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Abstract

Quantum computation and quantum information have attracted consider-
able attention on multiple frontiers of scientific fields ranging from physics to
chemistry and engineering, as well as from computer science to mathematics
and statistics. Data science combines statistical methods, computational algo-
rithms, and domain science information to extract knowledge and insights from
big data, and to solve complex real world problems. While it is well-known
that quantum computation has the potential to revolutionize data science,
much less has been said about the potential of data science to advance quan-
tum computation. Yet because the stochasticity of quantum physics renders
quantum computation random, data science can play an important role in the
development of quantum computation and quantum information. This article
gives an overview of quantum computation and promotes interplay between
quantum science and data science. Overall, it advocates for the development
of quantum data science for advancing quantum computation and quantum
information.

Key words: Quantum Computation, quantum information, data science,
statistics, quantum speedup, quantum supremacy.

1 Introduction
The interface of statistics and computation is a signature issue in data science, which
characteristically uses statistics, computation, and domain science knowledge to ex-
tract information and insights from data for the solving of big data problems. The
discovery of solutions of complicated real problems with big data requires the de-
velopment of statistical methods to analyze the data and computational algorithms
to implement data analysis procedures. The statistical analysis is often computa-
tionally challenging. For example, statistical approaches that are mathematically
optimal may not be computationally tractable, and data analysis methods that are
computationally efficient may not be statistically optimal. Thus, sound statistics
and tractable computation constitute fundamental but often competing pillars of
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data science, and a tradeoff is needed to balance statistical efficiency and computa-
tion efficiency.

As data continuously grow in scale and complexity, and models used particularly
in deep learning become more elaborate, computational techniques from chips to
software to systems involved in data science become increasingly hard to develop. At
the very same time, Moore’s Law—the decades-old rule of thumb in semiconductor
technology stating that chips double in power every twelve to eighteen months—has
lost ground. Indeed, the current computing demand in machine learning pushes the
limits of computer technology; as such, the interplay between data science (machine
learning) and computation (computer hardware) becomes more important than ever.
For example, more powerful hardware can help developing data science methods to
scale to the enormous size of big data, and data science may affect computer chip
fabrication technology for designing sophisticated chips for carrying out machine
learning tasks.

Conventional high-performance computer systems have struggled to meet the
demand posed by machine learning and AI research, and companies like Google,
Amazon, and Facebook have joined Intel and Nvidia to develop machine learning
chips. Machine learning itself can be a boon for the design of these chips, as it utilizes
the features of parallelization and repetitive nature of algebraic computation to boost
their performance and efficiency, rendering them superior to conventional chips for
accomplishing machine learning tasks. Hardware capabilities and software tools both
motivate and limit computational and inferential missions. Thus, data scientists
are currently poised to launch new explorations at the interface of computing and
data-driven science. One paramount example of such an endeavor entails quantum
computation, which harnesses quantum physics for the purpose of computation in
such a way as to hold significant promise for the development of data science. And, in
turn, data science, especially in the form of machine learning, can play an important
role in the development of quantum computation and quantum information.

This article provides an overview of quantum computation and its potential in-
terplay with data science. The selected topics are geared towards data scientists,
with the aim of advocating for the development of quantum data science. The rest
of the paper proceeds as follows. Section 2 introduces basic quantum computa-
tion concepts, such as quantum bits and quantum gates, along with their quantum
properties, such as quantum superposition and quantum computational spaces of
exponential size. Section 3 presents quantum entanglement and its applications
in quantum computation and quantum information. Section 4 describes quantum
factoring algorithms and its impact on cryptography. Section 5 illustrates computa-
tional advantages of quantum computers over classical computers. Section 6 features
a recent breakthrough in quantum complexity theory and its consequences within
and beyond quantum computation. Section 7 explores the interface of quantum
science and data science and advocates quantum data science for advancing both
quantum computation and data science developments. Quantum computing scien-
tists who would like to understand the role of statistics and data science in quantum
computation may jump from Section 1 to Section 5.2.2 and Section 7. Readers who
would like to quickly learn something about quantum computational complexity and
its impact on physics and pure mathematics may directly go from Sections 2 and 3
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to Sections 5.1 and 6.

2 Quantum Computer Concepts

2.1 Classical Bits and Quantum Bits

In computation, bits must be materialized by some physical systems, and the in-
formation encoded in the bits is stored in the system states. For example, ancient
counting frames use beads and their positions to represent numbers, such as the
Chinese abacus displayed in the top panel of Figure 1. Old-fashioned mechanical
computers utilize gears and their positions to symbolize numbers. Modern comput-
ers employ electric systems to materialize bits, and the two values, 0 and 1, in a bit
can be realized by an electric switch with current ‘on’ and ‘off’ representing 0 and
1, respectively. Based on these computing devices, it is easy to see that the physical
systems must have obviously identifiable states to encode information, such as the
binary states for modern computers to represent the bit 0 in a state and the bit 1
in another state.

Various quantum systems exist that possess the required physical states to realize
bits and encode information. For example, the two states in the atom model are
the so-called ‘ground’ and ‘excited’ states of its electron that can be used to encode
the bit values 0 and 1, respectively. Insofar as both classical and quantum systems
are discussed here, it may be useful to introduce notations for distinguishing their
physical states and associated bits. Thus, if a quantum system is used to represent
the bit value 0 through one of its quantum states, I refer to the bit in the quantum
state as a quantum bit, or a qubit for short, and denote it by |0〉; similarly I write
|1〉 for a quantum state representing the bit value 1. As Figure 1 displays a Chinese
abacus, a classical computer (Mac laptop), and a quantum computer (cartoon), the
word ‘computer’ is used in both classical and quantum computing machines. Yet,
perhaps surprisingly, a classical computer differs from a quantum computer to a
great extent than does an abacus from a Mac laptop.

2.2 Quantum Superposition

An intrinsic difference exists between bit representations by classical and quantum
systems. All classical physical systems prevent the simultaneous occurrence of their
states. For example, one classical state representing the bit 0 must mutually exclude
the simultaneous presence of the other state representing the bit 1. A quantum
system, however, allows for the simultaneous occurrence of different states. For
example, consider the atom model where two quantum states, the ‘ground’ and
‘excited’ states of the electron, represent |0〉 and |1〉, respectively. Giving the shining
of light upon the atom with suitable energy and for a proper amount of time, one can
transfer the electron between the |0〉 and |1〉 states and even move it from one of |0〉
and |1〉 states into a state ‘halfway’ between |0〉 and |1〉 states. The ‘halfway’ state
is a so-called superposition of the |0〉 and |1〉 that allows for a blend of the two states
simultaneously. The superposition phenomenon characteristic of quantum physics
does not exist in classical physics. Unlike classical bits with mutually exclusive
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Figure 1. An illustration of a Chinese abacus (top), a Mac laptop computer (mid-
dle), and a quantum computer cartoon (bottom). The Chinese abacus generally has
two decks divided by a beam, with five beads on each rod in the bottom deck and
two beads each in the top deck. The beads are counted by moving them toward the
beam, with each top bead for 5 and each bottom bead for 1, as the place values are
shown by the numbers on the beam.
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states, qubits in superposition states can be viewed as simultaneous occurrence of
zero and one at the same time.

To be specific, while a classical bit can be either 0 or 1 but not both, a qubit can
be a superposition of both |0〉 and |1〉 in a form of

|ψ〉 = α0|0〉+ α1|0〉, (1)

where α0 and α1 are complex numbers that meet the constraint |α0|2 + |α1|2 = 1.
α0 and α1 are called amplitudes of |ψ〉.

It is easy to find the state of a classical bit, which is either 0 or 1. But a qubit
can not be examined to determine its state. The theory of quantum physics allows
for the probabilistic description of random behaviors in quantum physical systems.
The qubit |ψ〉 can be measured to obtain measurement results. Each measurement
outcome is random and takes a value being either 0 or 1; the probability of obtaining
the outcome 0 is equal to |α0|2, with probability |α1|2 for the outcome 1. Thus,
|α0|2 and |α1|2 can be accurately estimated by statistical results based on enough
measurement outcomes of quantum systems identically prepared in the state |ψ〉.
Notably, performing a measurement on the qubit alters its state.

The described probabilistic aspect of the quantum theory indicates that for any
qubit, the multiplication of a global phase factor bears no observable effect, where a
global factor refers to eia for some real number a and the imaginary unit i =

√
−1.

Thus, I may ignore global phase factors in qubit expressions. For qubit |ψ〉 given by
(1), due to the unit norm constraint on α0 and α1 and ignoring global phase factors,
I can facilitate the representation of the qubit |ψ〉 by the so-called Bloch sphere
shown in Figure 2, where each qubit state corresponds to a point on the sphere
specified by two angles θ ∈ [0, π] and ϑ ∈ [0, 2π), with the north and south poles
corresponding to |0〉 and |1〉, respectively. In stark contrast to a classical bit (with
its two states, 0 and 1, corresponding to two points on the Bloch sphere: the north
and south poles), a qubit possesses states that occupy the whole Bloch sphere.

ϑ

θ

x

y

z

|0〉

|1〉

|ψ〉

Figure 2. Qubit representation by the Bloch sphere.

To give an animated illustration of a quantum superposition in everyday ob-
jects, a thought experiment known as Schrödinger’s cat presents a hypothetical cat
that may be simultaneously both alive and dead. The scenario often refers to the
phrase ‘cat state’ in quantum computation, and its corresponding qubit |ψcat〉 may
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be vividly exhibited as follows:

|ψcat〉 = 1√
2
|

	

〉 + 1√
2
|

	

〉. (2)

It is easy to see from the representation equations (1) and (2) that the states |0〉
and |1〉 correspond to the alive and dead states, respectively. Although the cat
state |ψcat〉 can be both alive and dead, what can be observed is a measurement
outcome—either a living cat or a dead cat, resulting from measuring |ψcat〉.

2.3 Multiple Qubits and Computational Spaces of Exponen-
tial Size

The qubit expression (1) and its Bloch sphere representation in Figure 2 indicate
that the states of a qubit are unit vectors in a two-dimensional complex vector space,
and that the states |0〉 and |1〉 constitute an orthonormal basis for the complex
vector space; they are thus called computational basis states. A single qubit is the
simplest quantum system. I describe multiple qubits as follows. For a system of
b qubits, its states are unit vectors in a 2b-dimensional complex vector space. The
computational basis states take the form of |x1x2 · · ·xb〉, xj = 0 or 1, j = 1, . . . , b,
and any superposition state is a linear combination of the 2b computational basis
states whose complex coefficients are called amplitudes and satisfy the constraint of
unit norm. Specifically, a b qubit state |ψ〉 may take a superposition state with the
following form:

|ψ〉 =
∑

x1,x2,...,xb=0,1

αx1x2···xb|x1x2 · · ·xb〉,
∑

x1,x2,...,xb=0,1

|αx1x2···xb|2 = 1. (3)

For example, a two qubit system is described by a four-dimensional complex vector
space with four computational basis states |00〉, |01〉, |10〉, and |11〉, and its super-
position state |ψ〉 is specified by the corresponding four amplitudes α00, α01, α10, and
α11 as follows:

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉, (4)

where the amplitudes α00, α01, α10, and α11 satisfy the constraint

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. (5)

As in the single qubit case, measuring the two qubit system in the state |ψ〉 given
by (4) yields measurement outcome x as one of 00, 01, 10, and 11, with the corre-
sponding probability |αx|2. As the lively Schrödinger’s cat described in the single
qubit case, I may display the two qubit ‘cat state’ as follows:

When performing a measurement on the two qubit system in the cat state
|ψ2-cats〉, I can observe only one of the four possible outcomes—that is, two living
cats, two dead cats, the first living cat and the second dead cat, or the first dead cat
and the second living cat. Moreover, I may perform a measurement just on the first
cat of the two qubit system in the state |ψ2-cats〉 and obtain either the measurement
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|ψ2-cats〉 =
1
2{|

	 	

〉 + |

	

	

〉 + |

	

	

〉 + |

	 	

〉}.
outcome, ‘the first living cat’, with probability (1/2)2 + (1/2)2 = 1/2 or the mea-
surement outcome, ‘the first dead cat’, with probability (1/2)2+(1/2)2 = 1/2. Since
quantum measuring changes quantum states, after the quantum measurement per-
formed on the two qubit system in the cat state |ψ2-cats〉, its state will be changed.
Depending on the measurement outcome obtained for the first cat, being either alive
or dead, the two qubit cat state after the measurement will be, respectively, in either
state

1√
2
{|

	 	

〉 + |

	

	

〉}

or state

1√
2
{|

	

	

〉 + |

	 	

〉}.
A b qubit quantum system is described by its computational space—namely, a

2b-dimensional complex vector space—and each superposition state is a unit vector
in the computational space and specified by 2b amplitudes. For example, it would
require 16 petabytes of memory for a classical computer with double-precision values
to store the state of 50 qubits. Since 2b increases exponentially in b, the quantum
exponential complexity is obviously demonstrated by the exponential growth of the
dimensionality of the computational space and the number of amplitudes required to
describe the qubit system and specify superposition states. Quantum superposition
and exponential complexity are among special properties of quantum physics that
can be utilized in quantum computation and quantum information.

2.4 Quantum Gates and Quantum Circuits

Classical logic gates transform classical bits from one form to another. Quantum
gates are the quantum analog of classical logic gates that operate on qubits. Accord-
ing to quantum physics, quantum gates are unitary transformations and represented
by unitary matrices. Quantum circuits contain quantum gates with associated con-
nections to perform quantum computation and to manipulate quantum information.
As in the classical case, considered as a model of computation, a quantum circuit is
specified by the contained gates and the produced results.

As the classical NOT gate maps 1 to 0 and 0 to 1, the quantum NOT gate
changes |0〉 to |1〉 and |1〉 to |0〉. It transforms |ψ〉 = α0|0〉+α1|1〉 into α1|0〉+α0|1〉.
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I may use vectors and matrices to represent qubits and quantum gates. Denote by
C2 the vector space consisting of all pairs of complex numbers. I identify |0〉 and

|1〉 with vectors
[
1
0

]
and

[
1
0

]
in C2, respectively. Then |ψ〉 is represented by vector[

α0

α1

]
in C2, and a quantum gate acting on |ψ〉 corresponds to a unitary matrix on

C2. For example, the quantum NOT gate can be represented by a matrix σx that
satisfies

σx

[
α0

α1

]
=

[
α1

α0

]
,

where
σx =

[
0 1
1 0

]
, σy =

[
0 −

√
−1√

−1 0

]
, σz =

[
1 0
0 −1

]
, (6)

σx,σy and σz are called Pauli-x, y and z matrices, respectively, and their associated
quantum gates are called Pauli-x, y and z gates. Note that the quantum NOT gate
is the same as the Pauli-x gate.

All classical gates can be realized by quantum gates, but the converse is not
true. Consider the ‘Square-Root-of-NOT’ gate, which is defined to be the gate,
denoted by

√
NOT , such that two

√
NOT gates, connected back to back, perform

the NOT operation. This is impossible classically, yet there is a quantum
√
NOT

gate, because the square root of the Pauli-x matrix exists in the complex domain
but not in the real domain. In fact, the square root of σx in the complex domain is
given by

√
σx =

[
1
2

+
√
−1
2

1
2
−
√
−1
2

1
2
−
√
−1
2

1
2

+
√
−1
2

]
.

See [44], [62], [65], [74] and [75] for more details.

3 Quantum Entanglement and its Applications

3.1 Entanglement

Quantum entanglement refers to a mind-bending phenomenon that two separated
particles A and B behave like twins that are connected by an invisible wave which
allows each to share each other’s properties. It plays a crucial role in quantum
computation and quantum information. Consider an entangled two qubit system in
a state

|φAB〉 =
|00〉+ |11〉√

2
. (7)

All information content of the two entangled qubits is fully entailed in the correla-
tion between the two individual qubits, while each qubit on its own does not convey
essential information of the entangled qubits. For example, measuring each of the
two qubits yields an outcome being either 0 or 1 with probability 50% and 50%,
respectively. The completely random outcome allows anyone to gain no essential in-
formation about the entangled qubit system. Recall that performing measurements
changes quantum states. As a consequence, an intriguing feature of the entangled
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qubits shows that measuring one qubit immediately destroys the entanglement and
instantaneously casts the other qubit into a perfectly correlated state. For example,
as described in Section 2.3, if one measures the first qubit to obtain a completely
random measurement outcome, being 0 or 1, then the state of the two entangled
qubits changes to |00〉 or |11〉, respectively. Hence, for the first measurement out-
come 0 or 1, the second qubit must be in the state |0〉 or |1〉, which produces the
same measurement outcome being 0 or 1, respectively. This indicates a perfect cor-
relation between the measurements of the two qubits, which refers to the perfect
correlation phenomenon in entanglement experiments.

3.2 Quantum Teleportation

Quantum teleportation refers to a process in which the state of a qubit is transferred
to another distant qubit without going through the intervening space between them.
The phenomenon is described by a three-step protocol. First, a special pair of en-
tangled qubits (denoted by AB) were prepared in the state given by (7); Alice (the
sender) took the first qubit (called qubit A) of the two shared qubits, and Bob (the
receiver) took the second qubit (called qubit B) when they moved apart. Second,
Alice was provided with a third qubit with unknown state |ψ〉, and her job was to
teleport the unknown state to Bob. Third, Alice performed a measurement on her
original qubit and the third qubit to obtain a measurement result a1a2 being 00,
01, 10, or 11; she informed Bob by a classical communication of her measurement
outcome a1a2 so that Bob applied the transformation σa1

z σa2
x to recover the state

|ψ〉, where σx and σz are the Pauli matrices defined in (6). Vital ingredients in the
quantum teleportation protocol are the special entanglement, the quantum measure-
ment, and its corresponding transformation. The teleportation protocol functions
only if Alice informed Bob of her measurement outcome by classical communication
so that Bob could apply the corresponding transformation to recover the unknown
state. Because the particle pair was in the entangled state |ψAB〉, Alice’s measure-
ment destroyed the entanglement and changed the state of her qubit, and at the
same time it cast Bob’s qubit into a new state. The new state was related to the
unknown state |ψ〉 where it could be used by Bob to recover |ψ〉 by utilizing Alice’s
measurement outcome a1a2 to apply the transformation σa1

z σa2
x , a1, a2 = 0, 1—that

is, for the unknown state recovery, Bob applied nothing, σx, σz, or σx and then σz

depending on a1a2 being 00, 01, 10, or 11, respectively. After the three steps, the
unknown state |ψ〉 was transported from Alice to Bob. Note that the information
transferred from Alice to Bob by quantum teleportation is the unknown state of the
qubit |ψ〉, and that quantum teleportation does not move any underlying physical
particles that realize the qubits. Moreover, the requirement on classical communica-
tion between Alice and Bob limits the speed of quantum teleportation to the speed
of the classical communication channel and thus, quantum teleportation does not
entail any faster-than-light communication.

9



 
 

y 
 

x 

b a 

Non-Communicating 

Alice Bob	

Verifier 

Figure 3. An illustration of the classical magic-square game.

3.3 Game Show: The Magic-Square Game

As a Bayesian game, the magic-square game features a referee called Verifier and two
players, Alice and Bob. The game requires the players to fill a 3×3 table as follows:
Verifier randomly selects a row and a column of the table, and Alice and Bob are
asked to fill the selected row and column with plus and minus ones, respectively.
The players are subject to the following row and column parity requirements: Alice
must fill in her row such that the row product is equal to +1 (an even number of
minus ones in that row); and Bob must fill in his column such that the column
product is equal to −1 (an odd number of minus ones in that column). Alice and
Bob win the game if they place the same number in the cell shared by their row and
column, and lose the game otherwise.

Alice and Bob are separated at the beginning of the game, and subsequently not
allowed to communicate. Because of the random row and column selection by the
referee, before the game starts, Alice does not know which row of the table she will
be required to fill in; likewise Bob does not know which column he will be required
to fill in. More importantly, during the game, Alice does not know which column
Bob has been asked to fill in, and Bob does not know which row Alice has been
asked to fill in. Without any communication the players do not know the numbers
placed by each other before the game is finished.

3.3.1 Classical Strategies

Denote by x and y the row and column that Verifier has selected for Alice and Bob
to fill, respectively, with a and b the numbers that Alice and Bob have placed in the
cell shared by their row and column, as shown in Figure 3. Alice and Bob win the
game if a = b.

It can be shown that this classical formulation of the magic-square game allows
the players to win the game with the maximum probability 8/9, regardless of strat-
egy. That is, there is no strategy that Alice and Bob can find, such as meeting and
exchanging information before the game begins, that would allow them for winning
the game with a probability greater than 8/9. Indeed, denote by Xj, j = 1, . . . , 9,
the nine variables taking values ±1 to fill the table as shown in Table 1. Then they
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Table 1. Classical variables to fill the nine cells of the 3× 3 table.

X1 X2 X3
X4 X5 X6
X7 X8 X9

Table 2. A classical optimal winning strategy to fill the 3× 3 table.

+1 +1 +1
+1 −1 −1
−1 +1 ?

must satisfy the parity constraints

X1X2X3 = +1, X4X5X6 = +1, X7X8X9 = +1, (8)
X1X4X7 = −1, X2X5X8 = −1, X3X6X9 = −1. (9)

Equations (8) and (9) immediately render that the positiveness and negativeness on
the respective row and column products are self-contradictory, because the product
of all nine variables must be equal to +1 or −1 in order to satisfy the three equations
in (8) or (9), respectively. Thus, there exists no perfectly consistent table. The
game can be won only with a probability at most 8/9. In fact, a winning strategy is
described in Table 2 as follows: Alice and Bob always take X1 = X2 = X3 = X4 =
X8 = +1 and X5 = X6 = X7 = −1, and for the last cell with X9, Alice selects −1,
and Bob chooses +1. With the row and column are selected at random, Alice and
Bob use the prescribed values accordingly to fill in the selected row and column and
thus win the game 8/9 of the time—that is, they win all the time except in the event
that they are asked to fill the third row and column.

3.3.2 Quantum Strategies

Quantum strategies exist that would allow Alice and Bob to win the magic-square
game 100% of the time without any communication once the game has begun. In
the quantum formulation displayed in Figure 4, Alice and Bob possess two pairs
of particles, with one particle of each pair held by Alice and the other by Bob.
Before the start of the game the particles are prepared by Charlie in entangled
states |φAB〉|φAB〉, where |φAB〉 is the state defined in (7).

While classically it is impossible to construct a perfectly consistent table for
meeting all row and column parity constraints, as shown in Table 2, quantumly it
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Figure 4. An illustration of the quantum magic-square game.

is possible to do so with Hermitian matrices. As shown in Section 2, vectors and
matrices are used to describe quantum physics and quantum computation. Here
a quantum measurement is characterized through a Hermitian matrix (which is
called an observable) with its eigenvalues for the possible measurement outcome.
Observables as tensor products of the Pauli matrices and the 2-by-2 identity matrix
are placed in Table 3 to satisfy the row and column parity requirements for the
game. Because of the special properties of the Pauli matrices, it is straightforward
to check that each row contains a mutually commuting set of three observables with
eigenvalues +1 and −1 and its row product being the identity matrix I, and each
column consists of a mutually commuting set of three observables with eigenvalues
+1 and −1 and its column product equal to −I.

Alice and Bob proceed to play the game as follows. Once a row and a column
are selected for Alice and Bob to fill, they use the observables in the selected row
and column of Table 3 to perform measurements on their particles, and place the
resulted measurement outcomes in the corresponding cells of the selected row and
column.

The quantum setup guarantees that the strategy works. Indeed, (i) all three
observables in a given row or column of Table 3 commute and thus can be measured
simultaneously to obtain random measurement outcomes. (ii) Their eigenvalues ±1
and their row and column products ±I indicate that the three measurement results
of each player are ±1 and always multiply to +1 for Alice and −1 for Bob. (iii)
The entangled states of their particles ensure that, for the cell shared by Alice and
Bob, their measurement results will always be the same due to the fact of quantum
entanglement. This means that once one player performs a measurement on his/her
particles with the common observable in the corresponding shared cell, the particle
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Table 3. A quantum optimal winning strategy to fill the 3× 3 table. σx, σy and
σz are Pauli matrices defined in (6), and I is the identity matrix of size 2.

+I⊗ σz +σz ⊗ I +σz ⊗ σz

+σx ⊗ I +I⊗ σx +σx ⊗ σx

−σx ⊗ σz −σz ⊗ σx +σy ⊗ σy

state of the other player will be immediately cast into a definite state to produce
the same measurement outcome. (iv) Alice and Bob are separated at the start of
the game and, after that point, no communication between them takes place.

Strikingly, whereas in the classical case Alice and Bob can win the magic-square
game with a probability of at most 8/9, in the quantum case they can win the game
with a probability of 1.

3.4 Tests and Nonlocal Games

Like the magic square game, another famous game called the CHSH game has a
classical winning probability of at most 0.75 and a quantum winning probability of
cos2(π/8) ≈ 0.854. The CHSH game arising in physics was originally formulated
not as a game involving Alice and Bob, but rather as an experiment involving two
spatially separated devices. These experiments, which are named after John Bell and
hence, known as Bell tests, are used to test classical physics against quantum physics.
The tests are developed through Bell’s and Tsirelson’s inequalities to check classical
correlations versus quantum correlations, where a version of the Bell inequality may
be described as follows: For four random variables X1, X2, X3, and X4 taking values
±1, one has

E(X1X3) + E(X2X3) + E(X2X4)− E(X1X4) ≤ 2,
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while as its quantum counterpart, Tsirelson’s inequality has upper bound 2
√

2 in-
stead of 2. The classical correlations may be described by local hidden variables,
while the quantum correlations from entanglement may be stronger than the clas-
sical correlations and cannot be explained by any local hidden variables. Over the
years, the Bell tests have provided overwhelming evidence to support the presence of
quantum correlations (or nonlocal correlations) between separated systems, leading
to the conclusion that nature behaves in line with quantum physics but not classical
physics. Games like the magic square game and the CHSH game, which involve
nonlocal correlations due to quantum entanglement, are called nonlocal games.

Quantum protocols based on nonlocal games have been developed, which are
known as the so-called self-tests, to certify quantum systems, such as quantum
computation machines and quantum communication devices, in a black-box scenario
so that the focus is on what the machines and devices do without sophisticated
models on how the work is accomplished. For example, it is important to certify
that a product for cryptography is actually working properly without having to
comprehend exactly how it works. See [6], [25], [26], [44], [56], [62], and [74] for
more details.

4 Quantum Factoring Algorithms and Cryptogra-
phy

The factoring problem refers to the challenge of finding all prime factors of a given
positive composite number. It is known to be very hard for classical computers, since
the current best known classical algorithm needs computational operations of order
exp(n1/3log2/3n) for factoring an n-bit composite number ([21]). [40], [53], [54], and
[55] developed quantum algorithms, including Shor’s algorithm, that can accomplish
the task of factoring an n-bit integer with operations of order n2 log n log log n. The
quantum factoring algorithms offer theoretical evidence for the belief that quantum
computers can be intrinsically more powerful than classical computers and present
a credible challenge to the strong Church-Turing thesis, which asserts that any
algorithmic process can be simulated efficiently by a probabilisitic Turing machine.

Cryptography enables private communications between two parties, the sender
Alice and the receiver Bob, to share secret messages, while simultaneously making
it extremely difficult for the third parties to ‘eavesdrop’ on the content of their com-
munications. Its applications include online security systems, business transactions,
and military communications. Public key cryptosystems reply on the complexity of
hard computational problems; they work as follows. Bob produces a pair of keys,
a public one and a private one, and makes his ‘public key’ available to everyone,
including Alice, for encrypting messages and sending him the encrypted messages.
The actual trick is that Bob possesses a specially devised encryption transformation
to produce the key pair so that it is extremely difficult, albeit not impossible, to
reverse the encryption transformation with only the available public key. When mak-
ing the public key available to the general public, Bob keeps a matched secret key
that allows for the simple inversion of the encryption transformation and decryption
of the received messages.
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The factoring problem plays an important role in cryptography. The complexity
of the best classical factoring algorithm grows exponentially in correspondence with
the size of the number being factored, and the quantum factoring algorithms are
exponentially faster than the most efficient known classical factoring algorithm. Be-
cause of the exponential complexity, the factoring problem is usually considered to
be an intractable problem for classical computers. Consider a public key cryptosys-
tem called RSA, which is named after its creators Rivest, Shamir, and Adleman ([38]
and [50]). The extremely difficult computational problem in the RSA case entails
the factoring of large composite numbers, and the trick is the mathematical asym-
metry of factoring, which means that while it is simple to find a composite number
from its prime factors by simply multiplying the primes, the factoring problem as
its reverse process is extremely difficult. RSA encryption selects large primes to
design a secret key and uses their product, a very large composite number, to create
a public key. Because the best known classical factoring algorithm has exponential
complexity, and efforts to break the RSA system so far have resulted in failure, it is
widely believed that the RSA system is secure against any classical computer-based
attacks.

Due to the exponential speedup of the quantum algorithms over the classical
algorithms in solving the factor problem, quantum computers can factor large com-
posite numbers at a speed which is remarkably faster than that of classical comput-
ers. Consequently, an eavesdropper equipped with a quantum computer can easily
break the RSA system. Moreover, there is a quantum approach known as quan-
tum cryptography or quantum key distribution that is secure against any quantum
computer-based attacks. Its security is guaranteed by the quantum principle that
observing or measuring an unknown quantum system will disturb the system. As
long as an eavesdropper taps into a quantum communication channel, the eaves-
dropping disturbs the quantum communication channel, and the disturbance makes
eavesdropping noticeable so that a secure communication can be ensured. See [44],
[62], [65] and [74] for more details.

5 Quantum Speedup and Quantum Supremacy

5.1 Grover’s algorithm

It has been rigorously proved that quantum algorithms may provide for substantial
speedups over classical algorithms. As described in Section 4, the quantum factor-
ing algorithms offer an exponential speedup over the best known classical factoring
algorithm. Consider another problem—that of searching a database. For example,
the task is to search for the name matching with a given phone number in a tele-
phone directory or the shortest route passing through the locations in a city that
one would like to visit. Suppose that the database has N entries, such as N names
in the telephone directory and N possible routes to pass through all the locations.
Classical search algorithms generally need to run computational operations of order
N on classical computers. A simple classical algorithm is to search exhaustively all
names to get a name corresponding to the given phone number or to inspect all
possible routes to obtain the shortest route among all routes. Grover’s algorithm
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is a quantum search algorithm that requires computational operations of order
√
N

to find a solution to the search problem. Moreover, the computational complexity
results of orders N and

√
N are optimal in the sense that any quantum algorithm

to solve the search problem must require operations of at least order
√
N , while

classical algorithms can not solve the search problem with a less than N order of op-
erations. Thus, Grover’s algorithm is asymptotically optimal, and offers a quadratic
speedup over the best classical search algorithm. The quadratic speedup may not
be as impressive as other quantum algorithms, such as Shor’s factoring algorithm,
which provide exponential speedup over its classical counterpart, yet it can be very
significant for large N . Furthermore, Grover’s search algorithm can be considered
as a special case of a large class of quantum algorithms based on quantum walk
and quantum Markov chain that allow for quantum speedups over their classical
counterparts. See [18], [17], [29], [30], [61] and [59] for more details.

5.2 Quantum Computational Supremacy

Various physical systems are currently being investigated to build quantum comput-
ers, but many technological hurdles exist that must be surmounted to allow for the
construction of large-scale quantum computers. In fact, there are a wide spectrum
of views, ranging from those suggestive of hype to those informed by skepticism,
regarding quantum computation. Quantum skeptics believe that it is not physically
possible to build scalable quantum computers to realize the theoretical advantage of
quantum computation over classical computation. A very large number of high qual-
ity qubits are required for a quantum computer to run faster quantum algorithms,
such as Grover’s search algorithm and Shor’s factoring algorithm, for demonstrating
the quantum advantage. While large-scale quantum computers are still many years
away, it is important to design scalable architectures for building quantum computers
with about 100 well-behaved qubits in the near-term future. The architectures can
be used to demonstrate the so-called quantum (computational) supremacy, where
quantum supremacy refers to any major milestone achievement in the quest for
outperforming classical computers on some tough computational tasks. Quantum
supremacy has attracted considerable interest in quantum computation and is being
actively explored by academic institutes, government labs, and private companies
([1], [2], [10], [14], [31], [32], [42], [47] and [79]).

5.2.1 Two Quantum Supremacy Projects

This section illustrates two well-known quantum supremacy studies for solving hard
statistical sampling problems. First, I present the quantum supremacy project re-
ported in [10] by the Google AI research group. Google’s quantum computer (proces-
sor), called Sycamore, is built on superconducting technology to perform the compu-
tational task of sampling the output distributions of random quantum circuits. The
project investigators constructed random quantum circuits, studied sampling from
the output distributions of the random quantum circuits, and checked the Sycamore
processor against state-of-the-art classical supercomputers in terms of runtime for
accomplishing the sampling task. As described in Section 2.4, a quantum circuit
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is composed of quantum gates, and a small-scale quantum computer can be essen-
tially equivalent to a quantum circuit. Here a random quantum circuit consists of
a sequence of clock cycles of one qubit and two qubit gates with gates applied to
different qubits in the same cycle. Sampling from the output distribution of the
quantum circuit means measuring the circuit qubits in the computational basis to
produce bitstrings like {1000101, 0010100, . . . }. Because of the quantum exponen-
tial complexity, sampling a random quantum circuit by classical computers renders
computational complexity which grows exponentially in size, where the size of the
random quantum circuit is determined by the number of qubits created in the quan-
tum circuit as well as the number of cycles used by the quantum circuit. Thus, the
classical sampling of the output distribution suffers from an exponential scaling of
runtime with circuit size. Quantum supremacy is demonstrated by accomplishing a
sampling task by random quantum circuits of sufficient size that, due to the expo-
nential cost, rule out the execution of the task by classical computers. The study in
[10] shows that the Google quantum computer can successfully carry out sampling
output distributions of random quantum circuits with 53 qubits and 20 cycles, while
the sampling task is practically beyond the reach of the fastest classical supercom-
puters available at the time. In fact, the computing experiments and statistical
analysis have shown that it took 200 seconds for the Sycamore processor to sample
a million bitstrings from random quantum circuits with 53 qubits and 20 cycles,
while classical sampling by the best supercomputers at the time would take 10, 000
years. Also, it was reported in [77] that a programmable superconducting quantum
processor called Zuchongzhi was built with 66 qubits to perform random quantum
circuits sampling and further demonstrate quantum computational advantage.

Another more recent quantum supremacy project is reported in [79] that has
built a photonic quantum computer (processor) called Jiuzhang to perform Gaus-
sian Boson sampling. Boson sampling was first introduced in [1] to employ photonic
platforms for demonstrating quantum computational advantage. Boson sampling
and its variants refer to a quantum computation model where non-classical light
(source) passes through a network of optical elements (such as beamsplitters and
phase-shifters) and then photons (bosons) are detected. Due to quantum expo-
nential complexity, current classical compute can not handle an optical network of
medium size, such as a network system with about 50 photons and 2500 paths. A
successful quantum computing experiment on an optical network of sufficient size
will render quantum supremacy ([1], [2], [31], [32], [42] and [47]). A statistical defi-
nition of Boson sampling in [1] is given as follows. Suppose that the optical network
involves n identical photons and m modes, where ‘mode’ may be loosely interpreted
as the location of a photon, and m ≥ n. The quantum network system has compu-
tational basis states of the form |s〉 = |s1, s2, · · · , sm〉, where si indicates the number
of photons in the i-th mode. Define the set of elements corresponding to all the
computational basis states in the following manner:

Ωm,n = {s = (s1, s2, . . . , sm) : si ∈ N and s1 + s2 + · · ·+ sm = n},

where N denotes the set of all non-negative integers. Let U = (uij) be the m ×m
unitary matrix to determine the action of the optical network. For each s ∈ Ωm,n,
a matrix Us is obtained from U by keeping its first n columns and repeating sj
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times its j-th row, and then its permanent is calculated, where for a d × d matrix
A = (aij), its permanent is defined by

Permanent(A) =
∑
π

d∏
i=1

aiπ(i),

and the sum is taken over all permutations π of 1, 2, . . . , d. A discrete probability
distribution is defined on Ωm,n as follows:

Pr(s) =
|Permanent(Us)|2

s1!...sm!
, s = (s1, . . . , sm) ∈ Ωm,n. (10)

The probability distribution Pr(s) corresponds to the optical network system whose
action is determined by the unitary matrix U, and Boson sampling in [1] refers to
statistical sampling from the distribution Pr(s). Gaussian Boson sampling has been
proposed to make use of Gaussian states as probability sources of photons ([31] and
[47]), instead of deterministic sources of photons (used in Boson sampling by [1]).
The resulting probability distribution for a Gaussian state case is similar to (10) with
permanent replaced by a matrix function, which is either Hafnian or Torontonian,
and U by a sampling matrix characterizing the state. The Torontonian can be
interpreted as a sum of Hafnians, and the Hafnian of a 2d× 2d matrix B = (bij) is
defined to be

Hafnian(B) =
∑
$∈D

∏
(k,`)∈$

bk,`,

where D is the set of all possible ways to partition the set {1, · · · , 2d} into d subsets
of size 2. Theoretical and empirical work indicates that Permanent, Hafnian, and
Torontonian are in the #P-complete complexity class. Gaussian Boson sampling
refers to statistical sampling from the distribution of an optical network with a
Gaussian state as a non-classical source. It has been shown in [79] that the photonic
quantum computer Jiuzhang can enable up to 76 qubits to successfully accomplish
Gaussian Boson sampling tasks that are effectively above the capacity of the best
classical supercomputers at the time. Indeed, the computing experiments and data
analysis have shown that a 200-second job of Gaussian Boson sampling on Jiuzhang
would require 0.6 billon years for the fastest supercomputer available at the time to
finish. It was reported in [78] that the second generation of Jiuzhang was built with
up to 113 qubits and enhanced performance.

5.2.2 The role of Statistics in Quantum Supremacy

The two quantum supremacy projects presented in Section 5.2.1 aim to solve sta-
tistical sampling problems, and their studies involve extensive statistical analysis.
Due to the random nature of quantum computation and circumstantial evidence
used in quantum supremacy investigation, quantum supremacy claims should heav-
ily rely on sound statistical analysis and justification including quantum and clas-
sical computing experiment design, data collection and analysis, assumption val-
idation, and model assessment. Quantum supremacy involves the development of
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hardware (building quantum computing devices) and software (developing computa-
tional problems and algorithms) as well as the use of statistics (designing computing
experiments, collecting data, and carrying out statistical analysis). Thus, confirming
(or refuting) a quantum supremacy claim hinges on building a quantum computer,
finding a suitable computational problem that is very hard for classical supercom-
puters but relatively easy for the quantum computer, and the proper evaluation of
computational results, outcome data, and circumstantial evidence that is obtained
from running the quantum computer and classical supercomputers to solve the com-
putational problem. As the core of quantum computation entails the creation of
quantum computers and the development of quantum algorithms that are signifi-
cantly faster than classical computers, plenty of quantum computation research has
devoted to these tasks. Yet much more effort is currently needed to deal with the
statistical aspects of evaluating quantum supremacy claims.

Quantum computing devices are unique and expensive, and it is difficult to re-
peat experiments and carry out independent tests. This is also true to some extent
for classical supercomputers. However, statistical analysis can be done thoroughly
and independently. Furthermore, statistics can be used to alleviate the challenge of
evaluation that follows from the lack of the repeated experiments and independent
tests. For example, statistical ideas and concepts from blind experiments in clinical
trials and the randomized response technique used in a sampling survey with sensi-
tive questions can be borrowed to design a scheme that would allow an independent
third party to outsource a computational job to a quantum computer. This scheme
would potentially make it possible for repeated experiments and independent tests
to be performed on the quantum computer to some extent. The statistical task
for quantum supremacy evaluation is similar to usual statistical applications used
for solving complex scientific problems such as research questions in biology and
engineering. The challenges are that each problem is different, and statistical anal-
ysis needs to take into account the specifics of the problem including the nature
of the problem and background knowledge in the domain science. The statistical
evaluation of establishing a quantum supremacy claim depends on many factors,
which may include both quantum and classical computing devices, computational
problems, computing experiments, experimental designs to collect data, methods to
analyze the data, and techniques to check assumptions and validate models. For
example, as described in Section 5.2.1, the two quantum supremacy projects utilize
different quantum technologies, distinct computing platforms, and separate sam-
pling problems; their computing experiments, models, data, and analyses are all
different. I wish to point out that, despite extensive data analysis carried out in the
two quantum supremacy projects, there are serious statistical issues that need to be
carefully examined. As a case in point, I found that the proposed noisy quantum
circuit model in the Google study does not fit to the bitstrings data generated from
the experiments (also see [49] and [64]).
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6 A Study on Quantum Computational Complexity
Despite the existence of a large volume of literature on classical and quantum com-
putational complexity theory, many fundamental problems remain unsettled, such
as questions on how powerful are quantum computers, what are the relationships
between classical complexity classes and their quantum counterparts, and whether
quantum computation challenges the Church-Turing theses. Here I present a recent
landmark work on computational complexity and quantum entanglement.

Quantum resources are utilized for computation and information. In particular,
quantum entanglement plays a key role in quantum computation and quantum in-
formation. While the study of entanglement was started in 1935 by Albert Einstein,
Boris Podolsky, and Nathan Rosen, a year later Alan Turing introduced so-called
Turing machines to formulate the general theory of computing and subsequently
proved that the halting problem is undecidable over Turing machines. The halting
problem refers to the problem of determining, given a computer program and an
input to the program, whether the program will continue to run forever or eventu-
ally halt, and Turing’s result indicates that there exists no all-purpose algorithm to
decide whether a computer program will keep running all the time or finish running
at a certain time. Turing machines are used in computational complexity to classify
computational problems by their relative levels of difficulty and to verify that a given
answer to a problem is correct.

Quantum entanglement and the halting problem seem to be unrelated, but they
are merged with interactive proofs to solve open problems in computer science,
physics and mathematics. Interactive proofs are based on the logical analog to
police interrogation where asking the right questions may lead to confidence in or
skepticism regarding an elaborate story provided by a suspect. An interactive proof
system in computational complexity theory involves two parties called a prover and a
verifier that interact by exchanging messages in order to ascertain whether a specified
string belongs to a language or not. Their interactive communication continues until
the verifier, having obtained an answer to the problem, becomes convinced that it
is correct. While the honest verifier possesses bounded computation power, the
powerful prover has boundless computational resources but cannot be trusted. The
untrusted prover can convince the honest verifier of any true statement but can not
persuade the verifier that a false statement is true, except for a small probability.
Moreover, an interactive proof system may have multi-provers to enable the verifier
with more leverage for cross-checking their answers.

As nonlocal games and Bell tests are introduced in Sections 3.3 and 3.4, in
the context of computational complexity they can be considered as multi-prover
interactive proofs. A Bell test is viewed as an interactive proof with the two provers
to convince the verifier of quantum entanglement. A nonlocal game like the magic-
square game is treated as an interactive proof system to find the optimal winning
probability and to determine if the optimal quantum strategy can do better than
the best possible classical strategy.

Given that entanglement can help to win a nonlocal game, two provers may share
entangled particles, and interrogating such entangled provers changes the range of
problems that can be verified. In fact, it is natural to believe that entanglement
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provides means to coordinate answers and to tell consistent lies; thus, it may work
against verification. However, entanglement may permit us to verify a much larger
class of problems than would be possible without entanglement. For example, one
might recall the magic-square game, in which Alice and Bob hope to place an iden-
tical number in the same cell albeit without any knowledge on the part of either
as to which row or column the other has been asked about. Entanglement enables
provers to come up with correlated questions on their own that the verifier wants.
Interacting with entangled provers actually allows us to expand the class of nonlocal
games to play and enlarge the variety of problems to verify.

A recent landmark result establishes that ‘MIP*=RE’ ([35]), where MIP* denotes
the class of problems that can be verified through interactions with entangled quan-
tum provers, and RE stands for the class of problems that are not harder than the
halting problem. The class MIP* can be characterized through the computational
complexity of approximating the optimal winning probability for a nonlocal game.
The halting problem has an interactive proof with entangled provers called Alice and
Bob, and there is a nonlocal game associated with the given Turing machine so that
the verifier plays the nonlocal game to conclude that the Turing machine eventually
terminates or gets struck in an infinite loop, depending on whether the provers win
or lose the game. That is, the verifier has offloaded the computational task to all-
powerful Alice and Bob for determining if the Turing machine halts or not, and thus,
the two classes are exactly the same. This quantum computational complexity work
has had a cascade of consequences in computer science, physics, and mathematics
including the solving of a long standing conjecture called Tsirelson’s problem on two
different entanglement models in quantum physics and an over-forty-year-old opera-
tor algebra problem called the Connes’ Embedding Conjecture in pure mathematics.
See [20], [24], [35], [37], [44], [56] and [60] for more details.

7 A Concluding Proposal to Develop Quantum Data
Science

As described here, the advantages of quantum computation over classical compu-
tation hold great potential for data science, in particular, machine learning and
statistical learning. Already, quantum learning theory is being developed to synthe-
size classical learning and quantum computation and to investigate how quantum
resources can affect learning efficiency and computational complexity for handling
data science problems. For example, quantum approaches can achieve higher ef-
ficiency in learning difficult functions or policies for some machine learning tasks,
while quantum machine learning may have great computational advantages over its
classical counterpart for solving certain machine learning problems. Specific cases in-
clude linear algebra operations, linear and quadratic programming, gradient descent,
support vector machines, principal component analysis, annealing, Boson sampling,
and Boltzmann machines. See [3], [5], [7], [9], [12], [13], [15], [16], [19], [23], [22],
[28], [34], [36], [39], [41], [45], [46], [48], [51], [52], [58], [63], [66], [67], [71], [72], [70],
[73], [69], [76] and [79] for more details.

It is natural to expect quantum computation to play a major role in data sci-
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ence; I further anticipate that quantum computation has tremendous potential to
revolutionize computational statistics and data science. As might be expected, there
is huge demand in data science for theoretical research and experimental work in
quantum computation and quantum information. Because of the stochastic nature
underlying quantum physics and complex data involved in quantum experiments,
there is a great need to develop better data science approaches for quantum compu-
tation and quantum information. As a case in point I list some specific topics below
to illustrate or speculate as to potential points of interplay between quantum science
and data science, and to advocate for the development of quantum data science.

Quantum certification has been developed to create protocol approaches to cer-
tifying quantum devices, such as testing and assessing their quantum performances,
and the certification certainly needs data science for calibrating and validating quan-
tum properties. Quantum supremacy heavily involves inferential methods and data
analysis techniques. Such developments suggest that data science may provide useful
ideas and offer valuable insights for quantum computation and quantum informa-
tion ([4], [8], [11], [27], [33] and [57]). For example, nonlocal games with quantum
entanglement allow more correlations than what is possible classically. There is a
class of quantum algorithms, including Grover’s algorithm, that is based on quantum
walk. It is known that the quantum walk has larger variance than the corresponding
classical random walk. The quantum algorithms are random and their associated
computational tasks may be considered as statistical problems. Thus, from the
viewpoint of the tradeoff between statistical efficiency and computational efficiency,
these quantum algorithms gain more computational efficiency (with faster compu-
tational speed) at the expense of less statistical efficiency (with larger variance) in
comparison with their classical counterparts. Shor’s factoring algorithm is based on
quantum phase estimation, and Bayesian quantum phase estimation has been pro-
posed; thus, it is feasible to adopt the probability interpretation of prime numbers
in number theory as a prior for developing Bayesian quantum factoring and inves-
tigating its computational speedup and statistical efficiency. Last but not least, it
is interesting to explore data augmentation, thermal-based classical annealing, and
tunneling-based quantum annealing ([67]).

While quantum speedup may be due to the use of quantum physics, the acceler-
ation phenomena in recursive algorithms may be attributed to some mathematical
means since accelerated algorithms often involve differential equations of higher or-
der ([43], [66] and [68]). The data science approach may lead to the study of general
resources for the computational speedup phenomenon, whether the resources used
are expressed in terms of physical materials, digital contents, or mathematical ele-
ments. In fact, there should be more synergy between quantum computation and
data science than between the classical computation and machine learning described
in Section 1. Overall, I advocate for the development of quantum data science for
the interplay between quantum science and data science, where quantum informa-
tion science serves as its domain science. The aim is to develop a combination of
quantum experimental techniques, mathematical models, statistical methods, and
computational tools in order to advance the development of quantum computation
and quantum information. Quantum data science enables data scientists to work
with quantum scientists and engineers on this exciting frontier of scientific endeavor
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by integrating quantum science and data science. For the purpose of inspiration, I
conclude this article with my big data poem, with its Chinese version displayed in
Figure 5.

	

Figure 5. The Big Data Poem in Chinese.

Big Data
Yazhen Wang (5/18/2017)

Long ago,
big data was a thick screen,
I was here,
mainframe computing was there.

And now,
big data is a thin smart-phone,
I am here,
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cloud computing is there.

In the future,
big data will be a tiny particle,

I will be here,
quantum computing will be there.
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