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QTL model selection: key players
• observed measurements

– y = phenotypic trait
– m = markers & linkage map
– i = individual index (1,…,n)

• missing data
– missing marker data
– q = QT genotypes

• alleles QQ, Qq, or qq at locus
• unknown quantities

– λ = QT locus (or loci)
– µ = phenotype model parameters
– γ = QTL model/genetic architecture

• pr(q|m,λ,γ) genotype model
– grounded by linkage map, experimental cross
– recombination yields multinomial for q given m

• pr(y|q,µ,γ) phenotype model
– distribution shape (assumed normal here) 
– unknown parameters µ (could be non-parametric)
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1. Bayesian strategy for QTL study
• augment data (y,m) with missing genotypes q
• study unknowns (µ,λ,γ) given augmented data (y,m,q)

– find better genetic architectures γ
– find most likely genomic regions = QTL = λ
– estimate phenotype parameters = genotype means = µ

• sample from posterior in some clever way
– multiple imputation (Sen Churchill 2002)
– Markov chain Monte Carlo (MCMC) 

• (Satagopan et al. 1996; Yi et al. 2005, 2007)
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Bayes posterior for normal data

large prior variancesmall prior variance
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model yi = µ + ei
environment e ~ N( 0, σ2 ), σ2 known 
likelihood y ~ N( µ, σ2 )
prior µ ~ N( µ0, κσ2 ), κ known

posterior: mean tends to sample mean
single individual µ ~ N( µ0 + b1(y1 – µ0), b1σ2)

sample of n individuals

shrinkage factor
(shrinks to 1)

Bayes posterior for normal data
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what values are the genotypic means?
phenotype model pr(y|q,µ)
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posterior centered on sample genotypic mean
but shrunken slightly toward overall mean

phenotype mean:

genotypic prior:

posterior:

shrinkage:

Bayes posterior QTL means
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partition genotypic effects
on phenotype

• phenotype depends on genotype
• genotypic value partitioned into

– main effects of single QTL
– epistasis (interaction) between pairs of QTL
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• consider same 2 QTL + epistasis

• centering variance

• genotypic variance

• heritability
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λ

1m 2m 3m 4m 5m 6m

pr(q|m,λ) recombination model
pr(q|m,λ) = pr(geno | map, locus) ≈
pr(geno | flanking markers, locus)

distance along chromosome

q?
markers
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what are likely QTL genotypes q?
how does phenotype y improve guess?
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all 1:1 if ignore y
and if we use y?
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posterior on QTL genotypes q
• full conditional of q given data, parameters

– proportional to prior pr(q | m, λ)
• weight toward q that agrees with flanking markers

– proportional to likelihood pr(y | q, µ)
• weight toward q with similar phenotype values

– posterior recombination model balances these two
• this is the E-step of EM computations

),,|(pr
),|(pr*),|(pr),,,|(pr

λµ
λµλµ

my
mqqymyq =



QTL 2: Bayes Seattle SISG: Yandell © 2008 15

Where are the loci λ on the genome?
• prior over genome for QTL positions

– flat prior = no prior idea of loci
– or use prior studies to give more weight to some regions

• posterior depends on QTL genotypes q
pr(λ | m,q) = pr(λ) pr(q | m,λ) / constant
– constant determined by averaging

• over all possible genotypes q

• over all possible loci λ on entire map

• no easy way to write down posterior
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what is the genetic architecture γ?

• which positions correspond to QTLs?
– priors on loci (previous slide)

• which QTL have main effects?
– priors for presence/absence of main effects

• same prior for all QTL
• can put prior on each d.f. (1 for BC, 2 for F2)

• which pairs of QTL have epistatic interactions?
– prior for presence/absence of epistatic pairs

• depends on whether 0,1,2 QTL have main effects
• epistatic effects less probable than main effects
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γ = genetic architecture:

loci:
main QTL
epistatic pairs

effects:
add, dom
aa, ad, dd
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Bayesian priors & posteriors
• augmenting with missing genotypes q

– prior is recombination model
– posterior is (formally) E step of EM algorithm

• sampling phenotype model parameters µ
– prior is “flat” normal at grand mean (no information)
– posterior shrinks genotypic means toward grand mean
– (details for unexplained variance omitted here)

• sampling QTL loci λ
– prior is flat across genome (all loci equally likely)

• sampling QTL genetic architecture model γ
– number of QTL 

• prior is Poisson with mean from previous IM study
– genetic architecture of main effects and epistatic interactions

• priors on epistasis depend on presence/absence of main effects
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2. Markov chain sampling
• construct Markov chain around posterior

– want posterior as stable distribution of Markov chain
– in practice, the chain tends toward stable distribution

• initial values may have low posterior probability
• burn-in period to get chain mixing well

• sample QTL model components from full conditionals
– sample locus λ given q,γ (using Metropolis-Hastings step)
– sample genotypes q given λ,µ,y,γ (using Gibbs sampler)
– sample effects µ given q,y,γ (using Gibbs sampler)
– sample QTL model γ given λ,µ,y,q (using Gibbs or M-H)
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MCMC sampling of unknowns (q,µ,λ)
for given genetic architecture γ

• Gibbs sampler
– genotypes q
– effects µ
– not loci λ

• Metropolis-Hastings sampler
– extension of Gibbs sampler
– does not require normalization

• pr( q | m ) = sumλ pr( q | m, λ ) pr(λ )
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Gibbs sampler 
for two genotypic means

• want to study two correlated effects
– could sample directly from their bivariate distribution
– assume correlation ρ is known

• instead use Gibbs sampler:
– sample each effect from its full conditional given the other
– pick order of sampling at random
– repeat many times
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Gibbs sampler samples: ρ = 0.6
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full conditional for locus
• cannot easily sample from locus full conditional

pr(λ |y,m,µ,q) = pr( λ | m,q)
= pr( q | m, λ ) pr(λ ) / constant

• constant is very difficult to compute explicitly
– must average over all possible loci λ over genome
– must do this for every possible genotype q

• Gibbs sampler will not work in general
– but can use method based on ratios of probabilities
– Metropolis-Hastings is extension of Gibbs sampler
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Metropolis-Hastings idea
• want to study distribution f(λ)

– take Monte Carlo samples
• unless too complicated

– take samples using ratios of f
• Metropolis-Hastings samples:

– propose new value λ*

• near (?) current value λ
• from some distribution g

– accept new value with prob a
• Gibbs sampler: a = 1 always









−
−

=
)()(
)()(,1min *

**

λλλ
λλλ

gf
gfa

0 2 4 6 8 10

0.
0

0.
2

0.
4

-4 -2 0 2 4

0.
0

0.
2

0.
4

f(λ)

g(λ–λ*)



QTL 2: Bayes Seattle SISG: Yandell © 2008 25

Metropolis-Hastings for locus λ
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Metropolis-Hastings samples
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3. sampling genetic architectures 
• search across genetic architectures A of various sizes

– allow change in number of QTL
– allow change in types of epistatic interactions

• methods for search
– reversible jump MCMC
– Gibbs sampler with loci indicators

• complexity of epistasis
– Fisher-Cockerham effects model
– general multi-QTL interaction & limits of inference
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reversible jump MCMC

• consider known genotypes q at 2 known loci λ
– models with 1 or 2 QTL

• M-H step between 1-QTL and 2-QTL models
– model changes dimension (via careful bookkeeping)
– consider mixture over QTL models H
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collinear QTL = correlated effects
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• linked QTL = collinear genotypes
correlated estimates of effects (negative if in coupling phase)
sum of linked effects usually fairly constant
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sampling across QTL models γ

action steps: draw one of three choices
• update QTL model γ with probability 1-b(γ)-d(γ)

– update current model using full conditionals
– sample QTL loci, effects, and genotypes

• add a locus with probability b(γ)
– propose a new locus along genome
– innovate new genotypes at locus and phenotype effect
– decide whether to accept the “birth” of new locus

• drop a locus with probability d(γ)
– propose dropping one of existing loci
– decide whether to accept the “death” of locus

0 Lλ1 λm+1 λmλ2 …
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Gibbs sampler with loci indicators  
• consider only QTL at pseudomarkers

– every 1-2 cM
– modest approximation with little bias

• use loci indicators in each pseudomarker
– γ = 1 if QTL present
– γ = 0 if no QTL present

• Gibbs sampler on loci indicators γ
– relatively easy to incorporate epistasis
– Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)

• (see earlier work of Nengjun Yi and Ina Hoeschele)

1,0   ,)()( 2211 =++= kq qq γβγβγµµ
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Bayesian shrinkage estimation  

• soft loci indicators
– strength of evidence for λj depends on γ
– 0 ≤ γ ≤ 1  (grey scale)
– shrink most γs to zero

• Wang et al. (2005 Genetics)
– Shizhong Xu group at U CA Riverside

10   ),()( 1221110 ≤≤++= kq qq γβγβγβµ
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4. criteria for model selection
balance fit against complexity

• classical information criteria
– penalize likelihood L by model size |γ|
– IC = – 2 log L(γ | y) + penalty(γ)
– maximize over unknowns

• Bayes factors
– marginal posteriors pr(y | γ)
– average over unknowns
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classical information criteria
• start with likelihood L(γ | y, m) 

– measures fit of architecture (γ) to phenotype (y)
• given marker data (m)

– genetic architecture (γ) depends on parameters
• have to estimate loci (µ) and effects (λ)

• complexity related to number of parameters
– |γ | = size of genetic architecture

• BC: |γ | = 1 + n.qtl + n.qtl(n.qtl - 1) = 1 + 4 + 12 = 17

• F2: |γ | = 1 + 2n.qtl +4n.qtl(n.qtl - 1) = 1 + 8 + 48 = 57
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classical information criteria
• construct information criteria

– balance fit to complexity
– Akaike AIC = –2 log(L) + 2 |γ|
– Bayes/Schwartz BIC = –2 log(L) + |γ| log(n)
– Broman BICδ = –2 log(L) + δ |γ| log(n)
– general form: IC = –2 log(L) + |γ| D(n)

• compare models
– hypothesis testing: designed for one comparison

• 2 log[LR(γ1, γ2)] = L(y|m, γ2) – L(y|m, γ1)
– model selection: penalize complexity

• IC(γ1, γ2) = 2 log[LR(γ1, γ2)] + (|γ2| – |γ1|) D(n)
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• WinQTL 2.0
• SCD data on F2
• A=AIC
• 1=BIC(1)
• 2=BIC(2)
• d=BIC(δ)
• models

– 1,2,3,4 QTL
• 2+5+9+2

– epistasis
• 2:2 AD
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Bayes factors
• ratio of model likelihoods

– ratio of posterior to prior odds for architectures
– averaged over unknowns

• roughly equivalent to BIC
– BIC maximizes over unknowns
– BF averages over unknowns
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scan of marginal Bayes factor & effect
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issues in computing Bayes factors
• BF insensitive to shape of prior on γ

– geometric, Poisson, uniform
– precision improves when prior mimics posterior

• BF sensitivity to prior variance on effects θ
– prior variance should reflect data variability
– resolved by using hyper-priors

• automatic algorithm; no need for user tuning

• easy to compute Bayes factors from samples
– sample posterior using MCMC
– posterior pr(γ | y, m) is marginal histogram
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Bayes factors & genetic architecture γ
• |γ | = number of QTL

– prior pr(γ) chosen by user
– posterior pr(γ |y,m)

• sampled marginal histogram
• shape affected by prior pr(A)

• pattern of QTL across genome
• gene action and epistasis
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BF sensitivity to fixed prior for effects
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BF insensitivity to random effects prior
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