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Introduction

» Our objective is to learn metabolic pathways from data.

» We represent these pathways by directed networks composed
by transcripts, metabolites and clinical traits.

» These phenotypes are quantitative in nature, and can be
analyzed using quantitative genetics techniques.
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Introduction

» In particular, we use Quantitative Trait Loci (QTL) mapping
methods to identify genomic regions affecting the phenotypes.

» Since variations in the genotypes (QTLs) cause variations in
the phenotypes, but not the other way around, we can
unambiguously determine the causal direction

QTL = phenotype

» Knowing that a QTL causally affects a phenotype will allow us
to infer causal direction between phenotypes.
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Introduction

» We assume that a set of QTLs associated with the
phenotypes has been previously determined.

» We assume linear relationships between phenotypes and
between phenotypes and QTLs.
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Introduction

Our procedure is composed of two parts:

1. First we infer the skeleton of the causal model (phenotype
network) using the PC-algorithm.

2. Orient the edges in the skeleton using the QDG algorithm.
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PC algorithm

» Causal discovery algorithm developed by Spirtes et al 1993.

» |t is composed of two parts:

1. Infers the skeleton of the causal model.

2. Partially orient the graph (orient some but not all edges).

> We are only interested in the first part (the “PC skeleton
algorithm”). We do not use the PC algorithm to edge
orientation (we use the QDG algorithm instead).
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Step 1 (PC skeleton algorithm)

Suppose the true network
describing the causal
relationships between six
transcripts is

@:7‘: m
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Step 1 (PC skeleton algorithm)

Suppose the true network
describing the causal
relationships between six
transcripts is

@:{‘: m

The PC-algorithm starts with
the complete undirected graph

and progressively eliminates
edges based on conditional
independence tests.
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Step 1 (PC skeleton algorithm)

The algorithm performs several rounds of conditional independence
tests of increasing order.

It starts with all zero order tests, then performs all first order,
second order ...

» Notation: 1L = independence. We read i L j | k as
i is conditionally independent from j given k.

» Remark: in the Gaussian case zero partial correlation implies
conditional independence, thus

il j|lk < cor(i,j|k)=0 = drop (i,j) edge
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Example (order 0)

V%ZW |
Y6 ¥3)
/

Y5 Ya

112

VS

1402
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Example (order 0)

¥3)
Y5 Ya D)

direct effect of y; on y,

il—e]
Y1
Ye /@

112 L2

VS
1 JLL 2 keep edge and move to next one
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Example (order 0)

A,
Yo 3
/3

113

VS

113

Elias Chaibub Neto chaibub@stat.wisc.edu Inferring Causal Phenotype Networks from Segregating Popula



Example (order 0)

R
Yo “ ¥3 =
T ®

indirect effect of y; on y3

113 L3

VS
k d d t t
].JLL 3 eep edge and move to next one
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Example (order 0)

@@
ZavaN
Y6 Y3

L
TS
After all zero order conditional
independence tests.
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Example (order 0)

JRA

Y6 E The algorithm then moves to
' ‘ first order conditional
@”@ independence tests.

After all zero order conditional
independence tests.
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Example (order 1)

For example,

For any edge (/,j) the
algorithm tests whether

idlj|k

for all

k € A(i)\j A(1)\2={3,4,5,6}

where A(i) represent the set of and the algorithm tests whether

nodes adjacent to node i. 1123 11.2|4
1125 11216
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Example (order 1)

i—r]

Y6 y3

Y5 Ya
A1)\ 2=1{2,4,5,6}
1103]2

VS

1432
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Example (order 1)

i—r]

Y6 ¥3 V3
Y5 Ya D

¥ d-separates y; from y;3

A(1)\2=1{2,4,5,6}

1132
11032

VS

1432
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Example (order 1)

i—)ye]

T
Y6 ly3 Vs
Y5 Ya D

¥ d-separates y; from y;3

A(1)\2={2,4,5,6}
1132
1132
drop edge
move to next edge

VS

1432

Elias Chaibub Neto chaibub@stat.wisc.edu Inferring Causal Phenotype Networks from Segregating Popula



Example (order 1)

i—)ye]

Y6 3

Y5 Ya
A(1)\4=1{2,56}
11042

VS

14 4|2
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Example (order 1)

i—)ye]

Y1y
Ve Iz -

e
x
Y5 Y4

A(1)\ 4 =1{2,5,6}

14 4|2

1142 keep edge

Vs move to next condltlonmg set

14 4|2
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Example (order 1)

1

Y6 3

Y5 Ya

A(1)\ 4 =1{2,5,6}

111415

VS

14 4|5
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Example (order 1)

Y6

A(1)\ 4 =1{2,5,6}

1

Y5

Ya

111415

14 4|5

3

keep edge
move to next conditioning set
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Example (order 1)

1

Y6 '/ 3

Y5 Ya

A(1)\ 4 =1{2,5,6}

1146

VS

1446
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Example (order 1)

1

Y6 '/ 3

Y5 Ya

A(1)\ 4 =1{2,5,6}

1146 keep edge

vs move to next edge

1446
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Example (order 1)

<>

After all first order conditional
independence tests.
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Example (order 1)

Y6) The algorithm then moves to
second order conditional
@ m independence tests.

After all first order conditional
independence tests.
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Example (order 2)

For example,

QTCB
For any edge (i, ) the v

algorithm tests whether ' y3)

Pl k. (75
for al A(1)\2 = {4,5,6)
(k,1) € A(i)\J and the algorithm tests whether

11245 11.2]4,6
11.2]5,6
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Example (order 2)

)41 2
7/
Y6) (¥3)
Ya

A(1)\ 4 =1{2,5,6}

11.4]2,5
VS
14 4]2,5
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Example (order 2)

Y1 ’ Y2 .
Y6) " (¥3) @@

Y5

Y4
(v2, y5) d-separate y; from y,

A1)\ 4=1{2,5,6}
11425

11.4]2,5
VS
10 4]2,5
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Example (order 2)

n )2
e
X
Y6) @ / | ’&y3 |

Y5 Ya
)Z!
(v2, ys) d-separate y; from y,
A(1)\4=1{2,56}

11 4(2,5

11425
VS drop edge
move to next edge
144125
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Example (order 2)

m @ The algorithm than moves to
third order, fourth order ...

It stops when for each pair
(7,J) the cardinality of

A(I)\J

After all second order is smaller then the order of the
conditional independence tests. algorithm.
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Edge orientation

Consider two traits y1 and y». Our problem is to decide between
models:

Mo D M2

Problem: the above models are likelihood equivalent,

Fly))f(v2 | y1) = f(y1,y2) = F(y2)F(y1 | y2) -
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Edge orientation

However, models

N N
o wa e

are not likelihood equivalent because

fla)f (v [a1)f(y2 | y1,92)f(a2)

flaz2)f(y2 | a2)f(y1 | y2,q1)f(az)
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Edge orientation

We perform model selection using a direction LOD score

LOD = log {H7=1 f(yii | a1i)f (yai | yais 02,')}
YOI, fai | 92)F (i | yois a1i)

where f() represents the predictive density, that is, the sampling
model with parameters replaced by the corresponding maximum
likelihood estimates.
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QDG algorithm

QDG stands for QTL-directed dependency graph.
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QDG algorithm

QDG stands for QTL-directed dependency graph.
The QDG algorithm is composed of 7 steps:
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QDG algorithm

QDG stands for QTL-directed dependency graph.
The QDG algorithm is composed of 7 steps:

1. Get the causal skeleton (with the PC skeleton algorithm).
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QDG algorithm

QDG stands for QTL-directed dependency graph.
The QDG algorithm is composed of 7 steps:

1. Get the causal skeleton (with the PC skeleton algorithm).
2. Use QTLs to orient the edges in the skeleton.
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QDG algorithm

QDG stands for QTL-directed dependency graph.
The QDG algorithm is composed of 7 steps:

1. Get the causal skeleton (with the PC skeleton algorithm).
2. Use QTLs to orient the edges in the skeleton.

3. Choose a random ordering of edges, and
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QDG algorithm

QDG stands for QTL-directed dependency graph.
The QDG algorithm is composed of 7 steps:

1.

Get the causal skeleton (with the PC skeleton algorithm).

2. Use QTLs to orient the edges in the skeleton.
3.
4. Recompute orientations incorporating causal phenotypes in

Choose a random ordering of edges, and

the models (update the causal model according to changes in
directions).
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QDG algorithm

QDG stands for QTL-directed dependency graph.
The QDG algorithm is composed of 7 steps:

1.

Get the causal skeleton (with the PC skeleton algorithm).

2. Use QTLs to orient the edges in the skeleton.
3.
4

. Recompute orientations incorporating causal phenotypes in

Choose a random ordering of edges, and

the models (update the causal model according to changes in
directions).

Repeat 4 iteratively until no more edges change direction (the
resulting graph is one solution).
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QDG algorithm

QDG stands for QTL-directed dependency graph.
The QDG algorithm is composed of 7 steps:

1.

Get the causal skeleton (with the PC skeleton algorithm).

2. Use QTLs to orient the edges in the skeleton.
3.
4

. Recompute orientations incorporating causal phenotypes in

Choose a random ordering of edges, and

the models (update the causal model according to changes in
directions).

Repeat 4 iteratively until no more edges change direction (the
resulting graph is one solution).

Repeat steps 3, 4, and 5 many times and store all different
solutions.
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QDG algorithm

QDG stands for QTL-directed dependency graph.
The QDG algorithm is composed of 7 steps:

1.

Get the causal skeleton (with the PC skeleton algorithm).

2. Use QTLs to orient the edges in the skeleton.
3.
4. Recompute orientations incorporating causal phenotypes in

Choose a random ordering of edges, and

the models (update the causal model according to changes in
directions).

Repeat 4 iteratively until no more edges change direction (the
resulting graph is one solution).

Repeat steps 3, 4, and 5 many times and store all different
solutions.

Score all solutions and select the graph with best score.
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Step 2

Now suppose that for each
transcript we have a set of

e-QTLs
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Given the QTLs we can

Now suppose that for each distinguish causal direction:

transcript we have a set of
e-QTLs
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Steps 2 and 3

First estimate of the causal
model (DGp)

(using only QTLs to infer
causal direction)
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Steps 2 and 3

First estimate of the causal In step 3 we randomly choose
model (DGo) an ordering of all edges in DGyp.
Say,

02~ (e (2

In step 4 we recompute the
directions including other
transcripts as covariates in the

(using only QTLs to infer models (following the above
causal direction) ordering).
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Steps 4 and 5 (first iteration)

(@2)—={ 2 |~ y3 (a3)

D
(a2~ y2 | y3 }<as)
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Steps 4 and 5 (first iteration)

@ @

i y

2
ok
(@2)—={y2 |+ y3 (a3)
Q6 % qs)
D
¥5)

% (a2~ y2 | y3 }<as)

@) @
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Steps 4 and 5 (first iteration)

@
@)
.imn
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Steps 4 and 5 (first iteration)

@ @

Y1 Y2)
flip
Q6)~ V6 /@@
(¥5) Y4

@) @
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Y1 q1

®
(A6)—{ Y6 {1 ()



Steps 4 and 5 (first iteration)
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Steps 4 and 5 (first iteration)
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Steps 4 and 5 (first iteration)
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Steps 4 and 5 (first iteration)

And so on until the
algorithm recheck the
directions for all remaining
ordered edges.

$56605

Elias Chaibub Neto chaibub@stat.wisc.edu Inferring Causal Phenotype Networks from Segregating Popula



Steps 4 and 5 (first iteration)

Suppose the updated
causal model after the

first iteration (DGy) is Since some arrows

changed direction
(DGl # DG()), the
algorithm goes for
another round of
re-computations.
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Steps 4 and 5 (second iteration)

(@2)—={y2 |+ y3 (a3)

D
(a2~ y2 | y3 }<as)
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Steps 4 and 5 (second iteration)

@ @
Yi—2) )

o6 )~ Vo q3)

@[i( o T
Yoy —

@) @
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Steps 4 and 5 (second iteration)
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Steps 4 and 5 (second iteration)

If no further arrows
change direction, the
algorithm converged to
a solution.

And soon ...
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Steps 6 and 7

Different random orderings (step 3) can result in different solutions.
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Steps 6 and 7

Different random orderings (step 3) can result in different solutions.

» Step 6: repeat Steps 3 to 5 many times and store all different
solutions.
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Steps 6 and 7

Different random orderings (step 3) can result in different solutions.

» Step 6: repeat Steps 3 to 5 many times and store all different
solutions.

» Step 7: score all solutions and select the graph with best score
(maximized log-likelihood or BIC).
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Sparsity assumption

The PC skeleton algorithm and QDG algorithm perform well in
sparse graphs.
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Directing edges without QTLs

» In general we need to have at least one QTL per pair of
phenotypes to infer causal direction.
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Directing edges without QTLs

» In general we need to have at least one QTL per pair of
phenotypes to infer causal direction.

» In some situations, however, we may be able to infer causal
direction for a pair of phenotypes without QTLs. Eg.

(@) W~¥2)~03)
W~ W)

since f(y1) f(y2 [ y1) f(ys | y2) # f(n1) F(y2 | ya,¥3) £(y3)-

Elias Chaibub Neto chaibub@stat.wisc.edu Inferring Causal Phenotype Networks from Segregating Popula



Directing edges without QTLs

» In general we need to have at least one QTL per pair of
phenotypes to infer causal direction.

» In some situations, however, we may be able to infer causal
direction for a pair of phenotypes without QTLs. Eg.

cn YD—~¥2r~¥3)
W) D))

since f(y1) f(y2 [ y1) f(ys | y2) # f(n1) F(y2 | ya,¥3) £(y3)-

» So both QTLs and phenotypes play important roles in the
orientation process.
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Unresolvable situation

» We cannot infer direction when the phenotypes have exactly
same set of QTLs and causal phenotypes

@ @
(Y1<}—><>:> Y1<}<—(>:>
9 D)

since

fiyi |y, q)f(y2 | y1,53.9) = f(y1 | y2,¥3.9) (2 | ¥3,9)
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Reducing graph space

The QDG algorithm drastically reduces the number of graphs that
need to be scored.

1. The maximum number of graphs is 2 models, where k is the
number of edges in the skeleton.

2. The number of solutions of the QDG algorithm is generally
much smaller than 2%.
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Cyclic networks

» Cycles are a common feature of biological networks
(homeostatic mechanisms).
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Cyclic networks

» Cycles are a common feature of biological networks
(homeostatic mechanisms).

» The PC skeleton algorithm assumes an acyclic causal graph,
and cycles may lead to spurious edges. E.g.

(U~2) 1)—2) 143 1)3[2 14324
1 X 244 24 4|3 2)04]1,3
OmE)
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Cyclic networks

» Our simulations showed good performance with toy cyclic
graphs, though.
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Cyclic networks

» Our simulations showed good performance with toy cyclic
graphs, though.

» The spurious edges in graph (c) were detected at low rates.
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Cyclic networks

» Our simulations showed good performance with toy cyclic
graphs, though.

» The spurious edges in graph (c) were detected at low rates.

» QDG approach cannot detect reciprocal interactions. In graph
(c) it orients the edge @—@ in the direction with higher
strength.
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Unique graph instead of an equivalence class

Two DAGs are Markov equivalent iff they have the same skeleton
and the same set of v-structures. For example

®, P

02) (02) (02)

w @ &

The three graphs have the same skeleton, , and the

same set of v-structures (none).

The graphs will also be likelihood equivalent if we assume a linear
regression with Gaussian errors.
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Unique graph instead of an equivalence class

(@ (@) (@ (@ @ @ @ @ @
WD) D) D))
Same skeleton, but different sets of v-structures

@\ / @\ /@ @\ /

(02) @ ® (2)
ol ol Rl
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Simulations

We generated 100 data
®  sets according to this
network.

@@T@

Parameters were chosen in a
range close to values estimated
from real data.

n 60 300 500
TDR 9453 9518 91.22
TPR 52.07 87.33 93.64

CD 83.65 98.58 99.63

DR 7 true positives 7 true positives
100 nodes. 107 edges # inferred edges ## true edges

CD: correct direction

2 or 3 QTLs per phenotype (not shown)
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Real data example

(D2mir395) (Domir20) (D18Mmir177) » We constructed a
network from

metabolites and

transcripts

involved in liver
\ / metabolism.
D"

» We validated this
network with in
vitro experiments

(Ferrara et al

2008). Four out of
six predictions

were confirmed.

am
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Software and references

The gdg R package is available at CRAN.
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€1000034.
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Permutation p-values

@ brk ®
NN

(a) @

‘ ® (b)
N / N\

brk brk

>

To break the connections (brk) that affect direction of an
edge, we permute the corresponding pair of nodes (and their
common covariates) as a block.

In panel (a) we permute (y1, y2,x) as a block breaking the
connections with z, q1 and qg;

In panel (b) we incorrectly keep z in the permutation block.
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Direct versus indirect effects of a common QTL
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» A strong QTL directly affecting an upstream trait may also be
(incorrectly) detected as a QTL for a downstream phenotype.

(b

» To resolve this situation we apply a generalization of Schadt
et al. 2005 allowing for multiple QTLs.

» Model (a) supports both traits being directly affected by the
common QTL g. Model (b) implies that g directly affects y;
but should not be included as a QTL of phenotype y». Model
(c) supports the reverse situation.
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