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Correlation and Causation

The ideal ... is the study of the direct influence of one condition on
another ... [when] all other possible causes of variation are eliminated ...
The degree of correlation between two variables ... [includes] all
connecting paths of influence . ... [Path coefficients combine| knowledge
of ... correlation among the variables in a system with ... causal relations.

Sewall Wright (1921)



Graphical models

Basic concepts



Directed graphical models
A graphical model is a multivariate probabilistic model whose conditional
independence relations are represented by a graph.

We will focus on directed acyclic graph (DAG) models (aka Bayes nets),
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Assuming the Markov property, the joint distribution factors according to
the conditional independence relations:

P(1,2,3,4,5.6) = P(6 | 5) P(5 | 3,4) P(4) P(3 | 1,2) P(2) P(1)

61 {1,2,3,4} |5, 51.4{1,2,3}|4, andso on

i.e., each node is independent of its non-descendants given its parents.



Standard Bayesian networks and causality

Even though the direct edges in a Bayes net are often interpreted as causal
relations, in reality they only represent conditional dependencies.

Different phenotype networks, for instance,
Y1—>Yg—>Y3, YI{—YQ—}Y33 Y1<—Y2<—Y3,

can represent the same set of conditional independence relations

(Y1 1L Y3 | Y, in this example). When that is the case, we say the nets
are Markov equivalent.

In general (although it is not always true), Markov equivalent networks will
have equivalent likelihood functions, so that model selection criteria cannot
distinguish between them. The best we can do is to learn equivalent
classes of likelihood equivalent phenotype networks from the data.



Genetics as a mean to reduce the size of equivalence
classes

The incorporation of genetic information can help distinguish between
likelihood equivalent nets two distinct ways:

1. By creating priors for the network structures, using the results of
causality tests (Zhu et al. 2007).

2. By augmenting the phenotype network with QTL nodes, creating new
sets of conditional independence relations (Chaibub Neto et al. 2008,

2010).



Genetic priors

Consider the networks
Gy Yi—=Yo—=Ys, GZ: Yi+ Yo+ Y3.
These Markov equivalent networks have the same likelihood, i.e.,
P(Y | Gy)=P(Y | Gy).

If the phenotypes are associated with QTLs, we can use the results of the
causality tests to compute prior probabilities for the network structures. If

P(GL) P(GL|Y)  P(GL)
pcz) 7 1 e Bz Ty) T PG

7 1,

and we can use the posterior probability ratio to distinguish between the
networks.



Augmenting the phenotype network with QTL nodes

By augmenting the phenotype network with a QTL node,
Gl: Q=Yi=Yo=Ys, G°: Q=Y+« Yo+ Vs,

we have that G and G? have distinct sets of conditional independence
relations:

Yol Q| Y:, on G?
YQJLQlylj on Gz

Hence, G and G?2 are no longer likelihood equivalent.

In the inferential approaches we address here we adopt this augmentation
approach.



d-separation

Graphical criterion to read out conditional independence relations from a
DAG.

Definition (d-separation): A path p is said to be d-separated (or
blocked) by a set of nodes Z if and only if

1. p contains a chain i — m — j or a fork i < m — j such that the
middle node misin Z, or

2. p contains an inverted fork (or collider) i — m + j such that the
middle node m is not in Z and such that no descendant of mis in Z.

A set / is said to d-separate X from Y if and only if Z blocks every path
from a node in X to a node in Y. X and Y are d-connected if they are
not d-separated (Pearl, 1988, 2000).
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Simple graphical criterium to detect Markov equivalence

Detecting Markov equivalence: Two DAGs are Markov equivalent if

and only if they have the same skeletons and the same set of v-structures.

(Verma and Pearl 1990).

The skeleton of a causal graph is the undirected graph obtained by
replacing its arrows by undirected edges.

A v-structure is composed by two converging arrows whose tails are not
connected by an arrow.
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V-structure V-structure not a v-structure
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Simple graphical criterium to detect Markov equivalence

DAG structures skeletons v-structures
Y1%Y2%Y3 Yl—Yg—Yg 0
Y1%Y2<—Y3 Yl—Yg—Yg Yl%Y2<—Y3
Y1<—Y2%Y3 Yl—Yg—Yg 0
Extended DAG structures skeletons v-structures
G1—=Y1—=Y2—=Ys | Q-Yi—Yo—Y3 ]
Ql%yl*i—YQﬁ"Eﬁ Q—Yl—YQ—Yg Q—}Y1<—Y2
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Faithfulness assumption

Given a graph and a probability distribution associated with it, all the
conditional independence relations spanned by a probability distribution
must match the d-separation relations predicted from the graph structure
(Spirtes et al. 2000).

Unfaithfulness example:
Y1 = €1 . Yo = 91 Y1 + e, Y = 31 Y1 + P12 Yo + €3
ex ~ N(0.02) . Cov(Y1.Y3) = (Ba1 + 32 01) 03

If 931 = —532;321 then CGV(Yl, Yg) — 0.
Although the data is generated from a, its probability distribution is

faithful to b.
a (D b (D

@’/—\ﬁ@ ®i/ 3
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The PC skeleton algorithm

Infers the skeleton of the causal model (Spirtes et al. 1993).
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PC skeleton algorithm

Suppose the true network describing the causal relationships between six
transcripts Is

and progressively eliminates edges based on conditional independence tests.
1€



PC skeleton algorithm

The algorithm performs several rounds of conditional independence tests
of increasing order.

It starts with all zero order tests, then performs all first order, second
order, and so on.

» Remark: in the Gaussian case zero partial correlation implies
conditional independence, thus

il j|k & cor(i,j| k)=0 = drop (i,j) edge
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PC algorithm - zero order
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PC algorithm - zero order

Y)—2)
IAN
\:yﬁ/fr yg/
O - After all zero order conditional
1y 1. independence tests
(Vs —¥4)

The algorithm then moves to first [}15}—@/4)
order conditional independence tests.



PC algorithm - first order
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PC algorithm - first order
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PC algorithm - first order
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PC algorithm - second order
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PC algorithm - second order
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Edge orientarion with
the QDG algorithm



Edge orientation

We perform model selection using a direction LOD score

i1 Fvai | au)f (vai | yai, qg")}
LOD = logyg { 1=t '
810 {_“_I_Zl f(y2i | Q2i)f (vai | y2i, 91i)

where f () represents the predictive density, that is, the sampling model
with parameters replaced by the corresponding maximum likelihood
estimates.

1



QDG algorithm

The QTL-driven Dependency Graph algorithm is composed of 7 steps:

1.

Get the causal skeleton (with the PC skeleton algorithm).

. Use QTLs to orient the edges in the skeleton.

. Choose a random ordering of edges, and

. Recompute orientations incorporating causal phenotypes in the

models (update the causal model according to changes in directions).

. Repeat 4 iteratively until no more edges change direction (the

resulting graph is one solution).

. Repeat steps 3, 4, and 5 many times and store all different solutions.

. Score all solutions and select the graph with best score.

s



QDG algorithm - step 2

Now suppose that for each transcript we have a set of e-QTLs

(@) (%)
(1)
(36> (2 )=(2)
(%)
(3)

Given the QTLs we can distinguish causal direction:
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QDG algorithm - steps 2 and 3

First estimate of the causal model, DGy, (using only QTLs to infer causal
direction)

In step 3 we randomly choose an ordering of all edges in DGg. Say,

e
o

In step 4 we recompute the directions including other transcripts as

covariates in the models (following the above ordering).
g



QDG algorithm - step 4
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QDG algorithm - steps 5, 6, and 7

Step 5: repeat 4 iteratively until no more edges change direction (the
resulting graph is one solution).

Step 6: repeat the process starting from different random orderings
several times, and store all different solutions.

Step 7: score all solutions and select the graph with best score.

a0



Real data example
Network of metabolites and transcripts involved in liver metabolism.
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Four out of six predictions were validated experimentally (Ferrara et al.
2008).



QTLnet algorithm
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Q TLnet algorithm

» Perform joint inference of the causal phenotype network and the
associated genetic architecture.

» The genetic architecture is inferred conditional on the phenotype
network.

» Because the phenotype network structure is itself unknown, the
algorithm iterates between updating the network structure and genetic
architecture using a Markov chain Monte Carlo (MCMC) approach.

» QTLnet corresponds to a mixed Bayesian network with continuous
and discrete nodes representing phenotypes and QTLs, respectively.

e



QTL mapping conditional on the pheno net structure

We simulated data from the model Q1 — Y1 — Y2 « > with @1 located
on chr 1, and @» on chr 2.

Y1 Y2
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» Y, maps indirectly to @, (top right), but Y; d-separates Y, and @ (bottom
right).
» Y7 is marginally independent from @, (top left), but conditional on Y

became associated (bottom left).
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QTLnet algorithm - MCMC steps

1. Propose a new phenotype network, M .., by adding, deleting or
reversing (with parent orphaning) an edge.

2. Recompute the genetic architecture (only for the phenotypes y; whose
parent set, pa(y:), has changed).

3. Compute the marginal likelihood p(y | q, M e ).

4. Accept or reject the new phenotype network and QTLs according to
the Metropolis-Hastings acceptance probability:

. P(y | qg. Mnew)p( new) Q(Mofd I Mnew)}
v=min<{ 1. +
N { ply | a, Mug) pP(Mow) q(Mapew | Mojg)
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Q TLnet algorithm

We approximate the Bayes factor comparing old and new models by

ply | 9, Mpew)
ply | a, Moid)

and adopt p(Mpew )/P(Moig) = 1. The proposal distribution ratio is
computed as

1
~expd —~(BICm... — BICri,) b .
2 new old

q(Moid | Mpew) 7 of DAGs that can be reached from My

g(Mpew | Mog)  # of DAGs that can be reached from Me,,
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Q TLnet algorithm

iteration Mold proposed modification
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Neighborhood edge reversal

select edge
drop edge
identify parents

orphan nodes
reverse edge
find new parents

from Grzegorczyk and Husmier (2008)38



Neighborhood edge reversal

Trace plots of the logarithmic scores of the DAGs after the burn-in phase.
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Bayesian model averaging
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BxH Apok-/- chr 2: causal architecture

number of traits
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BxH ApoE-/-
Pscdbp

chr 2:

causal network for transcription factor
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Scaling up to larger networks

» Reduce complexity of graphs
» restrict number of causal edges into each node

BIC computations by maximum number of parents

# 3 4 5 6
10 1,300 2,560 3,820 4,660
20 23,200 100,720 333,280 875,920
30 122,700 835,230 4 .40M 18.6M
40 396,800 3.69M 26.7TM 157M
50 982,500 11.6M 107M 806M

(limit complexity by allowing only 3-4 parents)

» make task parallel: run on many machines

» pre-compute BIC scores
» run multiple parallel Markov chains

all
5,120
10.5M
16.1B
22.0T
28.1Q
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Parallel phases for larger projects

Phase 1: identify parents
Phase 2: compute BICs @(’@

Phase 3: store BICs

Phase 4: run Markov chains m( m

Phase 5: combine results

44



Parallel implementation

R/gtlnet available at CRAN

* Condor cluster: chtc.cs.wisc.edu
— System Of Automated Runs (SOAR)

e ~2000 cores in pool shared by many scientists

* automated run of new jobs placed in project

SOAR Job Progress
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Final remarks
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Potential issues

» Steady state (static) measures may not reflect dynamic processes
(Przytycha and Kim 2010).

» Population-based estimates (from a sample of individuals) may not
reflect processes within an individual.
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