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Abstract

It is well known that as the time interval between two consecutive observations

shrinks to zero, a properly constructed GARCH model will weakly converge to a bi-

variate diffusion. Naturally the European option price under the GARCH model will

also converge to its bivariate diffusion counterpart. This paper investigates the con-

vergence speed of the GARCH option price. We show that the European option prices

under the two corresponding models are equal up to an order near the square root of

the length of discrete time interval.
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1 Introduction

Stochastic volatility models are commonly employed in financial analysis. Popular models

include a class of continuous-time bivariate diffusion models such as Hull and White (1987),

Wiggins (1987), Scott (1987), Melino and Turnbull (1990), Stein and Stein (1991), and

Heston (1993). The discrete-time ARCH/GARCH model of Engle (1982) and Bollerslev

(1986) and their variants such as Nelson (1991) and Engle and Ng (1993) constitute another

important class of models with stochastic volatility. These two classes of stochastic volatility

models are often employed in modeling financial time series and for derivative pricing. There

is an intriguing link between these two classes of models. As the length of the discrete time

interval in the GARCH model shrinks to zero, the GARCH model weakly converges to

a bivariate diffusion (Nelson 1990; Duan, 1997). Such weak convergence result combined
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with uniform integrability that is satisfied by typical option payoff functions leads to the

convergence of the GARCH option price to the option price under the corresponding bivariate

diffusion model. In fact, such convergence has been demonstrated numerically in Ritchken

and Trevor (1999) and Lyuu and Wu (2005).

In this paper we study the convergence speed of the GARCH European option price to its

bivariate diffusion limit price, particularly under the exponential GARCH(1,1) specification,

EGARCH(1,1) for short. Although the convergence result based on weak convergence and

uniform integrability is of great value, it is silent as to how fast such convergence takes

place. Our derivation relies on tackling the option price formulas directly and employs more

accurate probability approximations. We show that the EGARCH(1,1) option price and

the option price under the corresponding bivariate diffusion are equal up to an order near

the square root of the length of discrete time interval. To the best of our knowledge, our

paper is the first to derive a convergence result for the GARCH option price with a known

convergence rate.

The remainder of this paper is organized as follows. Section 2 reviews the weak conver-

gence result and then presents the main theorem on the convergence rate of the EGARCH(1,1)

European option price to its diffusion limit price. Section 3 offers the conclusion. All proofs

are given in Section 4. In Section 4.1, we discretize the continuous-time bivariate diffusion

model to introduce a discrete-time stochastic volatility model and use it as an intermediate

model to bridge the gap between the GARCH and continuous-time bivariate diffusion mod-

els. The proofs in various steps are provided in Sections 4.2-4.6. The Appendix collects all

probability inequalities needed for establishing the main result.
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2 Option valuation models

Denote by C(t, x; T,K; y) the price of a European call option with stock price x at valuation

time t, strike price K and expiration time T , where y is the volatility at the time t. We use

subscript “BS”, “D”, and “G” to label the prices associated with the Black-Scholes, diffusion

and GARCH models. For example, CBS(t, x; T,K; σ) denotes the price of a European call

option based on the Black-Scholes model. Although the main issue of this paper centers

around the price/volatility system under the risk-neutral pricing measure P , we will start

with a brief description of the GARCH option pricing theory that bridges the system under

the physical probability measure P0 and that under the risk-neutral pricing measure P .

2.1 The GARCH and GARCH option pricing models

Our theoretical analysis only addresses the EGARCH(1,1) model. The idea can be applied

to other GARCH(1,1) specifications. Define a discrete-time EGARCH(1,1) model over time

interval [0, T ] under the physical probability measure P0. The interval is divided into nT

subintervals of length 1/n and set tk = k/n, k = 0, 1, · · · , nT . This EGARCH(1,1) model

assumes asset price process SG,n,tk , k = 1, · · · , nT , to follow

log
SG,n,tk

SG,n,tk−1

=
(

r + λσG,n,tk − σ2
G,n,tk

/2
)

n−1 + σG,n,tkǫkn
−1/2, (1)

log σ2
G,n,tk+1

= αn−1 + (1 + ϑ1n
−1) log σ2

G,n,tk
+ ϑ2ǫkn

−1/2

+(1 − 2/π)−1/2ϑ3

(

|ǫk| − (2/π)1/2
)

n−1/2, (2)

where r is constant risk-free interest rate, λ is the risk premium per unit of standard devi-

ation, ǫk is a sequence of i.i.d. standard normal random variables under measure P0, and

the conditional variance (or volatility), σ2
G,n,tk

, of log
SG,n,tk

SG,n,tk−1

depends on lagged errors ǫ’s.

When n = 1, the above model becomes the standard EGARCH(1,1) process.
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For option pricing, it is customary to change the probability measure to the one with

respect to which economic agents could behave as if they were risk-neutral. This new mea-

sure is typically referred to as the risk-neutral pricing measure. The measure change is

accomplished by essentially absorbing the stochastic discount factor arising from agents’ in-

tertemporal marginal rate of substitution into the probability measure. One then attempts

to characterize the dynamic asset price system under this new measure. For the GARCH

models, the fundamental pricing theory known as the local risk-neutral valuation principle

was established in Duan (1995). By which, we can express the asset price system with respect

to the risk-neutral pricing measure P as follows:

log
SG,n,tk

SG,n,tk−1

=
(

r − σ2
G,n,tk

/2
)

n−1 + σG,n,tkn
−1/2 εk, (3)

log σ2
G,n,tk+1

= ϑ0n
−1 + (1 + ϑ1n

−1) log σ2
G,n,tk

+ ϑ2εkn
−1/2

+(1 − 2/π)−1/2ϑ3

(

|εk − λn−1/2| − (2/π)1/2
)

n−1/2, (4)

where εk ≡ ǫk + λn−1/2 has been shown in Duan (1995) to be a standard normal random

variable under measure P and ϑ0 = α + ϑ2λ.

To associate the GARCH model (3)-(4) with a continuous-time model, we extend (SG,n,tk , σ
2
G,n,tk+1

)

to [0, T ] by letting

(SG,n,s, σ
2
G,n,s) = (SG,n,tk , σ

2
G,n,tk+1

), for s ∈ [tk, tk+1), k = 0, · · · , nT − 1.

Base on the risk-neutral system in (3) and (4), and the European call option can be computed

as

CG(t, x; T,K; y) = EP
[

e−r (T−t) (SG,n,T − K)+|(SG,n,t, σG,n,t) = (x, y)
]

, (5)

where the expectation is taken under the risk-neutral pricing measure P . For the remainder

of the paper, we only deal with the system with respect to P . Thus, we will drop the

superscript P for the ease of exposition.
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2.2 The diffusion model

As n → ∞, the GARCH process (SG,n,s, σ
2
G,n,s), s ∈ [0, T ], weakly converges to the bivariate

diffusion process (SD,s, σ
2
D,s), s ∈ [0, T ]. Under the risk-neutral pricing measure P , the

diffusion process (SD,s, σ
2
D,s) is governed by the following stochastic differential equation

system

d log SD,s = (r − σ2
D,s/2) ds + σD,s dW1,s, (6)

d log σ2
D,s = (ϑ0 + ϑ1 log σ2

D,s) ds + ϑ2 dW1,s + ϑ3 dW2,s, (7)

where (W1,s,W2,s) are two independent standard Brownian motions. The diffusion model

(6)-(7) [or the process (SD,s, σ
2
D,s)] is referred to as the diffusion limit of the exponential

GARCH model (3)-(4). (See Duan 1997, Nelson 1990.)

Under the limiting bivariate diffusion model (6)-(7), the price of the European call option

has an expression

CD(t, x; T,K; y) = E
[

CBS

(

t, xMD; T,K;
√

σ2
D

)]

, (8)

where CBS is the Black-Scholes formula [given by (23) in Section 4.3],

σ2
D = σ2

D(T, t) =
1 − ρ2

T − t

∫ T

t
σ2

D,s,t,y ds, (9)

MD = MD(T, t, σD,s,t,y) = exp

(

ρ
∫ T

t
σD,s,t,y dBV,s −

ρ2

2

∫ T

t
σ2

D,s,t,y ds

)

, (10)

BV,s = ρW1,s + sign(ϑ3)
√

1 − ρ2 W2,s, ρ = ϑ2 /
√

ϑ2
2 + ϑ2

3,

σD,s,t,y denotes σD,s begining at σD,t = y, and the expectation on the right hand side of (8)

is taken over the random source BV,s in σ2
D and MD. (See Fouque et. al. 2000, Heston 1993,

Hull and White 1987, Scott 1987, Stein and Stein 1991, Wiggins 1987.)

Empirical studies and economic arguments show a negative correlation (or leverage effect)

between asset price and volatility, that is, asset price tends to go down when volatility goes

up, so it is nature to expect ϑ2 < 0 (or ρ < 0).
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2.3 Main theorem

The GARCH model converges weakly to the diffusion model, and the GARCH European op-

tion prices converge to the diffusion European option prices. The theorem below establishes

the convergence rate of the GARCH option price to the diffusion option price.

Theorem 2.1 Assume that model parameters ϑi, i = 0, 1, 2, 3, risk premium λ, strike price

K, and expiration time T are all bounded, time to maturity T − t is bounded below from zero,

and ϑ2 ≤ 0. Then as n → ∞,

CG(t, x; T,K; y) = CD(t, x; T,K; y) + O
(

n−1/2 exp(Υ log1/2 n)
)

,

where Υ is a positive generic constant, and the convergence rate holds uniformly over ϑi, λ,

t, T , and K.

In comparison with any positive power of n, the term exp(Υ log1/2 n) is negligible, so the

convergence rate established in Theorem 2.1 is near n−1/2. Such convergence rate is very

useful in the study of statistical estimation of model parameters based on option data. As

the Black-Scholes formula is a smooth function in its variables, Theorem 2.1 indicates that

the difference between the diffusion and GARCH implied volatilities converges to zero at the

same rate.

It is widely known that the GARCH process has a bivariate diffusion process as its weak

limit. This fact is often used in the finance literature to justify a common belief that two

models are more or less equivalent. Wang (2002) cast doubt on this common belief and

showed that the two models are not statistically equivalent. The statistical non-equivalence

is due to the difference in noise propagation in their conditional variances. That difference

in turn results in two distinct likelihood processes. For European option pricing however,

stochastic equivalence is not essential because it is about the first moment of some integrable

function for which weak convergence suffices.
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3 Conclusion

The continuous-time diffusion model and the discrete-time GARCH process are widely em-

ployed in financial modeling and data analysis. Their relationship is quite complex. Viewed

as a discrete-time approximation, a properly constructed GARCH model weakly converges

to a bivariate diffusion as the time interval between observations shrinks to zero. Thus, the

difference in European option prices must also approach to zero in the limit. However, the

rate of convergence is unknown.

This paper focuses on the issue of convergence rate. Suppose there are n observations

equally spaced over a fixed time horizon. As n goes to infinity, the GARCH process converges

weakly to a bivariate diffusion, and so do the European option prices. This paper is the first

to show that the option price convergence is at a rate near n−1/2.

4 Proofs

As mentioned in the text, the default probability measure in the analysis is the risk-neutral

probability measure P . Thus, expectations E are taken under P , and price and volatility

processes are considered under P . All reference materials such as sections and propositions

in the Appendix are numbered with label “A”.

4.1 Discrete-time stochastic volatility model

Discretizing the diffusion model (6)-(7) naturally yields a discrete-time stochastic volatility

(SV) model where the corresponding SV process (SV,n,s, σ
2
V,n,s), s ∈ [0, T ], is defined as

follows. For k = 1, · · · , nT , let

log SV,n,tk − log SV,n,tk−1
= (r − σ2

V,n,tk
/2)n−1 + σV,n,tkεkn

−1/2, (11)
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log σ2
V,n,tk+1

= ϑ0n
−1 + (1 + ϑ1 n−1) log σ2

V,n,tk
+ ϑ2εkn

−1/2 + ϑ3δkn
−1/2, (12)

where εk and δk are i.i.d. N(0,1) random variables, and (SV,n,s, σ
2
V,n,s) = (SV,n,[ns]/n, σ2

V,n,([ns]+1)/n).

Of course, (SV,n,s, σ
2
V,n,s) weakly converges to the bivariate diffusion (SD,s, σ

2
D,s) described by

(6)-(7).

4.2 Uniform expressions of price and volatility processes

We use “BS”, “D”, “G” and “V” to label the Black-Scholes, diffusion, GARCH and SV

models, and their corresponding price and volatility processes and option price formulas,

respectively, and denote their dummy label by Λ. The GARCH and SV price and volatility

processes depend on n. For simplicity, we suppress the dependence by dropping off n and

writing (SΛ,n,s, σ
2
Λ,n,s) as (SΛ,s, σ

2
Λ,s). We assume equal initial values (S0, σ0) = (SG,0, σG,0) =

(SV,0, σV,0) = (SD,0, σD,0). From equations (3)-(12) we adopt the following reparameterization

and uniform expressions for price and volatility processes,

SD,s = S0 exp
{

rs − 1

2

∫ s

0
σ2

D,udu +
∫ s

0
σD,udW1,u

}

, (13)

d log σ2
D,s = (β0 + β1 log σ2

D,s)ds + β2dBV,s, (14)

for Λ = V,G, SΛ,s = S0 exp

{

rs − 1

2

∫ [ns]/n

0
σ2

Λ,udu +
∫ s

0
σΛ,udW

(n)
1,u

}

, (15)

log σ2
Λ,tk

− log σ2
Λ,tk−1

= (β0 + β1 log σ2
Λ,tk−1

)n−1 + β2(B
(n)
Λ,tk−1

− B
(n)
Λ,tk−2

), σ2
Λ,s = σ2

Λ,[ns]/n, (16)

where BV,s is a standard Brownian motion defined by

BV,s = ρW1,s + sign(ϑ2)
√

1 − ρ2 W2,s, d < W1,s, BV,s >= ρds, (17)

β0 = ϑ0 − λϑ3, β1 = ϑ1, β2 =
√

ϑ2
2 + ϑ2

3, ρ = ϑ3/β2, (18)

W
(n)
1,s = n−1/2

[ns]
∑

j=1

εj, W
(n)
2,s = n−1/2

[n s]
∑

j=1

δj, (19)

B
(n)
V,s = ρW

(n)
1,s + sign(ϑ2)

√

1 − ρ2 W
(n)
2,s , (20)
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B
(n)
G,s = n−1/2

[n s]
∑

j=1

(

ρ εj + sign(ϑ2)
√

1 − ρ2 ξj

)

, (21)

ξk =
{

|εk − λ n−1/2| − (2/π)1/2
}

/(1 − 2/π)1/2. (22)

4.3 Conventions and Notations

To better track complex processes under different models, and manage technical arguments,

we fix the following conventions and notations.

1. Convergence convention. Since weak convergence is invariant to the change of

probability spaces so long as distributions remain the same, it is often necessary to put

random variables and processes on some common probability spaces and to embed random

variables in processes. At such occasions, we will automatically change probability spaces

and consider versions of the random variables and the processes on new probability spaces,

without altering notations. Because of the convention, when no confusion occurs, we use the

same notation for random variables or processes with identical distribution.

2. Parameter convention. The assumptions in Theorem 2.1 guarantee that (β0, β1, β2)

belong to a bounded rectangle in IR2 × [0,∞), ρ ∈ [−1, 0], λ and K are bounded above by

fixed positive constants, T ≤ 1, and T − t is bounded below by a fixed positive constant. All

O’s and o’s throughout the proofs hold uniformly over (β0, β1, β2, ρ, λ, t, T,K).

3. Reserved notations and symbols. Φ and φ are reserved for the standard normal

distribution and density functions, respectively. We reserve Υ’s for generic positive constants

whose values are free from (β0, β1, β2, ρ, λ, t, T,K), and may change from appearance to

appearance, and take ζn = n−1/2 exp(Υ log1/2 n). a ∼ b means that their ratio has limit

one. Denote by [d] the integer part of d, and for s ∈ [0, T ], set s∗ = [ns]/n.

4. Notations for the Black-Scholes formula. Notations about the Black-Scholes

formula are needed to express their specific dependence on stock price, current time and
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volatility so that we can differentiate them with respect to these variables.

We express the Black-Scholes formula as follows,

CBS(t, x; T,K; σ) = x Φ(H1) − e−r(T−t) K Φ(H2), (23)

where

H1 = H1(T − t, x/K, σ2) =
log (x/K) + (r + σ2/2)(T − t)

σ
√

T − t
, (24)

H2 = H2(T − t, x/K, σ2) = H1(T − t, x/K, σ2) − σ
√

T − t. (25)

It is well known that

xφ(H1) = e−r(T−t) K φ(H2), (26)

∂CBS(t, x; T,K; σ)

∂x
= Φ(H1),

∂CBS(t, x; T,K; σ)

∂σ
= e−r(T−t) K φ(H2)

√
T − t, (27)

and

∂CBS(t, x; T,K; σ)

∂(T − t)
= r e−r (T−t) Φ(H2) + e−r (T−t) K φ(H2) σ (T − t)−1/2/2. (28)

4.4 The pricing formula for the diffusion model

For the bivariate diffusion model (13)-(14), its European option price given by (8) have the

following property.

Theorem 4.1 CD(t, x; K,T ; y) has derivative with respect to x between 0 and 1 and deriva-

tive with respect to y bounded by exp {Υ1 + Υ2| log y|} .

Proof. From the Black-Scholes formula given by (23) and its derivatives in (27), we have

∂CBS

(

t, xMD; T,K;
√

σ2
D

)

∂x
= MD Φ

(

H1(T − t, xMD/K, σ2
D)
)

, (29)

∂CBS

(

t, xMD; T,K;
√

σ2
D

)

∂y
= x Φ

(

H1(T − t, xMD/K, σ2
D)
) ∂MD

∂y

+
√

T − t e−r (T−t) K φ
(

H2(T − t, xMD/K, σ2
D)
) 1

2
√

σ2
D

∂σ2
D

∂y
. (30)
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On the other hand, from Proposition A3.1 [in Appendix] and (9)-(10) we obtain

1

2
√

σ2
D

∂σ2
D

∂y
=

1
√

σ2
D

(1 − ρ2)

y (T − t)

∫ T

t
eβ1 (s−t) σ2

D,s,t,y ds ≤ e|β1| (T−t)

y

√

σ2
D,

∂MD

∂y
= 2 ρ y−1 MD

(

∫ T

t
eβ1 (s−t) σD,s,t,y dBV,s − ρ

∫ T

t
eβ1 (s−t) σ2

D,s,t,y ds

)

.

With Φ ≤ 1 and φ ≤ (2 π)−1/2, Lemma 4.1 below and Proposition A3.3 indicate that the

partial derivatives of CBS in (29)-(30) have bounded expectations. Hence we can exchange

the expectation E and the partial derivatives of CBS in (29)-(30), and use (8) to establish

the bounds for the partial derivatives of CD(t, x; T,K; y).

Lemma 4.1

E[MD(T, t, σD,s,t,y)] ≤ 1,

E

[

MD(T, t, σD,s,t,y)

∣

∣

∣

∣

∣

∫ T

t
eβ1 (s−t) σD,s,t,y dBV,s − ρ

∫ T

t
eβ1 (s−t) σ2

D,s,t,y ds

∣

∣

∣

∣

∣

]

≤ exp (Υ1 + Υ2 | log y|) .

Proof. Define stopping time

τℓ = T ∧ inf
{

s ∈ [t, T ] :
∫ s

t
eβ1 (s−u) dBV,u > ℓ

}

. (31)

Then τℓ → T as ℓ → ∞, and Proposition A3.1 and the continuity of σ2
D,s,t,y imply

σ2
D,s∧τℓ,t,y

≤ exp
{

e|β1| | log y2| + β2 ℓ + |β0| (eβ1 − 1)/β1

}

.

Thus, {MD(v, t, σD,s∧τℓ,t,y), v ∈ [t, T ]} is an exponential martingale with

E[MD(T, t, σD,s∧τℓ,t,y)] = 1.

By Fatou’s lemma,

E[MD(T, t, σD,s,t,y)] = E
[

lim
ℓ→∞

MD(T, t, σD,s∧τℓ,t,y)
]

≤ lim inf
ℓ→∞

E[MD(T, t, σD,s∧τℓ,t,y)] = 1.

11



This proves the first inequality.

To prove the second one, we change probability measure by shifting BV,s − BV,t to

B̂V,s = BV,s − BV,t −
∫ s

t
ρ σD,u∧τℓ,t,y du. (32)

As P and E stand for the original risk-neutral probability and its corresponding expectation,

we denote by P̂ the new probability and Ê the expectation taken under the new probability.

Girsanov theorem shows that MD(T, t, σD,s∧τℓ,t,y) is the Radon-Nikodym derivative of P̂ with

respect to P , and under P̂ , B̂V,s, s ∈ [t, T ] is a standard Brownian motion.

Now we study the behavior of σD,s,t,y under the new probability P̂ . Denote by σ̂2
D,s,t,y

the expression of σ2
D,s,t,y with BV,s − BV,t replaced by B̂V,s. Then first, the probabilistic

behavior of σ̂2
D,s,t,y under P̂ is the same as σ2

D,s,t,y under P ; second, as ρ ≤ 0 and β2 ≥ 0,

from Proposition A3.1 and the shifting relation between BV and B̂V we have

σ2
D,s,t,y = σ̂2

D,s,t,y exp
(

ρ β2

∫ s

t
eβ1 (u−t) σD,u∧τℓ,t,y du

)

≤ σ̂2
D,s,t,y. (33)

Then

E

[

MD(T, t, σD,s∧τℓ,t,y)

∣

∣

∣

∣

∣

∫ T

t
eβ1 (s−t) σD,s∧τℓ,t,y dBV,s − ρ

∫ T

t
eβ1 (s−t) σ2

D,s∧τℓ,t,y
ds

∣

∣

∣

∣

∣

]

= Ê

[∣

∣

∣

∣

∣

∫ T

t
eβ1 (s−t) σD,s∧τℓ,t,y dB̂V,s

∣

∣

∣

∣

∣

]

≤
(

∫ T

t
e2 β1 (s−t) Ê[σ2

D,s∧τℓ,t,y
] ds

)1/2

≤
(

∫ T

t
e2 β1 (s−t) Ê[σ̂2

D,s∧τℓ,t,y
] ds

)1/2

≤
(

e2 |β1| Ê

[

sup
t≤s≤T

σ̂2
D,s,t,y

])1/2

≤ exp(Υ1 + Υ2 | log y|),

where, of above six lines of equation array, the equality in the second line of the equation

array is due to the change of probability and relationship between BV and B̂V , the inequality
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in the third line is using the quadratic variation of the stochastic integral with respect to

Brownian motion B̂V under P̂ , the inequality in the forth line is from (33), and the inequality

in the last line is because of Proposition A3.3 and identical distribution of σ̂D under P̂ and

σD under P . Finally, we prove the second inequality by letting ℓ → ∞ and applying Fatou’s

lemma.

4.5 Option pricing for the SV model

This section derives the order for the difference between CV (t, x; T,K; y) and CD(t, x; T,K; y).

Theorem 4.2

CV (t, x; T,K; y) = CD(t, x; T,K; y) + O(ζn),

where ζn = n−1/2 exp(Υ log1/2 n) is the rate given by Theorem 2.1 in section 2.

Proof. From (15)-(16) and embedding of W
(n)
1 in W1, we have that for s ∈ [tk, tk+1), σ2

V,s

and SV,s are constants, and

SV,s = S0 exp
{

r tk −
1

2

∫ tk

0
σ2

V,u du +
∫ tk

0
σV,u dW1,u

}

.

Note t∗ = [n t]/n and T∗ = [nT ]/n. Then

CV (t, x; T,K; y) = E[e−r (T−t) (SV,T − K)+|SV,t = x, σV,t = y]

= er (T∗−T−t∗+t) E[e−r (T∗−t∗) (SV,T∗
− K)+|SV,t∗ = x, σV,t∗ = y].

Processes are evaluated on [t∗, T∗], and B
(n)
V is embedded in BV , so on [t∗, T∗], the SV model

has the same structure as the diffusion model. Conditional on the path of BV,s, we can

manipulate the conditional distribution the same way as for the diffusion case and compute

the conditional expectation to derive the following expression

CV (t, x; T,K; y) = er (T∗−T−t∗+t) E
[

CBS

(

t∗, xMV ; T∗, K;
√

σ2
V

)]

, (34)

13



where

σ2
V = σ2

V (T∗, t∗) =
1 − ρ2

T∗ − t∗

∫ T∗

t∗
σ2

V,s,t∗,y ds, (35)

MV = MV (T∗, t∗, σV,s,t∗,y) = exp

(

ρ
∫ T∗

t∗
σV,s,t∗,y dBV,s −

ρ2

2

∫ T∗

t∗
σ2

V,s,t∗,y ds

)

, (36)

and σ2
V,s,t∗,y is given by Proposition A3.1.

Applying the mean value theorem to CBS(t∗, x; T∗, K; σ) as a function of (x, σ), and using

(27) and boundness of Φ and φ, we obtain

∣

∣

∣

∣

CBS

(

t∗, xMV (T∗, t∗, σV,s,t∗,y); T∗, K;
√

σ2
V (T∗, t∗)

)

− CBS

(

t∗, xMD(T∗, t∗, σD,s,t∗,y); T∗, K;
√

σ2
D(T∗, t∗)

)∣

∣

∣

∣

≤ x |MV (T∗, t∗, σV,s,t∗,y) − MD(T∗, t∗, σD,s,t∗,y)| + Υ
∣

∣

∣

∣

√

σ2
V (T∗, t∗) −

√

σ2
D(T∗, t∗)

∣

∣

∣

∣

, (37)

where σ2
D and MD are defined in (9)-(10), respectively. Taking expectation on the both side

of (37) and using (34), T − t − 1/n ≤ T∗ − t∗ ≤ T − t + 1/n, and CBS(t, x; T,K; σ) ≤ x we

arrive at

|CV (t, x; T,K; y) − CD(t∗, x; T∗, K; y)| ≤ 3 n−1 xE [MD(T∗, t∗, σD,s,t∗,y)]

+ 3 xE[|MV (T∗, t∗, σV,s,t∗,y) − MD(T∗, t∗, σD,s,t∗,y)|] + Υ E

∣

∣

∣

∣

√

σ2
V (T∗, t∗) −

√

σ2
D(T∗, t∗)

∣

∣

∣

∣

. (38)

Again applying the mean value theorem to CBS(t, x; T,K; σ) as a function of (T − t, x, σ)

and using its derivatives given by (27)-(28) and T − t− 1/n ≤ T∗ − t∗ ≤ T − t + 1/n, we get

∣

∣

∣

∣

CBS

(

t∗, xMD(T∗, t∗, σD,s,t∗,y); T∗, K;
√

σ2
D(t∗, T∗)

)

−

CBS

(

t, xMD(T, t, σD,s,t,y); T,K;
√

σ2
D(T, t)

)∣

∣

∣

∣

≤ Υ1 n−1
[
√

σ2
D(T∗, t∗) +

√

σ2
D(T, t)

]

+ x |MD(T∗, t∗, σD,s,t∗,y) − MD(T, t, σD,s,t,y)|

+ Υ2

∣

∣

∣

∣

√

σ2
D(T∗, t∗) −

√

σ2
D(T, t)

∣

∣

∣

∣

. (39)
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Lemma 4.1 implies E(MD) ≤ 1 and Proposition A3.3 shows
√

σ2
D has bounded expectation.

Thus, taking expectation on both sides of (39) and then combining it with (38), we have

|CV (t, x; T,K; y) − CD(t, x; T,K; y)| ≤ n−1 {3 x + exp(Υ1 + Υ2 |log y|)}

+ 3 xE {|MV (T∗, t∗, σV,s,t∗,y) − MD(T∗, t∗, σD,s,t∗,y)| + |MD(T∗, t∗, σD,s,t∗,y) − MD(T, t, σD,s,t,y)|}

+ Υ3 E
{∣

∣

∣

∣

√

σ2
V (T∗, t∗) −

√

σ2
D(T∗, t∗)

∣

∣

∣

∣

+
∣

∣

∣

∣

√

σ2
D(T∗, t∗) −

√

σ2
D(T, t)

∣

∣

∣

∣

}

.

Now the theorem is a consequence of Lemmas 4.2 and 4.3 below.

Lemma 4.2 With t∗ = [n t]/n and T∗ = [nT ]/n, we have

E

∣

∣

∣

∣

√

σ2
D(T∗, t∗) −

√

σ2
D(T, t)

∣

∣

∣

∣

= O(n−1/2).

If t∗ = t and T = T∗, then

E
∣

∣

∣

∣

√

σ2
V (T, t) −

√

σ2
D(T, t)

∣

∣

∣

∣

= O(n−1/2).

Proof. Because of similarity, we give the argument only for the second result. Set

a =
∣

∣

∣σ2
V − σ2

D

∣

∣

∣ , b = min
{

σ2
V , σ2

D

}

.

Using inequality
√

1 + u − 1 ≤ u/2 for u ≥ 0, we have

∣

∣

∣

∣

√

σ2
V −

√

σ2
D

∣

∣

∣

∣

=
√

b
∣

∣

∣

∣

√

1 + a/b − 1
∣

∣

∣

∣

≤ a b−1/2/2.

An application of the Cauchy-Schwartz inequality yields

(

E
∣

∣

∣

∣

√

σ2
V −

√

σ2
D

∣

∣

∣

∣

)2

≤ [E(a b−1/2)]2 ≤ E(a2) E(b−1). (40)

The lemma is proved, if E(b−1) is bounded and E(a2) is of order n−1, which we will show

below. In fact, first since

b−1 ≤
(

σ2
V

)−1
+
(

σ2
D

)−1
,
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Proposition A3.3 implies that E(b−1) is bounded. Second,

E(a2) ≤ (T − t)−1
∫ T

t
E
[

|σ2
V,s,t,y − σ2

D,s,t,y|2
]

ds

≤ (T − t)−1
∫ T

t
E
[

σ4
D,s,t,y

]

E
[

|eAs,t − 1|2
]

ds, (41)

where the last inequality is due to the Cauchy-Schwartz inequality, and

As,t = log σ2
V,s,t,y − log σ2

D,s,t,y.

Proposition A3.3 shows E(σ4
D,s,t,y) is bounded, and by Proposition A3.2 we have

E
[

|eAs,t − 1|2
]

= e2 E(As,t)+2 V ar(As,t) − 2 eE(As,t)+V ar(As,t)/2 + 1 = O(n−1).

Thus, from (41) we establish n−1 order for E(a2).

Lemma 4.3 With t∗ = [n t]/n and T∗ = [nT ]/n, we have

E |MD(T∗, t∗, σD,s,t∗,y) − MD(T, t, σD,s,t,y)| = O(ζn).

If t = t∗ and T = T∗, then

E |MD(T, t, σD,s,t,y) − MV (T, t, σV,s,t,y)| = O(ζn).

Proof. Because of similarity, we prove the second result only. For tk ≥ t, σ2
V,tk,t,y relies on

εn t+1, · · · , εk−1 and δn t+1, · · · , δk−1, thus (εk, δk) and σ2
V,tk,t,y are independent. Using condi-

tional argument and the normality of ρ εk ±
√

1 − ρ2 δk we get

E [MV (tk, t, σV,s∧τℓ,t,y)/MV (tk−1, t, σV,s∧τℓ,t,y)| εn t+1, δn t+1, · · · , εk−1, δk−1]

= E
[

exp
{

σV,tk∧τℓ,t,y (ρ εk ±
√

1 − ρ2 δk) − σ2
V,tk∧τℓ,t,y

/2
}∣

∣

∣

∣

εn t+1, δn t+1, · · · , εk−1, δk−1

]

= 1,

where stopping time τℓ is defined in (31). This shows that {MV (tk, t, σV,s∧τℓ,t,y), t ≤ tk ≤

T} is a martingale with E[MV (T, t, σV,s∧τℓ,t,y] = 1. The proof of Lemma 4.1 has shown
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EMD(T, t, σD,s∧τℓ,t,y) = 1. Thus, MD(T, t, σD,s∧τℓ,t,y) − MV (T, t, σV,s∧τℓ,t,y) has zero expecta-

tion, and

0.5 E |MD(T, t, σD,s∧τℓ,t,y) − MV (T, t, σV,s∧τℓ,t,y)|

= E{[MD(T, t, σD,s∧τℓ,t,y) − MV (T, t, σV,s∧τℓ,t,y)]
+}

= E{MD(T, t, σD,s∧τℓ,t,y) [1 − exp(UT − ZT /2)]+}, (42)

where

Us = ρ
∫ s

t
(σV,u∧τℓ,t,y − σD,u∧τℓ,t,y) dB̂V,u, Zs = ρ2

∫ s

t
(σV,u∧τℓ,t,y − σD,u∧τℓ,t,y)

2 du, (43)

and B̂V,s is defined in (32). As in the proof of Lemma 4.1, we take probability transformation

by shifting BV,s − BV,t, s ∈ [t, T ], to B̂V,s, s ∈ [t, T ] and use P̂ and Ê to stand for the new

probability and the expectation taken under the new probability. Then from (42) we yield

0.5 E |MD(T, t, σD,s∧τℓ,t,y) − MV (T, t, σV,s∧τℓ,t,y)| = Ê{[1 − exp(UT − ZT /2)]+}

≤ Ê{[1 − exp(UT − ZT /2)]+1(τn = T )} + P̂ (τn < T )

≤ Ê{|UT − ZT /2|1(τn = T )} + P̂ (τn < T )

≤ Ê(|Uτn|) + Ê(Zτn)/2 + P̂ (τn < T )

≤
[

Ê (Zτn)
]1/2

+ Ê (Zτn) /2 + P̂ (τn < T ) , (44)

where stopping time τn is defined by

τn = T ∧ inf
{

s ∈ [t, T ] : log σ2
D,s,t,y > Υ1 + Υ2 |log y| + Υ3 log1/2 n

}

, (45)

the second inequality is from inequality [1 − eu]+ ≤ 1 − e−|u| ≤ |u|, and the last inequality

is due to the fact that (43) implies that under P̂ , Zs is the variation process of Us, and

Ê (|Uτn|2) = Ê (Zτn).
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From (45) we obtain

P̂ (τn < T ) = P̂

(

sup
t≤s≤T

log σ2
D,s,t,y > Υ1 + Υ2 |log y| + Υ3 log1/2 n

)

≤ P̂

(

sup
t≤s≤T

log σ̂2
D,s,t,y > Υ1 + Υ2 |log y| + Υ3 log1/2 n

)

≤ Υn−1 log−1/2 n. (46)

where the first inequality is from (33), and the second inequality is due to Proposition A3.3

and identical distribution of σ̂D under P̂ and σD under P .

On the other hand, from (43) we get

Ê (Zτn) ≤ Ê
∫ τn∧τℓ

t
(σV,s,t,y − σD,s,t,y)

2ds + Ê
{

1{τℓ < τn}(τn − τn ∧ τℓ)(σD,τℓ,t,y − σV,τℓ,t,y)
2
}

≤ Ê
∫ τn

t
(σV,s,t,y − σD,s,t,y)

2ds + Ê

{

1{τℓ < T} sup
t≤s≤T

(σD,s,t,y − σV,s,t,y)
2

}

. (47)

What we need is to evaluate the expectations in (47). Like notation σ̂2
D,s,t,y used in the proof

of Lemma 4.1, we denote by σ̂2
V,s,t,y the expression of σ2

V,s,t,y with BV,s − BV,t replaced by

B̂V,s. Then the probabilistic behavior of σ̂2
Λ,s,t,y under P̂ is the same as σ2

Λ,s,t,y under P , and

from Proposition A3.1 we have

log σ2
V,s,t,y − log σ2

D,s,t,y = log σ̂2
V,s,t,y − log σ̂2

D,s,t,y + Hs,t, (48)

where

Hs,t = ρβ2

∫ [ns−1]/n

t

(

α
[ns]−[nu]−1
1 − eβ1 (s−u)

)

σD,u∧τℓ,t,y du − ρβ2

∫ s

[ns−1]/n
eβ1(s−u) σD,u∧τℓ,t,ydu.

Lemma A3.1 together with (45) and continuity of σD imply

sup
t≤s≤τn

|Hs,t| ≤ Υn−1 sup
t≤s≤τn

σD,s,t,y ≤ n−1 exp
(

Υ1 + Υ2 |log y| + Υ3 log1/2 n
)

. (49)

Now we evaluate the expectations in (47). First,

Ê
∫ τn

t
(σV,s,t,y − σD,s,t,y)

2ds
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= Ê
∫ τn

t
σ2

D,s∧τℓ,t,y

(

1 + eHs,tσ̂2
V,s,t,y/σ̂

2
D,s,t,y − 2eHs,t/2 σ̂V,s,t,y/σ̂D,s,t,y

)

ds

≤ Ê
∫ τn

t
σ̂2

D,s∧τℓ,t,y

(

1 + ea/nσ̂2
V,s,t,y/σ̂

2
D,s,t,y − 2e−0.5 a/nσ̂V,s,t,y/σ̂D,s,t,y

)

ds

≤
∫ T

t
Ê
(

σ̂2
D,s,t,y + ea/nσ̂2

V,s,t,y − 2e−0.5a/nσ̂V,s,t,yσ̂D,s,t,y

)

ds

≤ n−1 exp
(

Υ1 + Υ2 |log y| + Υ3 log1/2 n
)

, (50)

where, of above five lines of equation array, the equality in the second line is from (48), the

inequality in the third line is because of (33) and (49) with

a = exp
(

Υ1 + Υ2 |log y| + Υ3 log1/2 n
)

,

and the inequality in the last line is due to the identical distribution of (σ̂D, σ̂V ) under P̂

and (σD, σV ) under P , and direct calculation by Proposition A3.2 that (log σV,s,t,y, log σD,s,t,y)

follows a bivariate normal distribution with marginal means and variances differing by an

order of n−1 and correlation 1 + O(n−1).

Second,

Ê

{

1{τℓ < T} sup
t≤s≤T

(σD,s,t,y − σV,s,t,y)
2

}

≤ 2

[

P̂ (τℓ < T )Ê

{

sup
t≤s≤T

(σ4
D,s,t,y + σ4

V,s,t,y)

}]1/2

≤ 2

[

P̂ (τℓ < T )Ê

{

sup
t≤s≤T

(σ̂4
D,s,t,y + σ̂4

V,s,t,y)

}]1/2

≤ exp (Υ1 + Υ2 | log y|)
[

P̂ (τℓ < T )
]1/2

, (51)

where the first inequality is from Cauchy-Schwartz inequality, the second inequality is from

(33) and σ2
V,s,t,y ≤ σ̂2

V,s,t,y [which can be proved as easily as (33)], and the third inequality is

from Proposition A3.3 and the identical distribution of (σ̂D, σ̂V ) under P̂ and (σD, σV ) under

P .

Third, as ρ ≤ 0,

∫ s

t
eβ1 (s−u)dBV,u =

∫ s

t
eβ1(s−u)dB̂V,u + ρ

∫ s

t
eβ1(s−u) σD,u∧τℓ,t,ydu ≤

∫ s

t
eβ1(s−u)dB̂V,u,
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and hence from (31) we obtain

P̂ (τℓ < T ) = P̂
(

max
t≤s≤T

∫ s

t
eβ1(s−u) dBV,u > ℓ

)

≤ P̂
(

max
t≤s≤T

∫ s

t
eβ1(s−u)dB̂V,u > ℓ

)

≤ Υ1ℓ
−1 exp(−Υ2ℓ

2), (52)

where the probability in the second line of above equation array is calculated from the

distribution of the maximum of Brownian motion B̂V under P̂ .

Finally, plugging (50)-(52) into (47) and then combining it with (44) and (46), we arrive

at

E |MD(T, t, σD,s∧τℓ,t,y) − MV (T, t, σV,s∧τℓ,t,y)|

≤ n−1/2 exp
(

Υ1 + Υ2 |log y| + Υ3 log1/2 n
)

+ exp
(

Υ4 + Υ5| log y| − Υ6ℓ
2
)

ℓ−1/2.

To complete the proof, we let ℓ → ∞ and apply Fatou’s lemma.

4.6 Option pricing for the GARCH model

Theorem 4.2 in section 4.5 provides convergence speed for the SV option price to the diffusion

option price, and Theorem 4.3 below derives the convergence speed for the GARCH option

price to the SV option price. Thus, the main result, Theorem 2.1, is a consequence of

Theorems 4.2 and 4.3.

Theorem 4.3

CG(t, x; T,K; y) = CV (t, x; T,K; y) + O(ζn),

where ζn = n−1/2 exp(Υ log1/2 n), as specified in Theorem 4.2.

Proof. The put-call parity implies that it is equivalent to establish order ζn for the difference

between the prices of a European put option under the SV and GARCH models. Denote by
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PΛ(t, x; T,K; y) the price of a European call option with price x at current time t and strike

price K at terminal time T .

From Duan (1995, corollary 2.3), we have that the European put option has the price

PG(t, x; T,K; y) = E
[

e−r (T−t) (K − SG,T )+|(SG,t, σG,t+1/n) = (x, y)
]

= e−r (T−t)
{

K P
(

SG,T ≤ K|(SG,t, σG,t+1/n) = (x, y)
)

−E
[

SG,T 1(SG,T ≤ K)|(SG,t, σG,t+1/n) = (x, y)
]}

. (53)

Note t∗ = [n t]/n and T∗ = [nT ]/n. With Λ = G, V , (SΛ,s, σΛ,s) are step functions,

(SΛ,t, σΛ,t) = (SΛ,t∗ , σΛ,t∗), and (SΛ,T , σΛ,T ) = (SΛ,T∗
, σΛ,T∗

), so we just need to prove the case

of t = t∗ and T = T∗. From now on, we assume t = t∗ and T = T∗. From (15) and (16) we

get

SΛ,T = SΛ,t exp

(

r (T − t) +
∫ T

t
σΛ,sdW

(n)
1,s − 1

2

∫ T

t
σ2

Λ,sds

)

. (54)

∫ T

t
σΛ,t dW1,t =

∫ T

t
σΛ,t dW

(n)
1,t = n−1/2

n T
∑

i=n t+1

σΛ,ti εi,
∫ T

t
σ2

Λ,sds = n−1
n T
∑

i=n t+1

σ2
Λ,ti

. (55)

Since (SG,t, σG,t+1/n) are independent of εn t+1, · · · , εn T , then the conditional probability

and the conditional expectation in (53) can be evaluated by plugging the value (x, y) of

(SG,t, σG,t+1/n) into σG,s and SG,T , and then calculating the resulting probability and expec-

tation with respect to εn t+1, · · · , εn T . Given SG,t = x and σG,t+1/n = y, from (54)-(55) we

can replace σG,s by σG,s,t+1/n,y and SG,T by x er (T−t)+AG , and obtain from (53)

PG(t, x; T,K; y) = e−r (T−t) K P {AG ≤ log (K/x) − r (T − t)}

−xE
[

eAG 1 {AG ≤ log (K/x) − r (T − t)}
]

, (56)

where

AG = AG(T, t) = y n−1/2 ε[n t]+1 −
y2

2 n
+
∫ T

t+1/n
σG,s,t+1/n,y dW

(n)
1,s − 1

2

∫ T

t+1/n
σ2

G,s,t+1/n,y ds,
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and σG,u,t,y are defined in Proposition A3.1. For the SV model, from (34) and put-call parity,

we conclude that the European put option has the price under the SV model

PV (t, x; T,K; y) = e−r (T−t) K P {AV ≤ log (K/x) − r (T − t)}

−xE
[

eAV 1{AV ≤ log (K/x) − r (T − t)}
]

, (57)

where

AV = AV (T, t) =
∫ T

t
σV,s,t,y dW

(n)
1,s − 1

2

∫ T

t
σ2

V,s,t,y ds =
∫ T

t
σV,s,t,y dW1,s −

1

2

∫ T

t
σ2

V,s,t,y ds.

From (17), W1,s and BV,s have correlation ρ. Conditional on BV,s, s ∈ [t, T ], AV follows a

normal distribution with mean

ρ
∫ T

t
σV,u,t,y dBV,u −

1

2

∫ T

t
σ2

V,u,t,y du,

and variance (1 − ρ2)
∫ T
t σ2

V,u,t,y du. Thus,

P {AV ≤ log (K/x) − r (T − t)}

= E



Φ





log (K/x) − r (T − t) − ρ
∫ T
t σV,s,t,y dBV,s +

∫ T
t σ2

V,s,t,y ds/2
√

(1 − ρ2)
∫ T
t σ2

V,s,t,y ds







 , (58)

and

E
[

eAV 1{AV ≤ log (K/x) − r (T − t)}
]

= E
∫ log (K/x)−r (T−t)

−∞
eu φ





u − ρ
∫ T
t σV,s,t,y dBV,s +

∫ T
t σ2

V,s,t,y ds/2
√

(1 − ρ2)
∫ T
t σ2

V,s,t,y ds



 du. (59)

Comparing (56) with (57), we see that the theorem will be proved if

P {AG ≤ log (K/x) − r (T − t)} = P {AV ≤ log (K/x) − r (T − t)} + O(ζn), (60)

E
[

eAG1{AG ≤ log (K/x)}
]

= E
[

eAV 1{AV ≤ log (K/x)}
]

+ O(ζn). (61)

Now we will show (60) and (61). By Lemma 4.4 below, we have

P {AG ≤ log (K/x) − r (T − t)} = P (AG ≤ log (K/x) − r (T − t), |AG − AV | ≤ ζn) + O(n−1).(62)
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Note that if |AG − AV | ≤ ζn, the set {AG ≤ log (K/x) − r (T − t)} is sandwiched between

the two sets {AV ≤ log (K/x)− r (T − t)+ ζn} and {AV ≤ log (K/x)− r (T − t)− ζn}. Then

the probability on the right hand side of (62) is between the two probabilities

P (AV ≤ log (K/x) − r (T − t) ± ζn, |AG − AV | ≤ ζn) .

To prove (60) we need to show that above two probabilities have ζn order difference with

the probability on the right hand side of (60). Indeed,

P (AV ≤ log (K/x) − r (T − t) ± ζn, |AG − AV | ≤ ζn)

= P (AV ≤ log (K/x) − r (T − t) ± ζn) + O(n−1)

= EΦ





log (K/x) − r (T − t) − ρ
∫ T
t σV,s,t,y dBV,s +

∫ T
t σ2

V,s,t,y ds/2 ± ζn
√

(1 − ρ2)
∫ T
t σ2

V,s,t,y ds



+ O(n−1)

= EΦ





log (K/x) − r (T − t) − ρ
∫ T
t σV,s,t,y dBV,s +

∫ T
t σ2

V,s,t,y ds/2
√

(1 − ρ2)
∫ T
t σ2

V,s,t,y ds



+ O(ζn) E

(

sup
0≤t≤s≤1

σ−1
V,s,t,y

)

= P {AV ≤ log (K/x) − r (T − t)} + O(ζn),

where the first equality is from Lemma 4.4, the second equality is due to the conditional

normality of AV given BV , the third equality is because of the mean value theorem and the

boundness of the standard normal density function, and the last equality is from (58) and

Proposition A3.3.

To prove (61), using Lemma 4.4 we obtain

xE
[

eAG1{AG ≤ log (K/x) − r (T − t), |AG − AV | > ζn}
]

≤ KP (|AG − AV | > ζn) = O(n−1). (63)

Thus,

xE
[

eAG1{AG ≤ log (K/x) − r (T − t)}
]

= xE
[

eAG1{AG ≤ log (K/x) − r (T − t), |AG − AV | ≤ ζn}
]

+ O(n−1).
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The same argument proving (60) again shows that the expectation on the right hand side of

above equation is between the following two expectations,

xE
[

eAV ±ζn1{AV ≤ log (K/x) − r (T − t) ± ζn, |AG − AV | ≤ ζn}
]

,

and to establish (61) we need to prove that above two expectations differ by an order of ζn

from the expectation on the right hand side of (61). In fact,

xE
[

eAV ±ζn1{AV ≤ log (K/x) − r (T − t) ± ζn, |AG − AV | ≤ ζn}
]

= x e±ζn E
[

eAV 1{AV ≤ log (K/x) − r (T − t) ± ζn}
]

+ O(n−1)

= x e±ζn E
∫ log (K/x)−r (T−t)±ζn

−∞
eu φ





u − ρ
∫ T
t σV,s,t,y dBV,s +

∫ T
t σ2

V,s,t,y ds/2
√

(1 − ρ2)
∫ T
t σ2

V,s,t,y ds



 du + O(n−1)

= xE
∫ log (K/x)−r (T−t)

−∞
eu φ





u − ρ
∫ T
t σV,s,t,y dBV,s +

∫ T
t σ2

V,s,t,y ds/2
√

(1 − ρ2)
∫ T
t σ2

V,s,t,y ds



 du + O(ζn)

= xE
[

eAV 1{AV ≤ log (K/x) − r (T − t)}
]

+ O(ζn),

where the first equality is using the fact that similar to (63), we have

xE
[

eAV ±ζn1{AV < log (K/x) − r (T − t) ± ζn, |AG − AV | > ζn}
]

≤ e2 ζn K P (|AG − AV | > ζn) = O(n−1),

the second equality is due to the conditional normality of AV given BV , the third equality is

because of the mean value theorem, Proposition A3.3 and the fact that the standard normal

density function is bounded, and the last equality is from (59).

Lemma 4.4 Suppose t = [n t]/n and T = [nT ]/n. Then

P
(

max
0≤t≤T≤1

|AG(T, t) − AV (T, t)| > ζn

)

= O(n−1).

Proof. Note that

AG(T, t) − AV (T, t) = (y − σV,t+1/n,t,y) n−1/2 ε[n t]+1 +
(

σ2
V,t+1/n,t,y − y2

)

/(2 n)

+ n−1/2 UT + n−1 ZT /2, (64)
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where

Us =
∫ s

t+1/n
n1/2

(

σG,u,t+1/n,y − σV,u,t,y

)

dW
(n)
1,u , Zs =

∫ s

t+1/n
n
(

σ2
V,u,t,y − σ2

G,u,t+1/n,y

)

du.

For the first term in (64), we have

P

(

sup
0≤t≤1

∣

∣

∣(y − σV,t+1/n,t,y) n−1/2 ε[n t]+1

∣

∣

∣ >
√

2 n−1/2 log n

)

≤ P

(

sup
0≤t≤1

∣

∣

∣(y − σV,t+1/n,t,y) ε[n t]+1

∣

∣

∣ >
√

2 log n, sup
0≤t≤1

|ε[n t]| ≤
√

2 log1/2 n

)

+ O(n−1 log−1/2 n)

≤ P

(

sup
0≤t≤1

∣

∣

∣y − σV,t+1/n,t,y

∣

∣

∣ > log1/2 n

)

+ o(n−1)

≤ P

(

sup
0≤t≤1

σV,t+1/n,t,y > log1/2 n

)

+ o(n−1)

≤ P

(

sup
0≤t≤1

(BV,t − BV,t−1/n) > β−1
2 {log log n − (β0 + β1 log y2)/n}

)

+ o(n−1)

≤ P

(

sup
0≤s≤1

BV,s > n1/2 β−1
2 {log log n − (β0 + β1 log y2)/n}

)

+ o(n−1) = o(n−1), (65)

where the first inequality is because of

P

(

sup
0≤t≤1

|ε[n t]| >
√

2 log1/2 n

)

∼ n−1 log−1/2 n,

the fourth inequality is due to

σV,t+1/n,t,y = y exp
{

(β1 log y + β0/2)/n + β2 (BV,t − BV,t−1/n)/2
}

,

which is implied by Proposition A3.1, the fifth inequality is from the rescaling property of

Brownian motion BV , and the final order is derived from the distribution of the maximum

of Brownian motion BV . Similarly, for the second term in (64) we get

P

(

sup
0≤t≤1

∣

∣

∣σ2
V,t+1/n,t,y − y2

∣

∣

∣ /(2 n) > n−1/2 log n

)

≤ P

(

sup
0≤t≤1

σ2
V,t+1/n,t,y > 2 n1/2 log n

)

+ o(n−1)

≤ P

(

sup
0≤s≤1

BV,s > n1/2 β−1
2 {0.5 log n − (β0 + β1 log y2)/n}

)

+ o(n−1) = o(n−1). (66)
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From (64)-(66) we conclude

P

(

sup
t≤T≤1

|AG(T, t) − AV (T, t)| > 3 n−1/2 exp(d log1/2 n)

)

≤ P

(

sup
t+1/n≤T≤1

|UT + n−1/2 ZT /2| > 2 exp(d log1/2 n)

)

+ o(n−1)

≤ P

(

sup
t+1/n≤T≤1

(UT + n−1/2 ZT /2) > 2 exp(d log1/2 n)

)

+ P

(

sup
t+1/n≤T≤1

(−UT − n−1/2 ZT /2) > 2 exp(d log1/2 n)

)

+ o(n−1)

≤ P

(

sup
t+1/n≤T≤1

(UT − [U,U ]T /2) > exp(d log1/2 n)

)

+ P

(

sup
t+1/n≤T≤1

(−UT − [U,U ]T /2) > exp(d log1/2 n)

)

+ 2 P
(

[U,U ]1 > exp(d log1/2 n)
)

+ 2 P

(

sup
t+1/n≤s≤1

|n−1/2 ZT | > exp(d log1/2 n)

)

+ o(n−1), (67)

where d is a positive constant that will be chosen later on, and [U,U ] is the variation process

of Us given by

[U,U ]s =
∫ s

t+1/n
n (σG,u,t+1/n,y − σV,u,t,y)

2 du.

By Proposition A3.6, we obtain that for Υ3 log1/2 n > Υ1 + Υ2 | log y|,

P

(

sup
t+1/n≤T≤1

|n−1/2 ZT | > exp(2 Υ3 log1/2 n)

)

≤ P

(

sup
t+1/n≤s≤1

|σ2
G,s,t+1/n,y − σ2

V,s,t,y| > n−1/2 exp(2 Υ3 log1/2 n)

)

< Υ n−1, (68)

P
(

[U,U ]1 > exp(4 Υ3 log1/2 n)
)

≤ P

(

sup
t+1/n≤s≤1

|σG,s,t+1/n,y − σV,s,t,y| > n−1/2 exp(2 Υ3 log1/2 n)

)

< Υ n−1. (69)

For tk ≥ t + 1/n, σ2
G,tk,t+1/n,y depends only on εn t+2, · · · , εk−1, and σ2

V,tk,t,y relies on

εn t+1, · · · , εk−1 and δn t+1, · · · , δk−1, thus εk is independent of σ2
G,tk,t+1/n,y and σ2

V,tk,t,y. Using

conditional argument and the normality of εk, we calculate

E
[

exp
{

±(Utk − Utk−1
) − ([U,U ]tk − [U,U ]tk−1

)/2
}∣

∣

∣ εn t+1, δn t+1, · · · , εk−1, δk−1

]
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= E
[

exp
{

±(σG,tk,t+1/n,y − σV,tk,t,y) εk − (σG,tk,t+1/n,y − σV,tk,t,y)
2/2

}∣

∣

∣ εn t+1, δn t+1, · · · , εk−1, δk−1

]

= 1.

This leads to that

exp (±Utk − [U,U ]tk/2) , t + 1/n ≤ tk ≤ 1

is a martingale with mean one. Hence,

P

(

sup
t+1/n≤T≤1

(±UT − [U,U ]T ) > exp(Υ3 log1/2 n)

)

≤ P

(

sup
t+1/n≤tk≤1

exp {±Utk − [U,U ]tk/2} > exp
{

exp(Υ3 log1/2 n)
}

)

≤ exp
{

− exp(Υ3 log1/2 n)
}

= o(n−1), (70)

where the first inequality is because of piecewise constant of Us on [tk, tk+1), and the second

inequality is due to an application of the martingale maxima inequality to exp(±Utk −

[U,U ]tk/2). Finally, we prove the lemma by plugging (68)-(70) into (67) and taking d = 4 Υ3.

Appendix: Probability inequalities for price and volatil-

ity processes

To make the proofs self-complete, in this section we provide detailed analysis of price and

volatility processes for the three models under the risk neutral probability.

A1 Embed normal noises in Brownian motions

Since εj and δj in the GARCH and SV models are i.i.d. standard normal random variables,

and they correspond to Brownian motions W1 and W2, respectively, in the diffusion model.

Thus, we realize (εj, δj) and (W1,W2) on common probability spaces and take n1/2 εj =
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W1,tj − W1,tj−1
, and n1/2 δj = W2,tj − W2,tj−1

, and then

W
(n)
1,tk

= W1,tk , W
(n)
2,tk

= W2,tk , B
(n)
V,tk

= BV,tk , k = 0, · · · , n.

Lemma A1.1 On some common probability spaces we can realize that for i = 1, 2, W
(n)
i,tj =

Wi,tj , and B
(n)
V,tj

= BV,tj , j = 0, · · · , n,

sup
0≤s≤1

∣

∣

∣B
(n)
V,s − BV,s

∣

∣

∣ = max
1≤j≤n

sup
tj≤s≤tj+1

∣

∣

∣BV,s − BV,tj

∣

∣

∣ ,

P

(

max
1≤j≤n

sup
tj≤s≤tj+1

∣

∣

∣BV,s − BV,tj

∣

∣

∣ > 2 n−1/2 log1/2 n

)

≤ n−2 log−1/2 n, (A1.1)

where BV , W
(n)
i and B

(n)
V are defined in (17), (19) and (20).

Proof. The embedding of (W
(n)
1 ,W

(n)
2 , B

(n)
V ) in (W1,W2, BV ) is given in Section 2, so we just

need to prove (A1.1). Let

ηj = n1/2 sup
tj−1≤s≤tj

[BV,s − BV,tj ].

Because of the rescaling property and independent and stationary increments of Brownian

motion, ηj are i.i.d. with distribution equal to the maximum of a Brownian motion over

[0, 1]. The maximum of a standard Brownian motion over [0, a] has the distribution function

2 Φ(u/
√

a) − 1 = 2 a−1/2
∫ u

0
φ(x/

√
a) dx, u > 0. (A1.2)

Thus,

P
(

max
1≤j≤n

|ηj| > 2 log1/2 n
)

= 2 − 2
[

1 − 2
∫ ∞

2 log1/2 n
φ(x) dx

]n

≤ n−2 log−1/2 n.

This proves (A1.1).
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A2 Strong approximation of partial sum processes for

the GARCH and SV noises

Lemma A2.1 On some common probability spaces we can construct εj, δi and ξj to preserve

all the relationship among noises in price and volatility processes of the GARCH and SV

models, and to satisfy

P

(

sup
0≤s≤1

∣

∣

∣B
(n)
V,s − B

(n)
G,s

∣

∣

∣ > Υ1 n−1/2 log n

)

< Υ n−1,

where B
(n)
V and B

(n)
G are defined in (20) and (21), εj are standard normal random noise for

the price processes in the GARCH and SV models, and δj and ξj [defined in (22)] are parts of

random noise sources for the volatility processes in the GARCH and SV models, respectively.

Proof. Denote the partial sum process

U (n)
s = (1 − 2/π)−1/2 n−1/2

[n s]
∑

j=1

{

|εj| − (2/π)1/2
}

,

Z(n)
s = (1 − 2/π)−1/2 n−1/2

[n s]
∑

j=1

(

|εj − λ n−1/2| − |εj|
)

.

Then from (19)-(21) we get

∣

∣

∣B
(n)
V,s − B

(n)
G,s

∣

∣

∣ ≤
∣

∣

∣W
(n)
2,s − U (n)

s

∣

∣

∣+
∣

∣

∣Z(n)
s

∣

∣

∣ . (A2.3)

Applying KMT strong approximation (Komlós, Major and Tusnády 1975, 1976) to U (n)
s and

W
(n)
2,s , we have that on some probability spaces

P

(

sup
0≤s≤1

∣

∣

∣W
(n)
2,s − U (n)

s

∣

∣

∣ > Υ1 n−1/2 log n + n−1/2 x

)

< Υ2 e−x. (A2.4)

As |εj − λ n−1/2| − |εj| are i.i.d. random variables, simple calculations show

an = (1 − 2/π)−1/2 E
(

|εj − λ n−1/2| − |εj|
)

= (1 − 2/π)−1/2 (2 π)−1/2 λ2 n−1 + O(n−2),
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b2
n = (1 − 2/π)−1 V ar

(

|εj − λ n−1/2| − |εj|
)

= (1 − 2/π)−1 λ2 n−1 + O(n−3/2).

The median of a random variable is always within one standard deviation from its mean,

then

∣

∣

∣median
(

Z
(n)
1 − Z(n)

s

)∣

∣

∣ ≤
∣

∣

∣E
(

Z
(n)
1 − Z(n)

s

)∣

∣

∣+
{

V ar
(

Z
(n)
1 − Z(n)

s

)}1/2

≤ n1/2 |an| + bn = (1 − 2/π)−1/2 (λ + λ2 (2/π)−1/2) n−1/2 + O(n−1),

and

P

(

sup
0≤s≤1

∣

∣

∣Z(n)
s

∣

∣

∣ ≥ Υ1 n−1/2 log n

)

≤ P

(

sup
0≤s≤1

{∣

∣

∣Z(n)
s − median

(

Z
(n)
1 − Z(n)

s

)∣

∣

∣

}

≥ Υ1 n−1/2 log n − n1/2 an − bn

)

≤ 2 P
(∣

∣

∣Z
(n)
1

∣

∣

∣ ≥ Υ1 n−1/2 log n
)

≤ 2 P
(

b−1
n

∣

∣

∣Z
(n)
1 − n1/2 an

∣

∣

∣ ≥ Υ1 log n
)

≤ 4 [1 − Φ(Υ1 log n)] + Υ1 log2 nφ(Υ1 log n) n−1/2

≤ Υ n−1,

where the second inequality is from the Lévy inequality, and the fourth inequality is due to

an application of Edgeworth expansion to b−1
n (Z

(n)
1 − n1/2 an). Now the inequality in the

lemma is proved by taking x = log n in (A2.4) and then combining it with (A2.3) and above

inequality.

Finally, we show that εj, δj and ξj can be constructed to retain all the relationship

specified by the GARCH and SV models: that is, εj is independent of δi and uncorrelated

with |εj|. Indeed, first, the standard KMT construction creates |εj| from δj to maintain

(A2.4), and second from |εj| we construct normal random variables εj by multiplying it

independently and equal likely with −1 and 1. Since the multiplied sign random variables

are independent of δj as well as the constructed |εj|, εj is uncorrelated with |εj| and δj.

Because εj and δj are normally distributed, zero correlation means independence.
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A3 Analysis of volatility processes

For s ≥ t, denote by σ2
Λ,s,t,y the expression of σ2

Λ,s when σ2
Λ,t = y2.

Proposition A3.1

log σ2
D,s,t,y = eβ1 (s−t) log y2 + β0

∫ s

t
eβ1 (s−u) du + β2

∫ s

t
eβ1 (s−u) dB2,u,

log σ2
V,s,t,y = α

[n s]−[n t]
1 log y2 + β0 n−1

[n s]
∑

j=[n t]+1

α
[n s]−j
1 + β2

[n s]
∑

j=[n t]+1

α
[n s]−j
1

(

BV,tj−1
− BV,tj−2

)

= α
[n s]−[n t]
1 log y2 + β0

∫ [n s]/n

[n t]/n
α

[n s]−[n u]
1 du + β2

∫ [n s−1]/n

[n t−1]/n
α

[n s]−[n u]−1
1 dBV,u,

log σ2
G,s,t,y = α

[n s]−[n t]
1 log y2 + β0 n−1

[n s]
∑

j=[n t]+1

α
[n s]−j
1 + β2

[n s]
∑

j=[n t]+1

α
[n s]−j
1

(

B
(n)
G,tj−1

− B
(n)
G,tj−2

)

,

where α1 = 1 + n−1 β1.

Proof. The proposition is easily derived from equations (14) and (16), and embedding of

B
(n)
V in BV given by Lemma A1.1.

Lemma A3.1

max
0≤t≤s≤1

∣

∣

∣(1 + β1/n)[n s]−[n t] − eβ1 (s−t)
∣

∣

∣ ≤ Υ/n.

Proof. It can be verified by direction calculation.

Proposition A3.2 log σ2
D,s,t,y and log σ2

V,s,t,y are normally distributed with

E(log σ2
D,s,t,y) = eβ1 (s−t) log y2+β0 (eβ1 (s−t)−1)/β1, V ar(log σ2

D,s,t,y) = β2
2 (e2 β1 (s−t)−1)/(2 β1),

E(log σ2
V,s,t,y) = E(log σ2

D,s,t,y)+O(n−1 log y), V ar(log σ2
V,s,t,y) = V ar(log σ2

D,s,t,y)+O(n−1),

Correlation(log σ2
D,s,t,y, log σ2

V,s,t,y) = 1 + O(n−1).

In particular, log σ2
V,s,t,y−log σ2

D,s,t,y follows a normal distribution with mean of order n−1 log y

and variance of order n−1.
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Proof. The proposition is a simple consequence of Lemma A3.1 and the expressions of

log σ2
Λ,s,t,y in Proposition A3.1.

Proposition A3.3 For the diffusion and SV volatility processes (i.e. Λ = D,V ),

P

(

sup
0≤t≤s≤1

|log σ2
Λ,s,t,y| > Υ1 + Υ2 |log y| + Υ3 log1/2 n

)

< Υ n−1 log−1/2 n,

and for real number a,

E

[

sup
0≤t≤T≤1

(

1

T − t

∫ T

t
σ2

Λ,s,t,y ds

)a]

≤ E

[

sup
0≤t≤s≤1

(σ2
Λ,s,t,y)

a

]

≤ exp
{

|a|Υ1 + |a|Υ2 |log y| + a2 Υ3

}

.

Proof. First we show for Λ = D,V ,

sup
0≤t≤s≤1

|log σ2
Λ,s,t,y| ≤ |β0/β1| (e|β1| − 1) + 2 e|β1| |log y| + β2 e|β1| sup

0≤t≤s≤1
|BV,s − BV,t|. (A3.5)

As the diffusion is the limit of the SV model, we need to prove (A3.5) for the SV case only.

Applying Abel transformation we have for s ≥ t,
∣

∣

∣

∣

∣

∣

[n s]
∑

j=[n t]+1

α
[n s]−j
1

(

BV,tj−1
− BV,tj−2

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

[n s]−1
∑

j=[n t]+1

(

α
[n s]−j
1 − α

[n s]−j−1
1

) (

BV,tj−1/n − BV,t−1/n

)

+
(

BV,s−1/n − BV,t−1/n

)

∣

∣

∣

∣

∣

∣

≤ e|β1| (s−t) sup
0≤t≤u≤1

|BV,u − BV,t|.

Using above inequality and the expression of log σ2
V,s,t,y in Proposition A3.1 we obtain that

for s ≥ t,

|log σ2
V,s,t,y| ≤ 2 eβ1 (s−t) |log y| + β2 e|β1| (s−t) sup

0≤t≤u≤1
|BV,u − BV,t| + |β0|

[

eβ1 (s−t) − 1
]

/β1.

This proves (A3.5) for the SV model. The two inequalities in the proposition are now easily

proved by combining the established inequality (A3.5) with the following two inequalities for

the maximum of |BV,s − BV,t|,

P
{

max
0≤t≤s≤1

|BV,s − BV,t| > (2 log n)1/2
}

≤ 2
∫ ∞

[2 log n]1/2

φ(u) du ∼ n−1 log−1/2 n,
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Eexp
{

|η| max
0≤t≤s≤1

|BV,s − BV,t|
}

≤ 2 eη2/2,

which are a consequence of independent and stationary increment property of BV,s and its

maximum distribution given by (A1.2).

Proposition A3.4

P

(

sup
0≤t≤s≤1

∣

∣

∣log σ2
D,s,t,y − log σ2

V,s,t,y

∣

∣

∣ > Υ1 n−1/2 log1/2 n

)

< Υ n−1 log−1/2 n.

Proof. From Proposition A3.1 we have

log σ2
V,s,t,y − log σ2

D,s,t,y = A1,s,t + A2,s,t,

where

A1,s,t =
(

α
[n s]−[n t]
1 − eβ1 (s−t)

)

log y2 + (β0/β1)
(

α
[n s]−[n t]
1 − eβ1 (s−t)

)

,

A2,s,t = β2

∫ [n s−1]/n

t

(

α
[n s]−[n u]−1
1 − eβ1 (s−u)

)

dBV,u + β2

∫ t

[n t−1]/n
α

[n s]−[n u]−1
1 dBV,u

− β2

∫ s

[n s−1]/n
eβ1 (s−u) dBV,u.

Lemma A3.1 indicates that A1,s,t is of order n−1 |log y|. A2,s,t is bounded by

Υ1 n−1 max
t≤u≤v≤s−1/n

|BV,v−BV,u|+β2 e|β1|/n max
t−2/n≤u≤v≤t

|BV,v−BV,u|+β2 e|β1|/n max
s−2/n≤u≤v≤s

|BV,v−BV,u|,

and the maximum distribution of BV,s shows that each of above three terms is bounded by

Υ1 n−1/2 log1/2 n with probability exceeding 1 − Υ n−1 log−1/2 n. This completes the proof.

Proposition A3.5

P

(

sup
0≤t≤s≤1

∣

∣

∣log σ2
G,s,t,y − log σ2

V,s,t,y

∣

∣

∣ > Υ1 n−1/2log n

)

< Υ n−1.

Proof. Using the expressions of log σ2
G,s,t,y and log σ2

V,s,t,y given by Proposition A3.1, and

applying Abel transformation, we obtain

|log σ2
V,s,t,y − log σ2

G,s,t,y| = β2

∣

∣

∣

∣

∣

∣

[n s]
∑

j=[n t]+1

α
[n s]−j
1

(

B
(n)
V,tj−1

− B
(n)
G,tj−1

− B
(n)
V,tj−2

+ B
(n)
G,tj−2

)

∣

∣

∣

∣

∣

∣
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≤ β2

[n s]−1
∑

j=[n t]+1

∣

∣

∣

(

α
[n s]−j
1 − α

[n s]−j−1
1

) (

B
(n)
V,tj−1/n − B

(n)
G,tj−1/n

)

+
(

B
(n)
V,s−1/n − B

(n)
G,s−1/n

)

− α
[n s]−[n t]−1
1

(

B
(n)
V,t−1/n − B

(n)
G,t−1/n

)∣

∣

∣

≤ β2 e|β1| sup
0≤s≤1

|B(n)
V,s − B

(n)
G,s|.

Now the proposition is an immediate consequence of Lemma A2.1.

Proposition A3.6 With probability exceeding 1 − Υ n−1,

sup
0≤t+1/n≤s≤1

∣

∣

∣σ2
G,s,t+1/n,y − σ2

V,s,t,y

∣

∣

∣ ≤ n−1/2 exp
(

Υ1 + Υ2 |log y| + Υ3 log1/2 n
)

,

sup
0≤t+1/n≤s≤1

∣

∣

∣σG,s,t+1/n,y − σV,s,t,y

∣

∣

∣ ≤ n−1/2 exp
(

Υ1 + Υ2 |log y| + Υ3 log1/2 n
)

.

Proof. Note that

∣

∣

∣log σ2
G,s,t+1/n,y − log σ2

V,s,t,y

∣

∣

∣ ≤
∣

∣

∣log σ2
G,s,t+1/n,y − log σ2

V,s,t+1/n,y

∣

∣

∣

+
∣

∣

∣log σ2
V,s,t+1/n,y − log σ2

D,s,t+1/n,y

∣

∣

∣+
∣

∣

∣log σ2
D,s,t,y − log σ2

V,s,t,y

∣

∣

∣

+
∣

∣

∣log σ2
D,s,t+1/n,y − log σ2

D,s,t,y

∣

∣

∣ .

Propositions A3.4 and A3.5 imply that on the right hand side of above inequality, each of

the first three terms is bounded by Υ1 n−1/2 log n with probability exceeding 1−Υ n−1. For

the last term, by Proposition A3.1 we have

|log σ2
D,s,t+1/n,y − log σ2

D,s,t,y| ≤ 2
∣

∣

∣e−β1/n − 1
∣

∣

∣ eβ1 (s−t) |log y| + |β0|
∫ t+1/n

t
eβ1 (s−u) du

+ β2

∣

∣

∣

∣

∣

∫ t+1/n

t
eβ1 (s−u) dBV,u

∣

∣

∣

∣

∣

,

where the first two deterministic terms are of order n−1, and the third stochastic term is

bounded by

Υ1 max
0≤t≤u≤v≤t+1/n

|BV,v − BV,u|,
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which in turn is bounded by Υ1 n−1/2 log1/2 n with probability exceeding 1 − Υ n−1. This

proves that with probability exceeding 1 − Υ n−1,

sup
0≤t+1/n≤s≤1

∣

∣

∣log σ2
G,s,t+1/n,y − log σ2

V,s,t,y

∣

∣

∣ ≤ Υ1 n−1/2log n,

that is,

exp{−Υ1 n−1/2 log n} ≤ σ2
G,s,t+1/n,y/σ

2
V,s,t,y ≤ exp{Υ1 n−1/2 log n}.

Since n−1/2 log n < 1, and

exp{−Υ1 n−1/2 log n} ≥ 1 − Υ1 n−1/2 log n, exp{Υ1 n−1/2 log n} ≤ 1 + Υ1 eΥ1 n−1/2 log n,

we immediately obtain that with probability exceeding 1 − Υ n−1,

sup
0≤t+1/n≤s≤1

|σG,s,t+1/n,y/σV,s,t,y − 1| ≤ Υ1 eΥ1 n−1/2 log n,

sup
0≤t+1/n≤s≤1

|σ2
G,s,t+1/n,y/σ

2
V,s,t,y − 1| ≤ Υ1 eΥ1 n−1/2 log n.

Now the proposition is easily proved by combining above two inequalities with the first

inequality in Proposition A3.3.

A4 Analysis of price processes

Proposition A4.1

sup
0≤s≤1

|SG,s − SD,s| = Op(n
−1/2 log n), sup

0≤s≤1
|SV,s − SD,s| = Op(n

−1/2 log1/2 n).

Proof. Note that

P

(

sup
0≤s≤1

|log (SG,s/SV,s)| > 2 d n−1/2 log n

)

≤ P

(

sup
0≤s≤1

∣

∣

∣σ2
G,s,0,σ0

− σ2
V,s,0,σ0

∣

∣

∣ > 2 d n−1/2 log n

)

+ P

(

sup
0≤s≤1

|Us| > dn−1/2 log n

)

,
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where

Us =
∫ s

0
(σG,s,0,σ0

− σV,s,0,σ0
) dW1,s.

Us has variation process

[U,U ]s =
∫ s

0
(σG,s,0,σ0

− σV,s,0,σ0
)2 du.

By Proposition A3.5, we obtain

sup
0≤s≤1

∣

∣

∣σ2
G,s,0,σ0

− σ2
V,s,0,σ0

∣

∣

∣ = Op(n
−1/2 log n), [U,U ]1 = Op(n

−1 log2 n).

By the Lenglart inequality we have

P ( sup
0≤s≤1

|Us| > dn−1/2 log n) ≤ 1

d
+ P ([U,U ]1 > dn−1 log2 n) → 0,

as n → ∞ and then d → ∞.

The second result can be proved by the same arguments with Proposition A3.4.
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