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ABSTRACT

This article considers quantum annealing in the Ising framework for solving combinatorial optimization
problems. The path-integral Monte Carlo simulation approach is often used to approximate quantum
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annealing and implement the approximation by classical computers, which refers to simulated quantum

annealing (SQA). In this article, we introduce a data augmentation scheme into SQA and develop a new
algorithm for its implementation. The proposed algorithm reveals new insights on the sampling behaviors
in SQA. Theoretical analyses are established to justify the algorithm, and numerical studies are conducted
to check its performance and to confirm the theoretical findings. Supplementary materials for this article

are available online.

1. Introduction

Combinatorial optimization plays an important role in many
scientific studies. Examples include travel salesman’s problem,
task scheduling and system design, image analysis, machine
learning, and portfolio selection. See Kirkpatrick, Gelatt, and
Vecchi (1983), Geman and Geman (1987), Winkler (2012), and
Wang, Wu, and Zou (2016) for more details about combinato-
rial optimization and its applications. For a typical combinato-
rial optimization problem, its search space often exponentially
increases in its size or scale, and thus the problem can be NP-
hard. As a result, deterministic approaches to solve the problem
require computing resources with exponential growth in the
problem size or scale, and hence, it is prohibitive to attack
the combinatorial optimization problem by any deterministic
exhaustive search algorithm in general. As a popular feasible
alternative, stochastic search algorithms like annealing meth-
ods are widely employed to solve combinatorial optimization
problems. One such well-known method is simulated annealing
(SA) introduced by Kirkpatrick, Gelatt, and Vecchi (1983). In
the annealing framework, the objective function of a given
optimization problem is cast as the energy of a physical system,
and Markov chain Monte Carlo (MCMC) simulations such as
the Metropolitan-Hastings algorithm are used to explore the
large search space probabilistically. An artificial temperature
parameter is introduced into the MCMC simulations so that
we may probabilistically drive the system to its lowest possible
energy state by decreasing the temperature slowly in the MCMC
simulations, and the corresponding state of the system renders
a solution to the original combinatorial optimization problem.
The lowest energy states are called ground states.

Quantum annealing (QA) is the quantum analog of classical
annealing (Kadowaki and Nishimori 1998). While thermody-
namics is the physical driven force behind SA, QA replaces it by
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quantum dynamics and uses quantum fluctuations to drive a
quantum physical system to its lowest possible energy states.
Specifically, the procedure starts with an easy initial quantum
system prepared in its lowest energy state (or a ground state),
and then gradually moves the system toward the target system
whose energy matches the objective function of the given opti-
mization problem. According to the quantum adiabatic theorem
(Farhi et al. 2000, 2001), as the quantum system slowly evolves, it
tends to stay in a ground state. At the end of the QA procedure,
if the quantum system stays in a ground state, the energy and
the state of the system provide a solution to the given optimiza-
tion problem. That is, with certain probability QA can solve
combinatorial optimization problems. Similar to SA, in practice,
we may repeatedly run the QA procedure many times to find
solutions of a given optimization problem.

QA is considered as adiabatic quantum computing, where
special purpose quantum computers such as D-Wave analog
quantum computing devices are built to physically implement
QA for solving some combinatorial optimization problems.
Like SA in the classical case, simulated quantum annealing
(SQA) has been proposed in the quantum scenario. It combines
path-integral formulation and MCMC simulations to develop
algorithms for approximate implementations of QA on classi-
cal computers. SQA has been employed to facilitate the study
and understanding of QA and its implementation such as the
analysis of quantum performance of D-Wave machines. See
Boixo et al. (2014) and Wang, Wu, and Zou (2016) for more
details.

SQA algorithms suffer some drawbacks such as extremely
time consuming and the lack of good understanding and clear
interpretation. This article considers QA for the Ising model.
We introduce a data augmentation scheme into SQA to develop
a new SQA algorithm. To the best of our knowledge, this is
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Figure 1. lllustration of a lattice structure as a simple graph.

the first time that SQA is viewed and investigated from the
perspective of data augmentation. Our study based on the data
augmentation angle reveals new insights that the Ising system
involved in SQA essentially behaves like parallel classical SA
systems with controlled Hamming distance between each two
neighboring SA systems. We establish the strong ergodic theory
for the algorithm under an appropriate condition on annealing
schedules. The analysis may shed new light on the performance
of SQA under various annealing schedules.

The rest of the article is organized as follows. Section 2
provides a brief review on classical and quantum annealing
for the Ising model. Section 3 introduces the proposed new
SQA algorithm based on data augmentation. Section 4 presents
theoretical results for the algorithm. Numerical studies are
conducted in Section 5 to evaluate the performances of SQA
algorithms and validate our theoretical analysis. Conclusion and
discussion are featured in Section 6. All proofs are relegated in
the appendix.

2. Classical and Quantum Annealing With the Ising
Model

2.1. The Ising Model and Simulated Annealing (SA)

The Ising model can be characterized by a graph G with V
and & being the sets of sites and edges, respectively. Each site
represents a random variable taking values in {41, —1}, and
each edge indicates the interaction (or coupling) between the
variables on the two sites linked by the edge. For a lattice with
d sites, a configuration or state s = (51,82,...,84) is a d-
dimensional vector with each site variable being s; = =+1.
Figure 1 shows an example of a lattice structure as a simple graph
for the Ising model. The Hamiltonian of the classical Ising model
is given by

H?(S) =

Z Jijsisj — Z his;, (1)

(ij)eE icy

where J;; gives the strength of the interaction between sites iand j
associated with edge (i, ) in graph G, and h; is the strength of the
external local fields imposed on site i. A set of fixed values {3, h;}
is referred to as one instance of the Ising model. For simplicity,
we consider no local fields and set h; = 0 for the rest of this
article. For a given configuration s, the energy of the Ising system
is equal to Hj(s). According to Boltzmann's law, the probability
of a given configuration s can be described by the Boltzmann (or

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS . 285

Gibbs) distribution

e—BHS(s)

Pp(s) = . Zg=) e PHIO), (2)
5

where f = ELT’ and kp is a generic physical constant called
the Boltzmann constant, T is the absolute temperature of the
system, and the normalization constant Zg is called the partition
function.

When a combinatorial optimization problem is represented
by the Ising model, a set of {J;;} is specified, and the goal is
to find a configuration s* which minimizes the Hamiltonian
Hj(s) over all s. The configuration s* is often referred to as a
ground state of the Ising model. Finding a ground state is a
hard computational problem, because the search space has 2¢
configurations, an exponential increase in the system size d. One
usual approach is to consider SA with a decreasing temperature
T = T(t) as a function of evolution time t. The initial tem-
perature is set high to induce thermal fluctuations for exploring
the large search space, the SA process samples configurations
using MCMC simulations like the Metropolis algorithm, and
the MCMC simulations lead the system to concentrate more and
more frequently at the thermal equilibrium. As the temperature
deceases slowly with typical schedule T(f) o< 1/logt, SA tends
to drive the system to a ground state at the end of the annealing
process, which gives a solution to the optimization problem. See
Geman and Geman (1987), Hajek (1988), and Winkler (2012)
for more detailed discussions on SA.

2.2. The Quantum Ising Model

A quantum system is described by its quantum state and the
dynamic evolution of the state. The quantum state is often
characterized by a unit vector in a complex vector space, and
the dynamic evolution of the state is governed by a Hermitian
matrix via the so-called Schrdodinger equation. To introduce the
quantum Ising model, we use the same graphical structure as in
the classical Ising model given by (1) to define a quantum Ising
Hamiltonian. Suppose that the graph G has d sites. Each site now
represents a quantum spin with possible states | 1) and | |) for
symbolizing spin up and spin down, respectively, where we use
the customary Dirac notation |-) in the quantum literature to
denote the state. Mathematically the states | ) and | |) can be
represented by the following unit vectors,

m:((')), and m:({l’).

To specify a quantum Ising model we need to define its quantum
Hamilton. As the quantum Ising model is based on matrices and
vectors with dimensionality equal to 24, we define

(10 . (01

i=\o 1)> %=\ o)

z 1 0 .

J} = (0 _1)) ):1)---)da (3)

where o and o7 are called Pauli matrices in x and z axes, respec-
tively. Substituting o/ for s; in the classical Ising Hamiltonian Hj
defined by (1) (with h; = 0), we obtain the following quantum
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Hamiltonian of the quantum Ising model associated with the
graph G

H! = - Jjoios, (4)

(if)e€

where Jj; is the interaction between sites i and j associated with
edge (i,j} in the graph G. Here, we use the convention in the
quantum literature that o o7 denotes the tensor product of o
and o/ along with identity matrices in such a way that

0707 =11® - -®li_1®0; ®i11®- - -®Li_ 190, ®}11®- - -®la.

Consequently, each term in (4) is a diagonal matrix of size 2¢,
and H] is also a diagonal matrix, with all diagonal elements
equal to the 29 values of the classical Hamiltonian Hjfin (1) (with
h; = 0). The energies of the quantum system are equal to the
eigenvalues of the quantum Hamiltonian, with quantum states
given by the corresponding eigenvectors. We refer the 2 eigen-
vectors to quantum configurations, and the lowest energy states
to its ground states. Thus, minimizing the classical Hamiltonian
Hf over the 24 configurations is equivalent to finding the lowest
energy of the quantum Ising model. See Nielsen and Chuang
(2010), Wang (2012), Wang, Wu, and Zou (2016), and Wang and
Song (2020) for more details.

2.3. Quantum Annealing (QA)

To describe QA for solving the combinatorial optimization
problem, we need to introduce a magnetic field orthogonal
to the Ising axis and obtain the following Hamiltonian of the
quantum Ising model in the transverse field (Kadowaki and
Nishimori 1998),

Hr=—) Jjofoi—T) of, (5)
(i) i

where o} stands for the following tensor product of d matrices
of size 2,
0i=h® Qi1 Q011 ® - QI

and Pauli matrix o;* in the tensor product is defined in (3).

The two terms of Hr in (5) are noncommutable matrices of
size 29, and represent the potential and kinetic energies. The
second term — ) *._, 0¥ isa Hamiltonian (or Hermitian matrix)
with explicit expressions for its smallest eigenvalue and the cor-
responding eigenvector, and the quantum system governed by
the Hamiltonian — ) *;_, o'} can be easily prepared in its ground
state. The nonnegative scalar I' controls the strength of the
transverse field. The QA procedure is described as follows. By
decreasing I' from a high level to zero gradually, we engineer the
quantum system to slowly evolve from Hr toward HY. Accord-
ing to the adiabatic quantum theorem, as the quantum system
is initially started in its ground state, during the Hamiltonian
evolution the system tends to stay in the ground states of the
instantaneous Hamiltonian via quantum tunneling (Farhi et al.
2000, 2001). Therefore, at the end of the QA evolution, if the
system stays in its ground state, we measure the system energy to
render a solution to the optimization problem. That is, like SA,
each run of QA can yield a solution to the optimization problem
with certain probability, and running QA many times enables
us to solve the optimization problem. See Wang, Wu, and Zou
(2016) for more details.

2.4. Simulated Quantum Annealing (SQA)

Different approaches have been developed to approximately
implement QA by various MCMC based simulations on classical
computers (see Morita and Nishimori 2008; Wang, Wu, and
Zou 2016 and the reference therein for more information).
One popular SQA algorithm is the so-called SQA-PI algorithm
(also known as the PIQA algorithm) introduced by Martonak,
Santoro, and Tosatti (2002). The main idea behind the SQA-
PI algorithm is the path-integral formulation with the Trotter
formula. Specifically, to derive a path-integral representation for
the transverse field quantum Ising model (5), we introduce the
following notations,

Hr=H]+K, H}=-) Jjoio}, K=-T) o7,
(i) i

where terms H? and K represent the noncommutable potential

and kinetic energies. The Boltzmann law of the transverse field

quantum Ising model is given by e~#Hr /Zg, where Zj is the

partition function defined as follows,

B B
Zp = tr(e M) = tr(e PMIH0) = Tim tr{ (e~ e= 5Ky |

T—00

i e
= rli}rréozz{ﬂ(e Te=7%)s), (6)

and the third equality follows from the Trotter breakup formula,
which may be stated as that for Hermitian matrices A; and A3,

exp(A; + Az) = lim [exp(A;/7) exp(A2/7)]".

On the right-hand side of (6), s = {s;,i = 1,...,d}, s; =
+1, and the summation runs over all 2¢ possible s. With some
algebraic manipulations on the right-hand side of (6) based
on quantum mechanics, we obtain an approximation Z, to Zg
whose error is proportional to the square of the Trotter breakup
time At = B /1, where Z; has the following expression,

Zg~Zo=CYy ...y e Han/l (7)

for some constant C,

T

Hip=—y | Y Jgstsf 74 ) sist ). @)

k=1 \ (i) i

and
T r
IJ‘ = T—lncoth— > 0.

It turns out that Z, is the partition function of a classical (d +
1)-dimensional anisotropic Ising system at temperature t T, with
couplings J; along the original d-dimensional slices (the same
for all Trotter slices and independent of k), and J' along the
extra dimension (positive and same for all sites 7). The system
has a finite length 7, and also periodic boundary conditions
have to be assumed along the extra dimension (sF ™ = s}, i =
L...,d). We call s* = {sf,f =1,...,d, k=1,...,t, Trotter
slices, and t the number of Trotter slices. Figure 2 illustrates a
classical anisotropic Ising system with 3 Trotter slices.



Figure 2. Structure of a classical anisotropic Ising system with three Trotter slices.

With the path-integral representation (7) and (8), we can
approximately implement QA by conducting MCMC simula-
tions from the Boltzmann distribution

I _
L Sp) = Z_e Hd+|/FT’

T

PsQa(ss ..

with some annealing schedule I' = I'(f), which changes with
time f as it evolves.

One common approach to carrying out this sampling process
is to adopt a standard Metropolis algorithm with both local and
global moves. To be specific, in each sweep, the local move is
first performed where it attempts individual flips site by site
in all Trotter slices with the Metropolis acceptance rule. After
the local moves, the algorithm implements the global move
where it attempts to flip simultaneously all the replicas of the
same site in all Trotter slices; see Martonak, Santoro, and Tosatti
(2002) and Wang, Wu, and Zou (2016) for more details on this
implementation. From the sampling perspective, the inclusion
of the local move is natural. However, the theoretical rationale
of the global move needs further elaboration and explanation.
SQA and its implementations on classical computers allow us
to gain insights on QA related quantum behaviors, and the
insights may help us to better understand and study QA and
its implementation like the quantum performance of D-Wave
machines.

3. Data Augmentation Algorithm for SQA

This section presents a data augmentation algorithm for SQA
from the viewpoint of theoretical understanding, which is
called the SQA-DA algorithm. The algorithm demonstrates that
data augmentation may provide better understanding of SQA
and QA.

3.1. The SQA-DA Algorithm

Now we describe the data augmentation algorithm as follows.
First from (7), we have

~Hgp /7T

psQas',....s") oce

= ﬁ e?lT (Zw} Tisisj+" X 5!'(5?“)
k=1
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- l_[ &7 L Iflfr'ks;"() e%‘ Y st

=1

! 1 ZJJ‘ T k+1
e ) o T AR
o< (’EPSA(5k>rT))e T k=
i 1
o< (l_[psa(sk;ﬁ)) P
k=1
2yt : k Jet1
Exp | — > Y AGSTH) )
k=1

where psa(-; %) stands for the Boltzmann distribution for SA
with temperature T, A(a, b) is the Hamming distance between
vectors a and b, and Exp(X) denotes an exponential random
variable with mean 1/A. Expressions in (9) lead to a data
augmentation algorithm for SQA, which we refer to as SQA-
DA. The algorithm generates samples from the desired joint
distribution psqa (s’, . . ., s7) by the following procedure,

1
Step 1: y|s!,...,s* ~ Exp (%) LA ().00) )
Step 2: s',...,s%[y ~ [Ti; Psa (ks 2p)Tj0y) (A (),

where A(s) = Y ;_,; A(sk, sk+1). More specifically, in each
sweep, in the first step we calculate A(s), which provides the
total neighboring Hamming distance of the current configura-
tion matrix s = (s',...,s"), and then generate control variable y
from the truncated exponential distribution with parameter 2—!-;
and truncation at A (s). In the second step, we conduct = parallel
sampling from the classical Ising model with temperature ¢ 7,
and under the constraint that the updated configuration matrix
s must satisfy A(s) < y, where y is generated from the first
step. There are a couple of ways to carry out the procedure.
One straightforward approach is to propose and accept a new
state by generating samples from 7 independent Ising models
and then performing an update if they satisfy the constraint.
Another way is to incorporate the constraint into the proposal
and then update according to the usual Metropolis rule.

3.2. Implication of the SQA-DA Algorithm

We provide some implication of the SQA-DA algorithm for the
step-wise update and limiting cases.

3.2.1. The Step-Wise Update Case

First we would like to trace the effect of I on the anisotropic
Ising system. Recall that in the Ising system defined in (8), I’
appears only in the definition of J*. In the SQA-DA algorithm,

J- shows up only in A = 2—5-, the rate of exponential distri-
bution, and the magnitude of parameter A would directly affect
the augmented variable y which controls the total Hamming
distance A(s) = Y ;_; A(s¥, 1) between neighboring slices.
Hence, the strength of the transverse field I" has an important
impact on the Ising system solely through the control over the
total Hamming distance between neighboring slices.

The control of the total neighboring Hamming distance can
be considered as a regulation on the search range allowed for
generating configuration slices from the Ising system in each



288 (&) J.HUAND Y.WANG

step. With a loose control, different slices can behave freely,
which leads to searching for a ground state in a wide range of the
state space. On the other hand, if the control is tight, different
slices cannot vary from each other too much, thus each time
the generated sample path from the system can explore only a
small range of the state space. Combining it with the impact of
the transverse field on the system, we may conclude that at each
step the transverse field affects the Ising system by managing the
searching range of the parallel Ising slices.

Moreover, in comparison with the SQA-PI algorithm, the
proposed SQA-DA algorithm has more explicit and strict con-
trol on the total neighboring Hamming distance. The SQA-PI
algorithm governs such distance indirectly through probability,
and thus it is neither explicit nor strict. The difference, to
certain extent, is similar to that between ridge regression and
lasso where both regularization methods shrink the coefficients
toward zero, but the ridge may hardly produce exact zero coef-
ficients while lasso can yield exactly zero coefficients. It will
be further confirmed by the established theory as well as the
conducted numerical study later.

3.2.2. TheLimiting Case
We have the following observations when transverse field
parameter I" approaches either 0 or +oco0.

1. WhenI' — +o0, then A — 0. Therefore, the Hamming
distance constraint plays very little role, and in this case all
slices s* for k = 1,2.. ., r behave almost independently. This
is close to what is happening at the initial stage of SQA with
I' € (0,+o0c0) where at the initial stage we sample all slices
independently from the Ising model to explore the state space
as much as possible.

2. WhenI" — 0, then A — +-o00. In this case, the constraint
on the Hamming distance in the Step 2 is extremely strong,
which leads to all = slices converging to the same configu-
ration. This resembles the scenario at the end stage of SQA
with I' € (0,+o00) where all slices essentially merge to the
same configuration and thus effectively reduce to one slice.

4. Convergence Theory

This section presents theoretical convergence results for the pro-
posed SQA-DA algorithm. We start with the constant transverse
field case where I' is assumed to be a fixed positive number.
Because our ultimate goal is to study the asymptotic behavior of
the inhomogeneous Markov chain associated with the annealing
procedure, we then consider the case where I" varies over time.
Before showing any theoretical results we point out that our
analyses are always conducted under the fixed d and 7 situation,
and hence, the state space of the Markov chain is finite.

4.1. Constant Transverse Field

We have the following result for the Markov chain associated
with the SQA-DA algorithm.

Theorem 1. For fixed T > Oand I' > 0 (then J1 < o0),
the Markov chain associated with the configuration matrix s in
the SQA-DA algorithm is (1) Harris recurrent; (2) geometrically

ergodic, meaning that there exists a function M : § — [0, c0),
where § is the state space, and a constant p € [0,1) such that,
foralls e Sandalln =1,2,...,

[|P"(s,-) — psa ()| < M(s)p",

where P"(a, b) denotes the n-step transition probability of the
Markov chain from state a to b.

Remark 1. One implication of the geometric erodicity under
the constant I is that during the annealing process the system
does not need to stay at each I' level for too long because
under each fixed I', the Markov chain has a fast mixing rate. We
often resort to some asymptotic convergence to justify MCMC
and simulated annealing algorithms, and their asymptotic jus-
tifications typically rely on Markov chain limit theorems such
as ergodic theorems (Hajek 1988; Morita and Nishimori 2008;
Winkler 2012). Theorem 1 is in line with the standard approach
to provide theoretical justifications for the SQA-DA algorithm
as follows. It shows that the sequence generated from the SQA-
DA algorithm quickly converges in distribution to the target
equilibrium distribution, and consequently, after we run the
algorithm long enough, the generated sequence should approx-
imately follow the equilibrium distribution.

4.2. Time-Dependent Transverse Field

So far we have considered the asymptotic behavior of the
Markov chain associated with the SQA-DA algorithm with con-
stant T (and J1). The annealing procedure requires to employ
an annealing schedule changing with time, and thus we need to
consider the case that I" varies with time f. Strong ergodicity is
introduced to study the asymptotic behaviors of the associated
inhomogeneous Markov chain.

Definition 1. An inhomogeneous Markov chain is said to be
strongly ergodic if the probability distribution of the Markov
chain converges to a unique distribution irrespective of the
initial distribution, namely,

dp,Vig = 0, limsup ||p(fo, t) — || =0, (10)

t—00
where p is a fixed distribution, p(fo, f) is the probability distri-
bution of the chain at time t under the initial distribution p, at
tp, and for two distributions v; and v,, ||[v; — v;|| denotes the
total variation of v; — vs.

We need to impose some technical conditions for the theo-
retical analysis.

(C1) Assume that the transition probability of the Markov chain
is of the following form,

G(s,§ 1)
N(s,8)A(q(8)/q(s)) (s #9),
=] ~ZL@AE-AoV0 (11)

where N(s,§) is the generation probability, A(u) =
min{l,u} is the usual acceptance function for the



Metropolis method, a v b = max{a, b},

ook Ly and ety — ZT 1ot T®
q(S)_kE[lPSA(Sk’rT)’ andJ—(t) = > In coth -

(12)

and A(s) = Y 1, A(s5,s51) is the total neighboring
Hamming distances of the configuration matrix s.

(C2) The generation probability N in Condition (C1) is a posi-
tive and irreducible symmetric transition probability.

Let
N; = {8 : N(s,8) > 0},

Sp = {s:V5 e Ny, AG) < A(5)}, (13)

and denote by R the maximum number of minimum steps
needed to reach an arbitrary state s € S, from any other state.
The following theorem addresses the asymptotic behavior for
the inhomogeneous Markov chain associated with the SQA-DA
algorithm.

Theorem 2. Under Conditions (C1) and (C2), for fixed T > 0,
the inhomogeneous Markov chain associated with s in the SQA-
DA algorithm is strongly ergodic and converges to the equilib-
rium state corresponding to the distribution g(s)I(A(s) = 0),
where g(s) is defined in (12), if
1

(t+ 2)1 /dtR’
where d is the dimension of each slice, 7 is the total number of
Trotter slices, and R is defined right after (13).

I'(t) > tTtanh™! (14)

Remark 2. To establish the strong ergodicity, one implicit
requirement for the annealing schedule is the positivity, that
is, I'(t) decreases to 0 from above, which is required to main-
tain the irreducibility of the Markov chain. As we discussed
in Remark 1, the ergodicity established in Theorem 2 provides
theoretical justifications for the SQA-DA algorithm with time
varying I"(f).

From the theorem we immediately obtain a corollary regard-
ing the role of the global move in the SQA-PI algorithm.

Corollary 1. Let Ngjohal (8, §) be the proposal distribution of the
global move in the SQA-PI algorithm. Then we have that

(i) when the state space consists of all possible configuration
matrices with © slices, then Ngjopal(s,§) is not irreducible,
and thus for I'(f) > 0, the corresponding transition kernel
is not irreducible at any given time point #;

(ii) when the state space consists of all configuration matrices
with 7 identical slices, Nglobal(s, 8) is irreducible and sam-
pling according to the global move rule within such state
space is equivalent to sampling from the corresponding clas-
sical Ising model.

Remark 3. Corollary 1 indicates that for I'(f) > 0, the global
move is not essential. On the other hand, for I'(f) = 0, when
SQA-DA reaches to the set of configuration matrices s with
A(s) = 0, the global move may be used but it is effectively the
same as sampling with a single slice.
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5. Numerical Studies

We conducted numerical studies to check the performance of
the proposed SQA-DA algorithm and compared it with the
SQA-PI algorithm. In the following studies, we fixed tempera-
ture T = 0.1, took the number of slices in the configuration
matrix to be t = 30, and utilized 15,000 sweeps for each
annealing procedure. The sampling distribution used was

P, 575 At B ox [ e (PO Twa i 70O D),

k=1
with

JAit) = % In coth % > 0.

We selected annealing schedules
B(t) =52t + 0.2t + 0.1, t € [0, 1],

and three choices for A(t), t € [0, 1],

1. A\ (f) = (82 — 9.6t + 2.88)I{0 < t < 0.6},
2. Ay(t) = (—3.6t + 2.88)I{0 < t < 0.8},
3. As(t) = —2.88t + 2.88,

where I{A} denotes the indicator function of event A. The
annealing schedules are plotted in Figure 3 along with the
theoretical lower bound derived from Theorem 2 as a reference.

5.1. Success Probability

We considered the 1000 instances used in the study of quantum
performance of D-Wave machine in Boixo et al. (2014) and
Wang, Wu, and Zou (2016). The graph size is d = 108, with
Jij's being randomly assigned values +1. For each instance, the
ground state success probability was estimated by the frequency
of finding a ground state among the 1000 runs under each
annealing schedule.

Figure 4 illustrates the histograms of the ground state success
probabilities generated by the D-Wave machine and by SA for
the classical Ising model (1) with no local fields (h; = 0). The
annealing schedule used for D-Wave is A;(f) along with B(%),
with annealing schedule B(t) for SA (which needs only schedule
B(t)). More details on the study of D-Wave, SQA-PI, and SA can
be found in Boixo et al. (2014) and Wang, Wu, and Zou (2016).

Figures 5-7 display the histograms of the ground state suc-
cess probability data generated from the SQA-PI and proposed
SQA-DA algorithms. Here, the SQA-PI algorithm involves both
local and global moves, while SQA-DA employs only the local
move.

The results lead to the following observations. The similar
bimodal shapes shown in Figures 5-7 for the SQA-PI algorithm
bears some resemblance to that for the D-Wave data in Figure 4,
as demonstrated in Boixo et al. (2014) and Wang, Wu, and
Zou (2016). Recall that the effect of the transverse field on the
Ising system is through its control over the total neighboring
Hamming distance, and as we discussed in Section 3.2.2, when
A(t) — 0, all slices tend to merge into one slice. We argue
that such merging leads to the bi-modal shapes displayed in the
figures. First the SA result indicates that these 1000 instances



290 (&) J.HUAND Y.WANG

Annealing Schedule with Theoretic Lower Bound
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o

Time

Figure 3. Annealing schedules used in the numerical studies along with the theoretical lower bound derived in Theorem 2.
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Figure 4. Histogram plots of ground state success probability data from D-Wave machine with annealing schedules A1 (t) and B(t), and from SA with schedule B(t).
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Figure 5. Histogram plots of ground state success probability data for the SQA-PI and SQA-DA algorithms with annealing schedules A (t) and B(t).

consist of both easy and hard problems. For easy problems,
a majority of the parallel Ising slices have the tendency to be
around a ground state, so when being pushed to merge together,
they likely converge to a nearby ground state, which results in
their success probabilities to cluster around 1. On the other
hand, for hard problems, most slices in the system may not settle
near a ground state. Reasons may include that ground states
are sparsely distributed in the space, and thus it is very hard to

search for such ground states; or there is a high energy barrier
around a ground state such that reaching to its neighborhood
is difficult. Even a small portion of slices are close to a ground
state, due to the stringent control over the total neighboring
Hamming distance toward the end of the annealing process,
they may be pulled away from the ground state to be merged
together with other slices. All of these may yield the other mode
around 0 in the histogram of the success probability data.
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Figure 6. Histogram plots of ground state success probability data for the SQA-Pl and SQA-DA algorithms with annealing schedules A3 (t) and B(t).
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Figure 7. Histogram plots of ground state success probability data for the SQA-Pl and SQA-DA algorithms with annealing schedules A3 (t) and B(t).
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Figure 8. Instance-by-instance success probability comparison between SA and SQA-PI.

Figure 8 features the success probability scatterplot of SQA-
PI against SA for the 1000 instances. The plot shows a concur-
rence that both SQA-PI and SA exhibit near-zero or near-one
success probability for a large number of instances. It confirms
that the performance of the SQA algorithms is decided by the
majority of the slices in the system, especially when the prob-
lems are extremely easy or hard.

Both SQA-PI and SQA-DA algorithms exhibit bimodal
shapes shown in Figures 5-7. However, the bimodal shapes

are more concentrated around endpoints 0 and 1 in Figures 6
and 7 than in Figure 5. This is especially true for the SQA-
PI algorithm. The phenomenon may be explained as follows.
As Ay (1) and As(f) decrease to 0 much slower than A, (f), the
constraint on the total neighboring Hamming distance is weaker
for the case of A;(f) and As(f) than for the case of A;(f), and
thus slices may have a higher chance to visit or escape from
a ground state for the case of schedules A,(f) and A3(f) than
for the case of schedule A;(f). Moreover, A;(f) and Az(f) stay
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Figure 9. Histogram plots of average total neighboring Hamming distance for the SQA-PI and SQA-DA algorithms under annealing schedule A1 (t).
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Figure 10. Histogram plots of average total neighboring Hamming distance for the SQA-Pl and SQA-DA algorithms under annealing schedule A (t).
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Figure 11. Histogram plots of average total neighboring Hamming distance for the SQA-Pl and SQA-DA algorithms under annealing schedule A3 (t).

at 0 in a much shorter time period than A;(f), so the time
for allowing such a visit to or an escape from a ground state
is longer for A;(f) and A3(f) than for A;(f). These may cause
the major difference in the shapes between Figures 6 and 7 and
Figure 5.

Furthermore, the shape difference in the success probability
histograms for the SQA-DA algorithm under different schedules
may be further explained by the implicit requirement pointed
out in Remark 2. Schedule A;(f) decreases to zero very fast
with 40% of time being 0, it does not meet the irreducibility
requirement of the chain. Once A;(f) = 0, the set of con-
figuration matrices with all t slices being the same becomes
the absorbing set, and thus the Markov chain associated with
such a configuration matrix is neither irreducible nor ergodic.
From the algorithm perspective, if schedules quickly decrease
to 0 in a relatively short period of time, all slices are driven to
the same state without fully exploring the state space. When-
ever A(f) = 0, no increase in total neighboring Hamming
distance will be allowed, and therefore the algorithm stops
prematurely.

5.2. Total Neighboring Hamming Distance

For each instance and each of the 1000 runs, we recorded the
total neighboring Hamming distance A (s) of the final config-
uration matrix s, and then computed the average total Ham-
ming distance based on the 1000 runs for each instance. The
histograms of all 1000 instances under each annealing schedule
are displayed in Figures 9-11.

Figures 9-11 indicate that the distributions for the total
neighboring Hamming distance of the final configuration
matrix are approximately normal except for the SQA-DA algo-
rithm under annealing schedule A;(t). The normality result
may be due to the ergodicity of the Markov chains associated
with the algorithms. On the other hand, as we have pointed
out that the chain associated with the SQA-DA algorithm under
schedule A (f) is not ergodic, it is natural to expect the exception
for the case of the SQA-DA algorithm under annealing schedule
A (t). Furthermore, we may observe from Figures 9-11 that the
average total Hamming distance for the SQA-DA algorithm has
negligible means in comparison with very large means of the
average total Hamming distance for the SQA-PI algorithm. It



Table 1. Mean of the average total Hamming distance of final configuration matrix
with standard deviation in parentheses.

Ar(D) Aa (1) Az (D)
SQA-PI 5.79(1.74) 15.36(4.33) 21.12(5.88)
SQA-DA 0.014(0.47) 0.062(0.78) 0.069(0.94)

may be attributed to the fact that as schedules A;(f) decay toward
0, the Hamming distance constraint introduced via the aug-
mented variable tends to drive all slices to the same state. This is
clearly explained by the SQA-DA algorithm description in Sec-
tion 3 and the limiting behavior of the algorithm in Theorem 2
with equilibrium distribution on I(A (s) = 0). In contrast, with-
out such an explicit and strict Hamming distance constraint, the
SQA-PI algorithm produces final configuration matrices whose
slices differ at a substantial number of sites. This is further
confirmed by the numerical evidence reported in Table 1.

Moreover, Table 1 suggests that the average total neighboring
Hamming distance has an increasing mean for both algorithms
as we change annealing schedule from A, () to A2(f) and then
to A3(f). Again the findings may be explained as follows. As
we move from A, () to A,(f) and then to A;(f), the schedules
decrease to zero more slowly and then stay at 0 for a shorter
time, thus the slices in the configuration matrix tend to slowly
converge toward a single slice state, and the time allowed to do so
is shortened. Consequently these may cause the increase in the
total neighboring Hamming distance for the final configuration
matrix.

5.3. Effect of Global Move

As we discussed early, the SQA-DA algorithm does not explic-
itly involve global moves, and thus its implementation has no

SQA-DA
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&
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Number of Instance
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explicit steps to enforce the global moves for the studies con-
ducted so far. We added extra steps in the analyses shown in
this section to explicitly require the global moves in the SQA-
DA algorithm and check the ground state success probability
outputs produced by the SQA-DA algorithm under the cases
of with and without global move. Figures 12 and 13 display the
histograms of the output results for the SQA-DA algorithm with
and without global moves.

From Figures 12 and 13, we can observe that the global
moves do not have a large impact on the proposed SQA-DA
algorithm, especially for annealing schedules with a substantial
amount of time staying away from 0. However, for annealing
schedule with a long time period of being at 0 such as A; (f),
which is equal to zero for 40% of the total annealing time,
there is an increasing trend toward the right endpoint in the
histogram of Figure 12 corresponding to the case of with global
move. Since a clear increasing pattern appears in Figure 4 for
the SA case, the phenomenon may be explained as follows.
Corollary 1 implies that once A;(f) = 0 the Markov chain
lands in the set of configuration matrices with all r identical
slices, and after then the global moves essentially make updates
similar to the SA procedure within this set. Therefore, the SQA-
DA algorithm exhibits some increasing pattern in its success
probability histogram.

6. Conclusion and Discussion

We have considered solving combinatorial optimization prob-
lems by QA in the framework of the Ising model and
investigated its implementation by SQA algorithms on classi-
cal computers. We introduced data augmentation to SQA and
proposed a new SQA algorithm to approximately implement
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Figure 12. Histogram plots of ground state success probability data for the SQA-DA algorithm with and without global move under annealing schedule A; (t). The leftand

right panels correspond to histograms without and with global move, respectively.
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Figure 13. Histogram plots of ground state success probability data for the SQA-DA algorithm with and without global move under annealing schedule A; (t). The leftand

right panels correspond to histograms without and with global move, respectively.
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QA on classical computers. Note that QA is considered as
special-purpose quantum computing, and it is intractable to
directly simulate quantum systems (or quantum computers) or
implement QA on classical computers. SQA is often employed
to gain insight about QA and investigate the performance of
QA devices. Such studies play an important role in quantum
information science particularly in the certification of quantum
communication and computation devices like quantum com-
puters.

Through the proposed SQA-DA algorithm, we have shown
that sampling from the approximate target distribution for QA
is essentially sampling from parallel classical Ising models with
total neighboring Hamming distance appropriately controlled.
The strong ergodicity for the proposed algorithm has been
established under suitable conditions on annealing schedules.
Numerical studies have been conducted to confirm theoretical
results and check the performance of the proposed algorithm. In
particular, our findings can provide new insights on the under-
standing of different types of moves (especially global move)
under different annealing schedules in the SQA-PI algorithm as
well as the proposed SQA-DA algorithm.

We would also like to point out that there is a possibil-
ity to incorporate cluster updating into SQA. For instance, a
Swendsen-Wang type algorithm (Swendsen and Wang 1987)
can be considered where besides the usual “bond” variables
between sites within each slice, additional “link” variables at the
same sites between neighboring slices can also be introduced.
This new rule can update a cluster of sites in the configuration
matrix at the same time, which may lead to speed-up for the
sampling procedure compared with the usual site-by-site and
slice-by-slice update in the existing SQA algorithms.

We leave some issues and problems for the future study. For
example, our work offers a better understanding of different
types of moves, and gives a first-step explanation on shape
patterns of histograms for success probability data. There are
many statistical issues in the study of QA and SQA. For example,
a further study is needed to better understand QA and SQA in
particular how their performances are related to the finite-time
annealing, certain type of annealing schedules, or some other
more fundamental unknown factors.

Appendix A. Proof of Theorem 1

Proof. For two configuration matrix s and §, denote by K(s,5) > 0
the irreducible transition probability associated with the equilibrium
distribution q(s) = []f_, psa (sk; ?%T)' Then we have the transition
kernel of the Markov chain associated with s in the algorithm as

kGls) = f FGIn 9 0ls)dy
= K(s’g}f¢{y)l(2£=1 AGkSEH) T A(sk,skH),00) dy
_ K(s, 50~ L (Tin AGF)-TL, AS)v0) |

where ¢ (y) is the density for the exponential distribution with param-

L
eter %Lr It is easy to check that psga (-) satisfies the detailed balance
condition with this transition kernel,

PsQA(S)K(S[s) = psqa (B)k(s[3).

Therefore, psqa(-) is the equilibrium distribution. Since psga(-) is
positive on the finite state space, so the chain is recurrent and hence
Harris recurrent.

The result of geometric ergodicity is a direct consequence of Theo-
rem 11.2.1 in Winkler (2012) with a Harris irreducible and reversible
transition kernel associated with g(s).

Another way to prove the result is to consider the Geometric
Ergodic Theorem (Theorem 15.0.1) in Meyn and Tweedie (2012). Let
A(s) = 2;21 A{sk, s’“‘l) be the drift function for the Markov chain.
For each B € R, the sub-level set {s : A(s) < B} is compact since the
set only contain isolated points. In addition, we have

E[A(5nt1)|sn = 8] < E[ynyi1lsn =s]
— A{s}e—lA(S) _"_ 1;118—;\..{\(8)
< e *A(s) + 1/,

where e=* € [0,1). By Lemma 15.2.8 of Meyn and Tweedie (2012),
we can show that the geometric drift condition holds. Therefore, by
geometric ergodic theorem (Theorem 15.0.1) in Meyn and Tweedie
(2012), we establish that the chain is geometrically ergodic.

d

Appendix B. Proof of Theorem 2

We need to define weak ergodicity for proving the theorem.

Definition 2. An inhomogeneous Markov chain is weak ergodic if the
probability distribution of the chain becomes independent of the initial
conditions after a sufficiently long time, namely,

Ytg > 0, limsup ||p(to, t) — P’ (to, )|| = O, (B.1)
t—00

where p(t,t) and p’(fg, ) are the probability distributions of the

Markov chain at ¢ with initial distributions pp and p;, at time fo,

respectively, and for two distributions x and v, || — v|| denotes the

total variation of . — v.

Proof. We adopt proof arguments similar to those for Theorem 4.5.1
in Winkler (2012) and Theorem 5.3 in Morita and Nishimori (2008).
To show the convergence to the equilibrium and the strong ergodicity,
we need to prove the weak ergodicity of the Markov chain and

> Ml — pngall < 00, (B.2)

n

where p,(s) o g(s) exp( —%ﬁlf\(s)) is an invariant distribution of
the chain at time n.

We first prove Equation (B.2). By Lemma 4.5.2 in Winkler (2012),
we only need to show that u, eventually decreases as I'(n) — 0,
which is easy to obtain. For s such that A(s) = 0, un(s) o g(s) does
not change over time. For other s, as I'(n) — 0, 2 i ) is monotone
increasing to +oc, and thus u, is eventually decreasing. This also
proves that the equilibrium distribution is g(s)I(A (s) = 0).

Next, we show the weak ergodicity of the Markov chain. With
Theorem 5.1 in Morita and Nishimori (2008), we only need to show that
there exists a strictly increasing sequence of positive number {t;,i =
0,1,...} such that

o0
Y (1 —a(Gi)) - oo, (B.3)
k=1

where a(G''i+1) is the contraction coefficient defined by

a(G™H1) = 1 — min {Z min{G"+1 (5,8), G*+1(5,8)} §, (B.4)
5,8 ~
s



with G'#+1-fi (s, §) denotes the transition probability of the chain to move
from s at time f; to § at time #; .

First, we establish the lower bound on the transition probability
defined by (C1) and (C2). Define

Sks ZELJ

{5)] k=1 (i)

and

w = min{N(s,§) : N(s,§) > 0}.
5,5

Lemma 1. For any s # § with N(s,§) > 0, then we have forany ¢ > 0,

Ly _ylwd
G(s,51) > wA(e"TT)e — T (B.5)
For any state s ¢ Sy, there exists t; > 0 such that vVt > t;,
Lo tnd
G(s, 1) > wA(e” TT)e™ . (B.6)

Proof. Forany s # § with N(s,§) > 0, we have for any ¢ > 0,

>t Z.Fl(f}d'
G(s,5;1) = wA(e™ _T)e T = wA(e™ _T)e T

where we have used the monotonicity of A(-) and

A®) — A($) V0 < max A(s) = max | Ak, s+ = dr.
k=1

For any state s ¢ Sy, there exists § € N5 such that § # s, A(8) —
A(s) > 0, so by the discreteness of the Hamming distance, we have
A®B) — A(s) = 1. Since JL(t) = ocoast — oo, forany 0 < € < 1,
there exists t; > 0 such that

Vi > ty,e _T!ﬂ((A(s) AOVO) ¢ _Tm <e.

Therefore, we conclude

Y GeEH=Gs8n+ Y G50
s#s S#siAs
< N(s,8)e + Z N(s,5)
§#s57#8
= N(s,8)¢ + 1 — N(5,8) =1 — (1 — €)N(s,5),

and

G(s,s;1) =1 — ZG(S,E; t) = (1 — €)N(s,5) > 0.
5#£s

Finally, we can easily prove (B.6) by noting that its right-hand side can
be arbitrarily small for sufficiently large t.
O

The generation probability N is positive and irreducible, and we
define R as the maximum number of minimum steps needed to reach
anarbitrary state s € Sy, from any other state. Then aslongas I'(¢) > 0,
this number remains the same for the inhomogeneous Markov chain.
Now consider state s* € S,,, such that the number of maximum steps
needed to reach it from any other state is at most R. Then there exists a
path such that

S=SoFASIFE - A =Sy = =g=5".
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The above lemma yields that, for sufficiently large ¢, the transition
probability at each time step has the following lower bound,

Ly al@—Rind
G(sj, siv1;t—R+1) = wA(e” TT)e™ = .
Combining all of them together, we obtain

G'—Ri(s,s%) > G(s,s15t —R) - --
G(Sp_2.Sp_1:t — 2)G(sp_1,8%:t — 1)

R—1
2L (t—R+i)d
> nwA{e 'T)e S
i=0

Loy
> wRAe~ R TE,

where we have used the monotonicity of JL(#). Hence, there exists an
integer kg = 0 such that for all k > kg, the contraction coefficient
satisfies

(B.7)

1— a(GkR—R'kR} = mln IZ mln{GkR R”“R(s 5), GkR— R*"‘R{s 8)}

> min [min{GkR_R’kR(s,s ), GKR—RAR 5 o )}l

L ikp—
> wRA(e—ﬁ')Re—”_&JR'—W. (B.8)

Finally with annealing schedule (14), we easily establish the weak
ergodicity by

o0 Ly oo
3 (1 — a(GRIR-Ry) > yRAe=7T)RH"
k=1 k=1
This concludes the proof of the theorem.

kR+1_>

Appendix C. Proof of Corollary 1

Proof. With global move, the total neighboring Hamming distance
A(s) of the configuration matrix is intact, which indicates that the
proposed distribution cannot be irreducible. Thus, when I'(f) > 0, the
irreducibility of the transition kernels for the SQA-PI algorithm as well
as the proposed SQA-DA algorithm is the same as that for Ngjghal (5, §).
This immediately leads to (i).

For the proof of (ii), since all slices are the same, and we only move
within the set of configuration matrices with all same slices, the state
space is equivalent to that of an Ising model (1) with h; = 0. Then the
global move is essentially doing a site-by-site update, that is, the usual
Metropolis sampler for the SA case. O

Supplementary Materials

Code and data: An R package which consists of datasets and programs for
all methods used in the numerical studies, along with an example code file
necessary to reproduce the results in this article. (zip file).
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