al. (2003 Nat Gen)

— found putative cis- and trans- acting genes
multivariate and multiple QTL approach
— Lan et al. (2003 Genetics)
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2. design issues for expensive phenotypes
(thanks to CF “Amy” Jin)

* microarray analysis ~ $1000 per mouse
— can only afford to assay 60 of 108 in panel
— wish to not lose much power to detect QTL
* selective phenotyping
— genotype all individuals in panel
— select subset for phenotyping

— previous studies can provide guide

Traits NCSU QTL II: Yandell © 2005 11

selective phenotyping

» emphasize additive effects in F2

— F2 design: 1QQ:2Qq:1qq

— best design for additive only: 1QQ:1Qq

— drop heterozygotes (Qq)

— reduce sample size by half with no power loss
» emphasize general effects in F2

— best design: 1QQ:1Qq:1qq

— drop half of heterozygotes (25% reduction)
« multiple loci

— same idea but care is needed

— drop 7/16 of sample for two unlinked loci
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is this relevant to large QTL studies?

* why not phenotype entire mapping panel?
— selectively phenotype subset of 50-67%
— may capture most effects
— with little loss of power
» two-stage selective phenotyping?
— genotype & phenotype subset of 100-300

* could selectively phenotype using whole genome
— QTL map to identify key genomic regions
— selectively phenotype subset using key regions

Traits NCSU QTL II: Yandell © 2005 13

3. why are traits correlated?

 environmental correlation
— non-genetic, controllable by design
— historical correlation (learned behavior)
— physiological correlation (same body)

* genetic correlation
— pleiotropy

* one gene, many functions

» common biochemical pathway, splicing variants
— close linkage

* two tightly linked genes

+ genotypes Q are collinear

Traits NCSU QTL II: Yandell © 2005 14




interplay of pleiotropy & correlation
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Korol et al. (2001)
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3 correlated traits - T

(Jiang Zeng 1995) - 0o
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pleiotropy or close linkage?

2 traits, 2 qtl/trait
pleiotropy @ 54cM
linkage @ 114,128cM
Jiang Zeng (1995)

70

LR test statistic

T T
0 16 20 4% B0 TS5 B0 105 120 135 150

Testing position (cM)
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4. modern high throughput biology

* measuring the molecular dogma of biology
— DNA — RNA — protein — metabolites
— measured one at a time only a few years ago
* massive array of measurements on whole systems (“omics”)
— thousands measured per individual (experimental unit)
— all (or most) components of system measured simultaneously
« whole genome of DNA: genes, promoters, etc.
« all expressed RNA in a tissue or cell
« all proteins
« all metabolites
» systems biology: focus on network interconnections
— chains of behavior in ecological community
— underlying biochemical pathways
+ genetics as one experimental tool
— perturb system by creating new experimental cross
— each individual is a unique mosaic

Traits NCSU QTL II: Yandell © 2005 18




coordinated expression in mouse
genome (Schadt et al. 2003)

expression ) H | o
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i
Traits 19
finding heritable traits
(from Christina Kendziorski)
e reduce 30,000 traits to 300-3,000 heritable traits
* probability a trait is heritable
pr(H|Y,Q) = pr(Y|Q,H) pr(H|Q) / pr(¥|Q) Bayes rule
pr(Y|Q) = pr(Y|Q.H) pr(H|Q) + pr(Y|Q, not H) pr(not H|Q)
* phenotype averaged over genotypic mean u
pr(Y]0, not H) = f(Y) = ff(YIG) pr(G) dG if not H
pr(Y10, H)=£,(Y10) = quo(Yq) if heritable

Y, = {Y;| O;=q} = trait values with genotype O=¢
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hierarchical model for expression phenotypes
(EB arrays: Christina Kendziorski)

Yoo ~ f ( ‘GQQ) mRNA phenotype models
Yoo~ f ( ‘GQq) given genotypic mean G,
P N
."'I! \\ qu ~f ( ‘qu)
G lQQ | G IQq G qq

common prior on G, across all mMRNA
(use empirical Bayes to estimate prior)

I
G QQ GQq G qq
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Traits

expression meta-traits: pleiotropy

» reduce 3,000 heritable traits to 3 meta-traits(!)

* what are expression meta-traits?
— pleiotropy: a few genes can affect many traits
* transcription factors, regulators
— weighted averages: Z = YW
* principle components, discriminant analysis
* infer genetic architecture of meta-traits

— model selection issues are subtle
* missing data, non-linear search
» what is the best criterion for model selection?

— time consuming process
* heavy computation load for many traits

* subjective judgement on what is best
2
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PC across microarray functional groups

Afty chips on 60 mice
~40,000 mRNA

2500+ mRNA show DE

(via EB arrays with
marker regression)

1500+ organized in
85 functional groups
2-35 mRNA / group

which are interesting?

PC2%

examine PC1, PC2 ,/
- Aoise
T T
circle size = # unique mRNA 0 e
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84 PC meta-traits by functional group
focus on 2 interesting groups

(a) percent explained hy PC1 &2 (b) RNA binding (C) translation machinery
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red lines: peak
for PC meta-trait
black/blue: peaks
for mRNA traits
arrows: cis-action?
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chr 15 region
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mRMA

DA for all pairs of markers:
separate 9 genotypes based on markers
(a) same locus pair found with PC meta-traits

(b) Chr 2 region interesting from biochemistry (Jessica Byers)
(¢) Chr 5 & Chr 9 identified as important for insulin, SCD

interaction plots for DA meta-traits

(a) epistasis: chr 4 & chr 15 (] sis: chr 2 & chr 13 " (c) epi: chr5 & chr9
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comparison of PC and DA meta-traits on 1500+ mRNA traits

genotypes from
Chr 4/Chr 15
locus pair
(circle=centroid)

PC captures
spread without

genotype

DA creates best
separation by

genotype
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relating meta-traits to mRNA traits

DA meta-trait
standard units

mRNA

{#) epistasis; chr 4 & chr 15 (b} apistasis: chr 2 & chr 13
i

]

ARNA

{c) epistasis: chr 5 & chr 9

{a} epistasis: chi 4 & chi 15

1o 4

SCD trait
log2 expression
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(by epistasis: chi 2 & chi 13
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DA a cautionary tale
(184 mRNA with |cor| > 0.5; mouse 13 drives heritability)

correlation of DA with mRNA sorted by 29 chr pairs mRNA selected by 29 DA ranked aver mice
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-
m
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=
-
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building graphical models

« infer genetic architecture of meta-trait
—E(Z| O M)=p,= By + Zigin iy Py
» find mRNA traits correlated with meta-trait
— Z ~ YW for modest number of traits Y
 extend meta-trait genetic architecture
— M = genetic architecture for ¥
— expect subset of QTL to affect each mRNA
— may be additional QTL for some mRNA
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posterior for graphical models

*posterior for graph given multivariate trait & architecture

pr(G | Y, O, M) =pr(X|Q, G) pr(G | M) / pr(Y | Q)

—pr(G | M) = prior on valid graphs given architecture

smultivariate phenotype averaged over genotypic mean u
pr(Y| Q. G)=£(X] 0 G)=1lg f(Xq|G)
X, 1 G =AY, | 1 G) pr(y) du

sgraphical model G implies correlation structure on Y
*genotype mean prior assumed independent across traits

pr(y) = Hz pr(,)
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from graphical models to pathways

* build graphical models
QTL — RNA1 —» RNA2
— class of possible models
— best model = putative biochemical pathway
« parallel biochemical investigation
— candidate genes in QTL regions
— laboratory experiments on pathway components
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graphical models (with Elias Chaibub)
KO G=0)=/(Y,|0) /(X,] 0. 1))

TL DN A o unobservable
J protemn | eta-trait

observable
@ @ Pl cis-action?

observable
trans-action
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summary

» expression QTL are complicated

— need to consider multiple interacting QTL
 coherent approach for high-throughput traits

— identify heritable traits

— dimension reduction to meta-traits

— mapping genetic architecture

— extension via graphical models to networks
* many open questions

— model selection

— computation efficiency

— inference on graphical models
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