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QTL model selection: key players

* observed measurements
— y=phenotypic trait
— m = markers & linkage map observed m o

— i =individual index (1,...,n)
* missing data
— missing marker data

— g = QT genotypes
« alleles QQ, Qq, or qq at locus

* unknown quantities
— A =QT locus (or loci)
— 4 = phenotype model parameters ~ UNKNown
— H = QTL model/genetic architecture

*  pr(q|m,A,H) genotype model
— grounded by linkage map, experimental cross
— recombination yields multinomial for ¢ given m
*  pr(ylg, 1 H) phenotype model
— distribution shape (assumed normal here)
— unknown parameters u (could be non-parametric)

mlssmg

after
Sen Churchill (2001)
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1. Bayesian strategy for QTL study

* augment data (y,m) with missing genotypes ¢
» study unknowns (g 4,4) given augmented data (y,m,q)
— find better genetic architectures 4
— find most likely genomic regions = QTL =4
— estimate phenotype parameters = genotype means = 4
» sample from posterior in some clever way
— multiple imputation (Sen Churchill 2002)

- Markov chain Monte Carlo (MCMC)
« (Satagopan et al. 1996; Yi et al. 2005)

. likelihood * prior
posterior = ————
constant

posterior for g 11,4, A= phenotype likelihood * [prior for g, 1, A, A]

constant
pr(q 11, A| y,m) = pr(y g, u, A)*[pr(g|m,A, A)pr(s| A)pr(4 | m, A)pr(4)]
’ ’ pr(y|m)
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Bayesian idea

» Reverend Thomas Bayes (1702-1761)
— part-time mathematician
— buried in Bunhill Cemetary, Moongate, London
— famous paper in 1763 Phil Trans Roy Soc London
— was Bayes the first with this idea? (Laplace?)
basic idea (from Bayes’ original example)
— two billiard balls tossed at random (uniform) on table

— where is first ball if the second is to its left?
* prior: anywhere on the table
* posterior: more likely toward right end of table
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Bayes posterior for normal data
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Bayes posterior for normal data
model v,=ute,
environment e~N(0, 6?), o known
likelihood y~N(u o)
prior U~ N( iy, k6%), kK known
posterior: mean tends to sample mean
single individual H~N(py+b,(v, — 1), b0
sample of » individuals g~ N (bny. +(1-5,) ,uo,bnaz / n)
with y, = <§111m}y,. /n
fudge factor b o
(shrinks to 1) "o+l
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what values are the genotypic means?
(phenotype mean for genotype g is £,)

data means prior mean data mean
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99 Qq y = phenotype values QQ
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Bayes posterior QTL means

posterior centered on sample genotypic mean
but shrunken slightly toward overall mean
prior: u, ~ N()_/_, KO.Z)

posterior: H, ~ N(bq)_/q +(1- bq))—;.,bqo-Z /nq)

n =count{qg. =q},y =sumy./n
‘ t9; =4}, y, =sumy./n,

fudge factor: b, ar +1
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QTL with epistasis

» same phenotype model overview
Y =p, +e,var(e) = o’

» partition of genotypic value with epistasis
My =1+ P+ B+ P

* partition of genetic variance & heritability

2 2 2 2
var(u,) = o, = o} +0, + 07,
2

o
2 2 2 2
h,=——"— —=h +hy +h,
o +0
q
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partition of multiple QTL effects

* partition genotype-specific mean into QTL effects
4, = mean + main effects + epistatic interactions
Hg=p+ f,=p+sum; , B,

* priors on mean and effects

7, ~ Ny, €,0%)  grand mean
,Bq ~ N0, k,6?) model-independent genotypic effect
,Bq- ~ N0, x,6%/|A4]) effects down-weighted by size of 4

* determine hyper-parameters via empirical Bayes

2 2
O-q

U, =Y, and k| =

q
2 2
l—hq o
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posterior mean =~ LS estimate

#,1Y,m~N(B,f1,,B,C,0")
~N(4,.C,0%)

A

LS estimate /z, = sum,[sum JJ=sumw ¥

jeM I gji
variance V(4 )=sumw’o’ =C o
q Loqr q

shrinkage B =x/(k+C,)—1
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pr(q|m, A) recombination model
pr(g|m,A) = pr(geno | map, locus) =
pr(geno | flanking markers, locus)

m, m, q 7 omy om, ms Mg
markers

ﬂ/ distance along chromosome
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what are likely QTL genotypes g?

how does phenotype y improve guess?

D4Mit41

D4Mit214
120 | o — . o what are probabilities
o for genotype ¢
110 4 between markers?
o
8 .
100 | <’g,§ + recombinants AA:AB
@O
all 1:1 if ignore y
90 . )
- and if we use y?
AA AB AA
AA AA AB
Genotype
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posterior on QTL genotypes g

« full conditional of ¢ given data, parameters
— proportional to prior pr(q | m, 1)
» weight toward ¢ that agrees with flanking markers

— proportional to likelihood pr(y|q, 1)

» weight toward ¢ with similar phenotype values
— posterior recombination model balances these two

* this is the E-step of EM computations

pr(y|q,u)*pr(q|m,A)
pr(y |m,u,A)

pr(g|y,m,u,A)=

QTL 2: Bayes Seattle SISG: Yandell © 2006 14




Where are the loci A on the genome?

« prior over genome for QTL positions
— flat prior = no prior idea of loci
— or use prior studies to give more weight to some regions
« posterior depends on QTL genotypes ¢
pr(A | m,q) = pr(A) pr(g | m,A) / constant
— constant determined by averaging
* over all possible genotypes g

» over all possible loci A on entire map

* no easy way to write down posterior
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what is the genetic architecture 4?

 which positions correspond to QTLs?
— priors on loci (previous slide)
» which QTL have main effects?

— priors for presence/absence of main effects
* same prior for all QTL
* can put prior on each d.f. (1 for BC, 2 for F2)
» which pairs of QTL have epistatic interactions?

— prior for presence/absence of epistatic pairs
* depends on whether 0,1,2 QTL have main effects
* epistatic effects less probable than main effects
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Bayesian priors & posteriors

* augmenting with missing genotypes ¢
— prior is recombination model
— posterior is (formally) E step of EM algorithm
» sampling phenotype model parameters u
— prior is “flat” normal at grand mean (no information)
— posterior shrinks genotypic means toward grand mean
— (details for unexplained variance omitted here)
» sampling QTL loci 4
— prior is flat across genome (all loci equally likely)
» sampling QTL model 4
— number of QTL
* prior is Poisson with mean from previous IM study

— genetic architecture of main effects and epistatic interactions
* priors on epistasis depend on presence/absence of main effects
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2. Markov chain sampling

* construct Markov chain around posterior
— want posterior as stable distribution of Markov chain
— in practice, the chain tends toward stable distribution
* initial values may have low posterior probability
* burn-in period to get chain mixing well
+ sample QTL model components from full conditionals
— sample locus A given ¢,4 (using Metropolis-Hastings step)
— sample genotypes g given A, 1,y,4 (using Gibbs sampler)
— sample effects u given g,y,4 (using Gibbs sampler)
— sample QTL model 4 given 4, 1,y,q (using Gibbs or M-H)

(/1961»/'1’ A) ~ pl’(/?,, qaluaA | y’m)
(/13 q, U, A)l - (ﬂ'a q, 4, A)z > (/13 q, H, A)N
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MCMC sampling of (4,q,u)

* Gibbs sampler q~pr(q| yiami»ﬂ,/l)
— genotypes g
_ effects _pr(y g, 1)pr(n)
— notloci A4 pr(y | q)
4, pr(g|m, A)pr(4|m)
pr(q|m)

* Metropolis-Hastings sampler
— extension of Gibbs sampler
— does not require normalization

* pr(q|m)=sum; pr(q|m, A)pr(4)
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Gibbs sampler

for two genotypic means

* want to study two correlated effects
— could sample directly from their bivariate distribution
— assume correlation p is known
 instead use Gibbs sampler:
— sample each effect from its full conditional given the other
— pick order of sampling at random
— repeat many times

(B

My~ N(pluz,l—pz)
My, ~ N(p/‘pl _pz)
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Gibbs: mean 1

Gibbs: mean 2
0 1

Gibbs sampler samples: p= 0.6

N =50 samples N =200 samples
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full conditional for locus

* cannot easily sample from locus full conditional
pr(4 y.mu,q) =pr( A|mgq)
=pr( g |m, A)pr(4)/ constant
 constant is very difficult to compute explicitly

— must average over all possible loci A over genome
— must do this for every possible genotype ¢

» Gibbs sampler will not work in general
— but can use method based on ratios of probabilities
— Metropolis-Hastings is extension of Gibbs sampler
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Metropolis-Hastings 1dea

* want to study distribution f{4) 3 AN
— take Monte Carlo samples B
* unless too complicated S A
— take samples using ratios of f i
* Metropolis-Hastings samples: 2

— propose new value A* o 2 4 6 8 10
* near (?) current value 4
+ from some distribution g

— accept new value with prob a
* Gibbs sampler: a = 1 always

0
oQ
N
T
=3
~

a= min(l,—f(/1 g4 _:1)] o |
S(Mgl-1) S T T \ T T
-4 -2 0 2 4
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mcmc sequence
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Metropolis-Hastings for locus A4
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Metropolis-Hastings samples

N=200 samples N = 1000 samples
narrow g wide g narrow g wide g
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3. sampling genetic architectures

* search across genetic architectures 4 of various sizes
— allow change in number of QTL
— allow change in types of epistatic interactions
* methods for search
— reversible jump MCMC
— Gibbs sampler with loci indicators
» complexity of epistasis
— Fisher-Cockerham effects model
— general multi-QTL interaction & limits of inference
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reversible jump MCMC

« consider known genotypes ¢ at 2 known loci 4
— models with 1 or 2 QTL

* M-H step between 1-QTL and 2-QTL models

— model changes dimension (via careful bookkeeping)
— consider mixture over QTL models H

n.qtlzl:Y=ﬁ0+,Bql+e
ngtl =2:Y = f, +,Bq1+ﬂq2+e
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geometry of reversible jump

Move Between Models Reversible Jump Sequence
[co)
] 2
©
i ©-
c21=0.7
i h
QN o
m=2 ~
N <\7 C).A
o
N =2
T T m=1 T T T T T T T
00 02 04 06 0.8 00 02 04 06 0.8
B B

QTL 2: Bayes Seattle SISG: Yandell © 2006 28




geometry allowing g and A to change

a short sequence
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collinear QTL = correlated effects

4-week

8-week

cor =-0.81

effect 2

effect 2

-0.6

04

effect 1

* linked QTL = collinear genotypes
» correlated estimates of effects (negative if in coupling phase)
» sum of linked effects usually fairly constant

QTL 2: Bayes
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0.0

effect 1
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sampling across QTL models 4

QA Ay o A L

m

T T 1 i
action steps: draw one of three choices
» update QTL model 4 with probability 1-b(4)-d(A)
— update current model using full conditionals
— sample QTL loci, effects, and genotypes
* add a locus with probability H(4)
— propose a new locus along genome
— innovate new genotypes at locus and phenotype effect
— decide whether to accept the “birth” of new locus
 drop a locus with probability d(4)
— propose dropping one of existing loci
— decide whether to accept the “death” of locus
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Gibbs sampler with loci indicators

+ consider only QTL at pseudomarkers
— every 1-2 cM
— modest approximation with little bias
* use loci indicators in each pseudomarker
— 0=1if QTL present
— 0=0ifno QTL present
» Gibbs sampler on loci indicators o
— relatively easy to incorporate epistasis

— Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)
* (see earlier work of Nengjun Yi and Ina Hoeschele)

H, = H + 5lﬂql + 5218(12
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Bayesian shrinkage estimation

* soft loci indicators
— strength of evidence for 4; depends on variance of S,
— similar to > 0 on grey scale

* include all possible loci in model
— pseudo-markers at 1cM intervals

+ Wang et al. (2005 Genetics)
— Shizhong Xu group at U CA Riverside

Y=p,+B,(q)+b,(q)+..+e

2 2
ﬂ]. (q].) ~ N(O, o, ), o~ inverse - chisquare
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4. Bayesian QTL model selection

» Bayes factor details
* Bayesian model averaging
« false discovery rate (FDR)
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Bayes factors

« ratio of model likelihoods
— ratio of posterior to prior odds for architectures
— averaged over unknowns

B, - pr(4 | y,m)/pr(4, |y,m) _ pr(y|m, 4)
pr(4,)/pr(4,) pr(y|[m,4,)
 roughly equivalent to BIC
— BIC maximizes over unknowns
— BF averages over unknowns

—2log(B,,) =-2log(LR)—(p, — p,) log(n)
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1ssues 1n computing Bayes factors

» BF insensitive to shape of prior on 4
— geometric, Poisson, uniform
— precision improves when prior mimics posterior
» BF sensitivity to prior variance on effects €
— prior variance should reflect data variability

— resolved by using hyper-priors
* automatic algorithm; no need for user tuning

* easy to compute Bayes factors from samples
— sample posterior using MCMC
— posterior pr(4 | y, m) is marginal histogram
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Bayes factors and genetic model 4

* |A| = number of QTL §\ S
— prior pr(4) chosen by user %: )( p_p\* inform
— posterior pr(A4|y,m) R AN
 sampled marginal histogram =5 p/ T\e\&g\g
* shape affected by prior pr(4) gl 1 Pz
BF, . = pr(Aly,m)/pr(A4) S
’ pr(A+1y,m)/pr(A+1)

» pattern of QTL across genome

 gene action and epistasis
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BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior

hyper-prior density 2*Beta(a,b) insensitivity to hyper-prior
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Bayesian model averaging
 average summaries over multiple
architectures
* avoid selection of “best” model
» focus on “better” models
« examples in data talk later
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1-D and 2-D marginals
pr(QTL at A | Y, X, m)
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false detection rates and thresholds

» multiple comparisons: test QTL across genome
— size = pr( LOD(A) > threshold | no QTL at 4)
— threshold guards against a single false detection
* very conservative on genome-wide basis

— difficult to extend to multiple QTL
* positive false discovery rate (Storey 2001)
— pFDR = pr( no QTL at A | LOD(A) > threshold )
— Bayesian posterior HPD region based on threshold
* A={A|LOD(A) > threshold } = {1|pr(1| Y, X,;m ) large }
— extends naturally to multiple QTL
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pFDR and QTL posterior

* positive false detection rate
— pFDR=pr(no QTLat 1|V, X, Ain A)
— pFDR = pr(H=0)*size

pr(m=0)*size+pr(m>0)*power
— power = posterior = pr(QTL in A | ¥,.X, m>0)
— size = (length of A) / (length of genome)
* extends to other model comparisons
— m=1vs.m=2ormore QTL
— pattern = ch1,ch2,ch3 vs. pattern > 2*ch1,ch2,ch3

QTL 2: Bayes Seattle SISG: Yandell © 2006 43

0 | p>size )

pr( H

1.0

0.0

pFDR for SCD1 analysis

|8 prior probability
= |} fraction of posterior B
found in tails
5 ,
pa .
o SSSsscann,
N L
o
| T T T T T T -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

relative size of HPD region pr( locus in HPD | m>0)

QTL 2: Bayes Seattle SISG: Yandell © 2006 44

0.2 0.3

Storey pFDR(-)

0.1




