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Stochastic processes are often used to model complex scientific prob-
lems in fields ranging from biology and finance to engineering and physical
science. This paper investigates rate-optimal estimation of the volatility ma-
trix of a high-dimensional Itô process observed with measurement errors at
discrete time points. The minimax rate of convergence is established for esti-
mating sparse volatility matrices. By combining the multi-scale and threshold
approaches we construct a volatility matrix estimator to achieve the optimal
convergence rate. The minimax lower bound is derived by considering a sub-
class of Itô processes for which the minimax lower bound is obtained through
a novel equivalent model of covariance matrix estimation for independent but
nonidentically distributed observations and through a delicate construction of
the least favorable parameters. In addition, a simulation study was conducted
to test the finite sample performance of the optimal estimator, and the simu-
lation results were found to support the established asymptotic theory.

1. Introduction. Modern scientific studies in fields ranging from biology and
finance to engineering and physical science often need to model complex dy-
namic systems where it is essential to incorporate internally or externally originat-
ing random fluctuations in the systems [Aït-Sahalia, Mykland and Zhang (2005),
Mueschke and Andrews (2006) and Whitmore (1995)]. Continuous-time diffusion
processes, or more generally, Itô processes, are frequently employed to model such
complex dynamic systems. Data collected in the studies are treated as the pro-
cesses observed at discrete time points with possible noise contamination. For ex-
ample, the prices of financial assets are usually modeled by Itô processes, and the
price data observed at high-frequencies are contaminated by market microstructure
noise. In this paper we investigate estimation of the volatilities of the Itô processes
based on noisy data.
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Several volatility estimation methods have been developed in the past several
years. For estimating a univariate integrated volatility, popular estimators include
two-scale realized volatility [Zhang, Mykland and Aït-Sahalia (2005)], multi-
scale realized volatility [Zhang (2006) and Fan and Wang (2007)], realized ker-
nel volatility [Barndorff-Nielsen et al. (2008)] and pre-averaging based realized
volatility [Jacod et al. (2009)]. For estimating a bivariate integrated co-volatility,
common methods are the previous-tick approach [Zhang (2011)], the refresh-
time scheme and realized kernel volatility [Barndorff-Nielsen et al. (2011)], the
generalized synchronization scheme [Aït-Sahalia, Fan and Xiu (2010)] and the
pre-averaging approach [Christensen, Kinnebrock and Podolskij (2010)]. Opti-
mal volatility and co-volatility estimation has been investigated in the paramet-
ric or nonparametric setting [Aït-Sahalia, Mykland and Zhang (2005), Bibinger
and Reiß (2011), Gloter and Jacod (2001a, 2001b), Reiß (2011) and Xiu (2010)].
These works are for estimating scalar volatilities or volatility matrices of small
size. Wang and Zou (2010) and Tao et al. (2011) studied the problem of esti-
mating a large sparse volatility matrix based on noisy high-frequency financial
data. Fan, Li and Yu (2012) employed a large volatility matrix estimator based on
high-frequency data for portfolio allocation. The large volatility matrix estimation
is a high-dimensional extension of the univariate case. It can be also considered
as a generalization of large covariance matrix estimation for i.i.d. data to volatil-
ity matrix estimation for dependent data with measurement errors. Despite recent
progress on volatility matrix estimation, there has been remarkably little funda-
mental theoretical study on optimal estimation of large volatility matrices. Consis-
tent estimation of large matrices based on high-dimensional data usually requires
some sparsity, and the sparsity may naturally result from appropriate formulation
of some low-dimensional structures in the high-dimensional data. For example,
in large volatility matrix estimation with high-frequency financial data sparsity
means that a relatively small number of market factors play a dominate role in
driving volatility movements and capturing the market risk. In this paper we es-
tablish the optimal rate of convergence for large volatility matrix estimation under
various matrix norms over a wide range of classes of sparse volatility matrices. We
expect that our work will stimulate further theoretical and methodological research
as well as more application orientated study on large volatility matrix estimation.

Specifically we consider the problem of estimating the sparse integrated volatil-
ity matrix for a p-dimensional Itô process observed with additive noises at n

equally spaced discrete time points. The minimax upper bound is obtained by con-
structing a new procedure through a combination of the multi-scale and threshold
approaches and by studying its risk properties. We first construct a multi-scale
volatility matrix estimator and show that its elements obey subGaussian tails with
a convergence rate n−1/4. Then we threshold the constructed estimator to obtain
a threshold volatility matrix estimator and derive its convergence rate. The upper
bound depends on n and p through n−1/4√logp.
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A key step in obtaining the optimal rate of convergence is the derivation of the
minimax lower bound for the high-dimensional Itô process with measurement er-
rors. We succeed in establishing the risk lower bound in three steps. First we select
a particular subclass of Itô processes with a zero drift and a constant volatility ma-
trix so that the volatility matrix estimation problem becomes a covariance matrix
estimation problem where the observed data are dependent and have measurement
errors; second, take a special transformation of the observations to convert the
problem into a new covariance matrix estimation problem where the observed data
have no measurement errors and are independent but not identically distributed,
with covariance matrices equal to the constant volatility matrix plus an identity
matrix multiplying by a shrinking factor depending on the sample size n; third,
adopt the minimax lower bound technique developed in Cai and Zhou (2012) for
sparse covariance matrix estimation based on i.i.d. data to establish a minimax
lower bound for independent but nonidentically distributed observations. The min-
imax lower bound matches the upper bound obtained by the new procedure up to
a constant factor, and thus the upper bound is rate-optimal.

The volatility matrix estimation is closely related to large covariance matrix esti-
mation which received lots of attentions recently in the literature. While the covari-
ance matrix plays a key role in statistical analysis, its classic estimation procedures,
like the sample covariance matrix estimator, may behave very poorly when the
matrix size is comparable to or exceeds the sample size. To overcome the curse of
dimensionality, various regularization techniques have been developed for estima-
tion of large covariance matrices in recent years. Wu and Pourahmadi (2003) ex-
plored nonparametric estimation of large covariance matrices by local stationarity.
Ledoit and Wolf (2004) proposed to boost diagonal elements and downgrade off-
diagonal elements of the sample covariance matrix estimator. Huang et al. (2006)
used a penalized likelihood method to estimate large covariance matrices. Yuan
and Lin (2007) considered large covariance matrix estimation in a Gaussian graph
model. Bickel and Levina (2008a, 2008b) developed regularization methods by
banding or thresholding the sample covariance matrix estimator when the matrix
size is comparable to the sample size. El Karoui (2008) employed a graph model
approach to characterize sparsity and investigated consistent estimation of large
covariance matrices. Fan, Fan and Lv (2008) utilized factor models for estimating
large covariance matrices. Johnstone and Lu (2009) studied consistent estimation
of leading principal components in principal component analysis. Lam and Fan
(2009) established sparsistency and convergence rates for large covariance matrix
estimation. Cai, Zhang and Zhou (2010) and Cai and Zhou (2012) studied min-
imax estimation of covariance matrices when both sample size and matrix size
are allowed to go to infinity and derived optimal convergence rates for estimating
decaying or sparse covariance matrices.

The rest of the paper proceeds as follows. Section 2 presents the model and the
data and constructs volatility matrix estimators. Section 3 establishes the asymp-
totic theory under sparsity for the constructed matrix estimators as both sample
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size and matrix size go to infinity. Section 4 derives the minimax lower bound for
estimating a large sparse volatility matrix and shows that the threshold volatility
matrix estimator asymptotically achieves the minimax lower bound. Thus com-
bining results in Sections 3 and 4 together, we establish the optimality for large
sparse volatility matrix estimation. Section 5 features a simulation study to illus-
trate the finite sample performances of the volatility matrix estimators. To facilitate
the reading we relegate all proofs to Section 6 and two Appendix sections, where
we first provide the main proofs of the theorems in Section 6 and then collect
additional technical proofs in the two appendices.

2. Volatility matrix estimation.

2.1. The model set-up. Suppose that X(t) = (X1(t), . . . ,Xp(t))T is an Itô pro-
cess following the model

dX(t) = μt dt + σ T
t dBt , t ∈ [0,1],(1)

where stochastic processes X(t), Bt , μt and σ t are defined on a filtered probability
space (�, F , {Ft , t ∈ [0,1]},P ) with filtration Ft satisfying the usual conditions,
Bt is a p-dimensional standard Brownian motion with respect to Ft , μt is a p-
dimensional drift vector, σ t is a p by p matrix, and μt and σ t are assumed to be
predictable processes with respect to Ft .

We assume that the continuous-time process X(t) is observed with measurement
errors only at equally spaced discrete time points; that is, the observed discrete data
Yi(t�) obey

Yi(t�) = Xi(t�) + εi(t�), i = 1, . . . , p, t� = �/n, � = 1, . . . , n,(2)

where εi(t�) are noises with mean zero.
Let γ (t) = σ T

t σ t be the volatility matrix of X(t). We are interested in estimating
the following integrated volatility matrix of X(t),

� = (�ij )1≤i,j≤p =
∫ 1

0
γ (t) dt =

∫ 1

0
σ T

t σ t dt

based on noisy discrete data Yi(t�), i = 1, . . . , p, � = 1, . . . , n.

2.2. Estimator. Let K be an integer and �n/K� be the largest integer ≤ n/K .
We divide n time points t1, . . . , tn into K nonoverlap groups τ k = {t�, � = k,K +
k,2K + k, . . .}, k = 1, . . . ,K . Denote by |τ k| the number of time points in τ k .
Obviously, the value of |τ k| is either �n/K� or �n/K� + 1. For k = 1, . . . ,K , we
write the r th time point in τ k as τ k

r = t(r−1)K+k , r = 1, . . . , |τ k|. With each τ k , we
define the volatility matrix estimator

�̃ij

(
τ k)= |τ k |∑

r=2

[
Yi

(
τ k
r

)− Yi

(
τ k
r−1
)][

Yj

(
τ k
r

)− Yj

(
τ k
r−1
)]

,

(3)
�̃
(
τ k)= (

�̃ij

(
τ k))

1≤i,j≤p.
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Here in (3), to account for noises in data Yi(t�), we use τ k to subsample the data
and define �̃(τ k). To reduce the noise effect we average K volatility matrix esti-
mators �̃(τ k) to define one-scale volatility matrix estimator

�̃K
ij = 1

K

K∑
k=1

�̃ij

(
τ k), �̃K = (

�̃K
ij

)= 1

K

K∑
k=1

�̃
(
τ k).(4)

Let N = [cn1/2] for some positive constant c, and Km = m + N , m = 1, . . . ,N .
We use each Km to define a one-scale volatility matrix estimator �̃Km and then
combine them together to form a multi-scale volatility matrix estimator

�̃ =
N∑

m=1

am�̃Km + ζ
(
�̃K1 − �̃KN

)
,(5)

where

ζ = K1KN

n(N − 1)
, am = 12Km(m − N/2 − 1/2)

N(N2 − 1)
,(6)

which satisfy

N∑
m=1

am = 1,

N∑
m=1

am

Km

= 0,

N∑
m=1

|am| = 9/2 + o(1).

The one-scale matrix estimator in (4) was studied in Wang and Zou (2010), and
the multi-scale scheme (5)–(6) in the univariate case was investigated in Zhang
(2006).

We threshold �̃ to obtain our final volatility matrix estimator

�̂ = (
�̃ij 1

(|�̃ij | ≥ �
))

,(7)

where � is a threshold value to be specified in Theorem 2.
In the estimation construction we use only time scales corresponding to Km of

order
√

n to form increments and averages. In Section 3 we will demonstrate that
the data at these scales contain essential information for estimating � and show
that �̂ is asymptotically an optimal estimator of �.

3. Asymptotic theoryfor volatility matrix estimators. First we fix notation
for our asymptotic analysis. Let x = (x1, . . . , xp)T be a p-dimensional vector and
A = (Aij ) be a p by p matrix, and define their �d norms

‖x‖d =
( p∑

i=1

|xi |d
)1/d

, ‖A‖d = sup
{‖Ax‖d,‖x‖d = 1

}
, 1 ≤ d ≤ ∞.
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For the case of matrix, the �2 norm is called the matrix spectral norm. ‖A‖2 is
equal to the square root of the largest eigenvalue of AAT ,

‖A‖1 = max
1≤j≤p

p∑
i=1

|Aij |, ‖A‖∞ = max
1≤i≤p

p∑
j=1

|Aij |(8)

and

‖A‖2
2 ≤ ‖A‖1‖A‖∞.(9)

For symmetric A, (8)–(9) imply that ‖A‖2 ≤ ‖A‖1 = ‖A‖∞, and ‖A‖2 is equal to
the largest absolute eigenvalue of A.

Second we state some technical conditions for the asymptotic analysis.

A1. Assume nβ/2 ≤ p ≤ exp(β0
√

n) for some constants β > 1 and β0 >

0, and that εi(t�) and X(t) in models (1)–(2) are independent. Suppose that
(ε1(t�), . . . , εp(t�)), � = 1, . . . , n, is a strictly stationary M-dependent multivariate
time series with mean zero and Var[εi(t�)] = ηi ≤ κ2, where M is a fixed integer,
and κ is a finite positive constant. Assume further that εi(t�) are subGaussian in
the sense that there exist constants τ0 > 0 and c0 > 0 such that for all x > 0 and
u = (u1, . . . , un)

T with ‖u‖2 = 1,

P
(∣∣(εi(t1), . . . , εi(tn)

)
u
∣∣> x

)≤ c0e
−x2/(2τ0), i = 1, . . . , p.(10)

A2. Assume that there exist positive constants c1 and c2 such that

max
1≤i≤p

max
0≤t≤1

∣∣μi(t)
∣∣≤ c1, max

1≤i≤p
max

0≤t≤1
γii(t) ≤ c2.

Further we assume with probability one for t ∈ [0,1],
γii(t) > 0, i = 1, . . . , p, γii(t) + γjj (t) ± 2γij (t) > 0,

i 
= j, i, j = 1, . . . , p.

A3. Assume that � is sparse in the sense that
p∑

j=1

|�ij |q ≤ πn(p), i = 1, . . . , p,(11)

where  is a positive random variable with finite second moment, 0 ≤ q < 1, and
πn(p) is a deterministic function with slow growth in p such as logp.

Condition A1 allows noises to have cross sectional correlations as well as cross
temporal correlations. In particular we may have any contemporaneous correla-
tions between εi(t�) and εj (t�) as well as lagged serial auto-correlations for indi-
vidual noise εi(·) and lagged serial cross-correlations between εi(·) and εj (·) with
lags up to M . As in covariance matrix estimation, the subGaussianity (10) is es-
sentially required to obtain an optimal convergence rate depending on p through
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√
logp. It is obvious that independent normal noises satisfy these assumptions.

The constraint p ≥ nβ/2 is needed to obtain a high-dimensional minimax lower
bound; otherwise the problem will be similar to usual asymptotics with large n but
fixed p; p ≤ exp(β0

√
n) is to ensure the existence of a consistent estimator of �.

Condition A2 is to impose proper assumptions on the drift and volatility of the Itô
process so that we can obtain subGaussian tails for the quadratic forms of Xi(t�),
which together with the subGaussianity (10) are used to derive subGaussian tails
for the elements of the volatility matrix estimator �̃. Condition A3 is a common
sparsity assumption required for consistently estimating large matrices [Bickel and
Levina (2008b), Cai and Zhou (2012), and Johnstone and Lu (2009)].

The following two theorems establish asymptotic theory for the estimators �̃
and �̂ defined by (5) and (7), respectively.

THEOREM 1. Under models (1)–(2) and conditions A1–A2, the estimator �̃
in (5) satisfies that for 1 ≤ i, j ≤ p and positive x in a neighbor of 0,

P
(|�̃ij − �ij | ≥ x

)≤ ς1 exp
{
logn − √

nx2/ς0
}
,(12)

where ς0 and ς1 are positive constants free of n and p.

REMARK 1. Theorem 1 establishes subGaussian tails for the elements of the
matrix estimator �̃. It is known that, when univariate or bivariate continuous Itô
processes are observed with measurement errors at n discrete time points, the opti-
mal convergence rates for estimating a univariate integrated volatility or a bivariate
integrated co-volatility are n−1/4 [Gloter and Jacod (2001a, 2001b), Reiß (2011),
and Xiu (2010)]. The

√
nx2 factor in the exponent of the tail probability bound

on the right-hand side of (12) indicates a n−1/4 convergence rate for �̃ij − �ij ,
which matches the optimal convergence rate for the univariate integrated volatility
estimation. This is in contrast to sub-optimal convergence rate results in the liter-
ature where a n−1/6 convergence rate was obtained; see, for example, Fan, Li and
Yu (2012), Wang and Zou (2010), Zhang, Mykland and Aït-Sahalia (2005), and
Zheng and Li (2011).

THEOREM 2. For the threshold estimator �̂ in (7) we choose threshold � =
�n−1/4√log(np) with any fixed constant � ≥ 5

√
ς0, where ς0 is the constant in

the exponent of the tail probability bound on the right-hand side of (12). Denote
by Pq(πn(p)) the set of distributions of Yi(t�), i = 1, . . . , p, � = 1, . . . , n, from
models (1)–(2) satisfying conditions A1–A3. Then as n,p → ∞,

sup
Pq (πn(p))

E‖�̂ − �‖2
2 ≤ sup

Pq (πn(p))

E‖�̂ − �‖2
1

(13)
≤ C∗[πn(p)

(
n−1/4

√
logp

)1−q]2
,

where C∗ is a constant free of n and p.
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REMARK 2. For sparse covariance matrix estimation, Cai and Zhou (2012)
has shown that the threshold estimator in Bickel and Levina (2008b) is rate-
optimal, and the optimal convergence rate depends on n and p through n−1/2 ×√

logp. The convergence rate obtained in Theorem 2 depends on the sample size n

and the matrix size p through n−1/4√logp. Note that n−1/4 is the optimal conver-
gence rate for estimating a univariate integrated volatility or a bivariate integrated
co-volatility based on noisy data. Since our estimation problem is a generaliza-
tion of covariance matrix estimation for i.i.d. data to volatility matrix estimation
for an Itô process with measurement errors on one hand and a high-dimensional
extension of univariate volatility estimation on the other hand, it is interesting to
see that the convergence rate in Theorem 2 is a natural blend of convergence rates
in the two cases. Also as Theorem 2 implies that the maximum of the eigenvalue
differences between �̂ and � is bounded by

√
C∗πn(p)(n−1/4√logp)1−q . Thus if

the eigenvalues of � all exceed
√

C∗πn(p)(n−1/4√logp)1−q , asymptotically the
eigenvalues of �̂ are positive, and �̂ is a positive definite matrix. In particular, if
πn(p)(n−1/4√logp)1−q goes to zero as n and p go to infinity, and � is positive
definite and well conditioned, then �̂ is asymptotically positive definite and well
conditioned. In Section 4 we will establish the minimax lower bound for estimat-
ing � and show that the convergence rate in Theorem 2 is optimal.

4. Optimal convergence rate. This section establishes the minimax lower
bound for estimating � under models (1)–(2) and shows that asymptotically �̂
achieves the lower bound and thus is optimal. We state the minimax lower bound
for estimating � with Pq(πn(p)) under the matrix spectral norm as follows.

THEOREM 3. For models (1)–(2) satisfying conditions A1–A3, if for some
constant ℵ > 0,

πn(p) ≤ ℵn(1−q)/4/(logp)(3−q)/2,(14)

the minimax risk for estimating � with Pq(πn(p)) satisfies that as n,p → ∞,

inf
�̌

sup
Pq (πn(p))

E‖�̌ − �‖2
2 ≥ C∗

[
πn(p)

(
n−1/4

√
logp

)1−q]2
,(15)

where C∗ is a positive constant free of n and p, and the infimum is taken over all
estimators �̌ based on the data Yi(t�), i = 1, . . . , p, � = 1, . . . , n, from models (1)–
(2).

REMARK 3. Note that the lower bound convergence rate in Theorem 3
matches the convergence rate of the estimator �̂ obtained in Theorem 2. Com-
bining Theorems 2 and 3 together we conclude that the optimal convergence rate
is πn(p)(n−1/4√logp)1−q , and the estimator �̂ in (7) achieves the optimal conver-
gence rate. Moreover, such optimal estimation results hold for any matrix �d norm



1824 M. TAO, Y. WANG AND H. H. ZHOU

with 1 ≤ d ≤ ∞. Indeed, it can be shown that under the conditions of Theorems 2
and 3, we have that as n and p go to infinity,

C∗
4

[
πn(p)

(
n−1/4

√
logp

)1−q]2
≤ inf

�̌
sup

Pq (πn(p))

E‖�̌ − �‖2
d ≤ sup

Pq (πn(p))

E‖�̂ − �‖2
d(16)

≤ C∗[πn(p)
(
n−1/4

√
logp

)1−q]2
,

where C∗ and C∗ are constants in Theorems 2 and 3, respectively, �̂ is the thresh-
old estimator given by (7) with the threshold value specified in Theorem 2 and
the infimum is taken over all estimators �̌ based on the data Yi(t�), i = 1, . . . , p,
� = 1, . . . , n, from models (1)–(2).

REMARK 4. Condition (14) is a technical condition that we need to establish
the minimax lower bound. It is compatible with conditions A1 and A3 regarding
the constraint on n and p as well as the slow growth of πn(p) in the sparsity
condition (11).

Models (1)–(2) are complicated nonparametric models, and the observations
from the models are dependent and have subGaussian measurement errors. To de-
rive the minimax lower bound for models (1)–(2), we find a special subclass of
the models to attain the minimax lower bound of the models. Such an approach
is often referred to as the method of hardest subproblem. Since generally a min-
imax problem has lower bound no larger than any of its subproblems, the men-
tioned special subclass corresponds to the hardest subproblem and is referred to
as the least favorable submodel. We will show in Sections 4.1 and 4.2 that the
least favorable submodel for models (1)–(2) can be taken as i.i.d. Gaussian mea-
surement errors εi(t�) and process X(t) with zero drift and constant volatilities.
To establish the minimax lower bound for the least favorable submodel, luckily
we are able to find a nice trick in Section 4.1 that transforms the minimax lower
bound problem for the least favorable submodel into a new covariance matrix esti-
mation problem with independent but nonidentically distributed observations. Cai
and Zhou (2012) have developed an approach combining both Le Cam’s method
and Assouad’s lemma, which are two popular methods to establish minimax lower
bounds, to derive the minimax lower bound for estimating a large sparse covari-
ance matrix based on i.i.d. observations. We adopt the approach in Cai and Zhou
(2012) to derive the minimax lower bound for the new covariance matrix estima-
tion problem with independent but nonidentically distributed observations, which
is stated in Theorem 4 of Section 4.2. The derived minimax lower bound in Theo-
rem 4 corresponds to the least favorable submodel and thus is the minimax lower
bound for models (1)–(2). Therefore, we prove Theorem 3.
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4.1. Model transformation. We take a subclass of models (1)–(2) as follows.
For the Itô processes X(t) we let μt = 0 and σ t be a constant matrix σ ; for the
noises we let εi(t�), i = 1, . . . , p, � = 1, . . . , n, be i.i.d. random variables with
N(0, κ2) distribution, where κ > 0 is specified in condition A1. Then � = (�ij ) =
σ T σ , and the sparsity condition (11) becomes

p∑
j=1

|�ij |q ≤ c3πn(p),(17)

where c3 = E() and  is given by (11).
Let Yl = (Y1(tl), . . . , Yp(tl))

T , and εl = (ε1(tl), . . . , εp(tl))
T . Then models (1)–

(2) become

Yl = σBtl + εl , l = 1, . . . , n, tl = l/n(18)

and εl ∼ N(0, κ2Ip). As Yl are dependent, we take differences in (18) and obtain

Yl − Yl−1 = σ (Btl − Btl−1) + εl − εl−1, l = 1, . . . , n,(19)

here Y0 = ε0 ∼ N(0, κ2Ip). For matrix (εl − εl−1,1 ≤ l ≤ n) = (εi(tl) −
εi(tl−1),1 ≤ i ≤ p,1 ≤ l ≤ n), its elements are independent at different rows but
correlated at the same rows. At the ith row, elements εi(tl)− εi(tl−1), l = 1, . . . , n,
have covariance matrix κ2ϒ , where ϒ is a n × n tridiagonal matrix with 2 along
diagonal entries, −1 next to diagonal entries and 0 elsewhere. ϒ is a Toeplitz
matrix [Wilkinson (1988)] that can be diagonalized as follows:

ϒ = Q�QT , � = diag(ϕ1, . . . , ϕn),(20)

where ϕl are eigenvalues with expressions

ϕl = 4 sin2
[

πl

2(n + 1)

]
, l = 1, . . . , n,(21)

and Q is an orthogonal matrix formed by the eigenvectors of ϒ . Using (20) we
transform the ith row of the matrix (εl − εl−1,1 ≤ l ≤ n) by Q, and obtain

Var
[(

εi(t1) − εi(t0), . . . , εi(tn) − εi(tn−1)
)
Q
]= κ2QT ϒQ = κ2�.

For i = 1, . . . , p, let

(ei1, . . . , ein) = (√
n
[
εi(t1) − εi(t0)

]
, . . . ,

√
n
[
εi(tn) − εi(tn−1)

])
Q,

(ui1, . . . , uin) = (√
n
[
Yi(t1) − Yi(t0)

]
, . . . ,

√
n
[
Yi(tn) − Yi(tn−1)

])
Q,

(vi1, . . . , vin) = (√
n
[
Bi(t1) − Bi(t0)

]
, . . . ,

√
n
[
Bi(tn) − Bi(tn−1)

])
Q.

Then as Q diagonalizes ϒ , eil are independent, with eil ∼ N(0, nκ2ϕl); because
Bi(tl) − Bi(tl−1) are i.i.d. normal random variables with mean zero and variance
1/n, and Q is orthogonal, vil are i.i.d. standard normal random variables.
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Put (19) in a matrix form and right multiply by
√

nQ on both sides to obtain

(uil) = σ (vil) + (eil).

Denote by Ul , Vl and el the column vectors of the matrices (uil), (vil) and (eil),
respectively. Then the above matrix equation is equivalent to

Ul = σVl + el , l = 1, . . . , n,(22)

where el ∼ N(0, κ2nϕlIp) and Vl ∼ N(0, Ip).
From (22) we have that the data transformed random vectors U1, . . . ,Un are in-

dependent with Ul ∼ N(0,�+ (al −1)Ip), where al = 1+κ2nϕl with 0 < κ < ∞.

4.2. Lower bound. We convert the minimax lower bound problem stated in
Theorem 3 into a much simpler problem of estimating � based on the observa-
tions U1, . . . ,Un from model (22), where � are constant matrices satisfying (17)
and ‖�‖2 ≤ τ for some constant τ > 0. We denote the new minimax estimation
problem by Qq(πn(p)), and the theorem below derives its minimax lower bound.

THEOREM 4. Assume p ≥ nβ/2 for some β > 1. If πn(p) obeys (14), the min-
imax risk for estimating matrix � with Qq(πn(p)) satisfies that as n,p → ∞,

inf
�̌

sup
Qq (πn(p))

E‖�̌ − �‖2
2 ≥ C∗

[
πn(p)

(
n−1/4

√
logp

)1−q]2
,(23)

where C∗ is a positive constant free of n and p, and the infimum is taken over all
estimators �̌ based on the observations U1, . . . ,Un from model (22).

REMARK 5. As we discussed in Remarks 1 and 2 in Section 3, due to noise
contamination, the optimal convergence rate depends on sample size through
n−1/4, instead of n−1/2 for covariance matrix estimation. For the univariate case,
discrete sine transform was used to construct a realized volatility estimator [Aït-
Sahalia, Mykland and Zhang (2005) and Curci and Corsi (2012)] and reveal
some intrinsic insight into how the n−1/4 convergence rate is obtained [Munk and
Schmidt-Hieber (2010)]. The similar insight for the high-dimensional case can be
seen from the transformation in Section 4.1, which converts model (19) with noisy
data into model (22) where the independent random vector Ul follows a multi-
variate normal distribution with mean zero and covariance matrix � + κ2nϕlIp ,
l = 1, . . . , n. The transformation via orthogonal matrix Q, which diagonalizes
Toeplitz matrix ϒ and is equal to (sin(�rπ/(n + 1)),1 ≤ �, r ≤ n) normalized
by

√
2/(n + 1) [see Salkuyeh (2006)], corresponds to a discrete sine transform,

with (22) in frequency domain and Ul ∼ N(0,� + κ2nϕlIp) corresponding to the
discrete sine transform of the data at frequency lπ/(n+1). By comparing the order
of nϕl , we derive that only at those frequencies with l up to

√
n, the transformed
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data Ul are informative for estimating �, and we use these [√n] number of Ul to
estimate � and obtain (

√
n)−1/2 = n−1/4 convergence rate. In fact, we have seen

the phenomenon in Section 2.1 where the N scales used in the construction of �̃

in (5) correspond to Km, with both N and Km of order
√

n.

5. A simulation study. A simulation study was conducted to compare the
finite sample performances of the MSRVM estimator in (5) and the threshold
MSRVM estimator in (7) with those of the ARVM estimator and the thresh-
old ARVM estimator introduced in Wang and Zou (2010). We generated X(t) =
(X1(t), . . . ,Xp(t))T at discrete time points t� = �/n, � = 1, . . . , n, from model (1)
with μt = 0 by the Euler scheme, where univariate standard Brownian motions
were stimulated by the normalized partial sums of independent standard normal
random variables, σ t� was taken to be a Cholesky decomposition of

γ (t�) = (
γij (t�)

)
, γij (t�) =

√
γii(t�)γjj (t�)�

|i−j |,

� was independently generated from a uniform distribution on [0.47,0.53],
(γii(t1), . . . , γii(tn)), i = 1, . . . , p, were independently drawn from a geomet-
ric Ornstein–Uhlenbeck process satisfying d logγii(t) = 6[0.5 − logγii(t)]dt +
dWi(t) and Wi(t) are independent one-dimensional standard Brownian motions
that are independent of Bt in model (1). We computed � by the average of
γ (t1), . . . ,γ (tn). We simulated noises εi(t�) independently from a normal distri-
bution with mean 0 and standard deviation θ

√
�ii , i = 1, . . . , p, where θ is the

relative noise level ranging from 0 to 0.7. Finally data Yi(t�) were obtained by
adding the simulated εi(t�) to the generated Xi(t�) according to model (2). Using
the simulated data Yi(t�) we computed the MSRVM estimator and the threshold
MSRVM estimator as well as the ARVM estimator and the threshold ARVM es-
timator. In the simulation study we took n = 200 and p = 100. We repeated the
whole simulation procedure 200 times. For a given matrix estimator �̌, a relative
matrix spectral norm error ‖�̌ − �‖2/‖�‖2 was used to measure its performance.
We evaluated the mean relative matrix spectral norm error (MRE) by the average
of the relative matrix spectral norm errors over the 200 repetitions. As in Wang
and Zou (2010) we selected tuning parameters like threshold of the estimators by
minimizing the respective MREs.

Figure 1 is the plots of MRE versus relative noise level θ for the MSRVM,
ARVM, threshold MSRVM and threshold ARVM estimators. The basic findings
are that while the MREs of the threshold MSRVM and threshold ARVM estima-
tors are comparable at low relative noise levels, the threshold MSRVM estimator
has smaller MRE than the threshold ARVM estimator at high relative noise levels;
regardless of relative noise levels, the threshold MSRVM and threshold ARVM
estimators have significantly smaller MREs than the MSRVM and ARVM estima-
tors. The simulation results support the theoretical conclusions that the threshold
procedure is needed for constructing consistent estimators of �, and the threshold
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FIG. 1. The MRE plots of the four estimators for n = 200 and p = 100.

MSRVM estimator is asymptotically optimal, while the threshold ARVM estima-
tor is suboptimal.

We point out that it is important to have a data-driven choice of tuning pa-
rameters for volatility matrix estimator defined in (7). This is largely an open is-
sue. We briefly describe an approach for developing a data-dependent selection
of the tuning parameters as follows. For data {Yi(t�), i = 1, . . . , p, � = 1, . . . , n}
observed from models (1)–(2), we may divide the whole data time interval into
L subintervals I1, . . . , IL, and partition data Yi(t�) into L subsamples {Yi(t�), i =
1, . . . , p, t� ∈ Ik}, k = 1, . . . ,L, over the L corresponding time periods. To esti-
mate integrated volatility

∫
Ik

γ (t) dt/|Ik| over the kth period, according to the pro-
cedure described in Section 2.2, we use the kth subsample to construct volatility
matrix estimator, which is denoted by �̂k(N,�) to emphasize its dependence on
N and � , where |Ik| denotes the length of Ik , � is a threshold value and N is an
integer that specifies scales used in the volatility matrix estimator given by (7). We
predict one period ahead volatility matrix estimator �̂k+1(N,�) by current period
volatility matrix estimator �̂k(N,�) and compute the predication error. We min-
imize the sum of the spectral norms of the predication errors to select N and � .
For example, we often have high-frequency financial data over many days, and it
is natural to use data in each day to estimate the integrated volatility matrix over
the corresponding day. We predict one day ahead daily volatility matrix estimator
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by current daily volatility matrix estimator and compute the predication error. The
tuning parameters are then selected by minimizing the sum of the spectral norms
of the prediction errors.

6. Proofs. Denote by C’s generic constants whose values are free of n and p

and may change from appearance to appearance. Let u ∨ v and u ∧ v be the maxi-
mum and minimum of u and v, respectively. For two sequences un,p and vn,p we
write un,p � vn,p if there exist positive constants C1 and C2 free of n and p such
that C1 ≤ un,p/vn,p ≤ C2. Without loss of generality we take N = [n1/2] in the
construction of �̃ given by (5) in Section 2.2.

6.1. Proofs of Theorems 1 and 2. Let

Ykm
r = (

Y1
(
τ km
r

)
, . . . , Yp

(
τ km
r

))T
,

Xkm
r = (

X1
(
τ km
r

)
, . . . ,Xp

(
τ km
r

))T
,

εkm
r = (

ε1
(
τ km
r

)
, . . . , εp

(
τ km
r

))T
,

which are random vectors corresponding to the data, the Itô process and the noises
at the time point τ

km
r , r = 1, . . . , |τ km |, km = 1, . . . ,Km, and m = 1, . . . ,N . Note

that we choose index km to specify that the analyses are associated with the study
of �Km here and below. We decompose �̃Km defined in (4) as follows:

�̃Km = 1

Km

Km∑
km=1

|τ km |∑
r=2

(
Ykm

r − Ykm

r−1

)(
Ykm

r − Ykm

r−1

)T

= 1

Km

Km∑
km=1

|τ km |∑
r=2

(
Xkm

r − Xkm

r−1 + εkm
r − ε

km

r−1

)
× (

Xkm
r − Xkm

r−1 + εkm
r − ε

km

r−1

)T
= 1

Km

Km∑
km=1

|τ km |∑
r=2

{(
Xkm

r − Xkm

r−1

)(
Xkm

r − Xkm

r−1

)T
(24)

+ (
εkm

r − ε
km

r−1

)(
εkm

r − ε
km

r−1

)T
+ (

Xkm
r − Xkm

r−1

)(
εkm

r − ε
km

r−1

)T
+ (

εkm
r − ε

km

r−1

)(
Xkm

r − Xkm

r−1

)T }
≡ VKm + GKm(1) + GKm(2) + GKm(3),
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and thus from (5) we obtain the corresponding decomposition for �̃,

�̃ =
N∑

m=1

amVKm + ζ
(
VK1 − VKN

)

+
3∑

r=1

[
N∑

m=1

amGKm(r) + ζ
(
GK1(r) − GKN (r)

)]
(25)

≡ V + G(1) + G(2) + G(3),

where the Vkm and V terms are associated with the process X(t) only, the GKm(1)

and G(1) terms are related to the noises εi(t�) only and the terms denoted by
GKm(2), GKm(3), G(2) and G(3) depend on both X(t) and εi(t�).

Now we may heuristically explain the basic ideas for proving Theorems 1 and 2
as follows. With the expression (25) we prove the tail probability result for �̃
in Theorem 1 by establishing tail probabilities for these V and G terms in the
following three propositions whose proofs will be given in Appendix I.

PROPOSITION 5. Under the assumptions of Theorem 1, we have for 1 ≤ i, j ≤
p and positive d in a neighbor of 0,

P
(|Vij − �ij | ≥ d

)≤ C1n exp
{−√

nd2/C2
}
.

PROPOSITION 6. Under the assumptions of Theorem 1, we have for 1 ≤ i, j ≤
p and positive d in a neighbor of 0,

P
(∣∣Gij (2)

∣∣≥ d
)≤ C1n exp

{−√
nd2/C2

}
,

P
(∣∣Gij (3)

∣∣≥ d
)≤ C1n exp

{−√
nd2/C2

}
.

PROPOSITION 7. Under the assumptions of Theorem 1, we have for 1 ≤ i, j ≤
p and positive d in a neighbor of 0,

P
(∣∣Gij (1)

∣∣≥ d
)≤ C1

√
n exp

{−√
nd2/C2

}
.

Because Vij are quadratic forms in the process X(t�) only, we derive their tail
probability in Proposition 5 from the boundedness of the drift and volatility in con-
dition A2; as Gij (1) are quadratic forms in the noises εi(t�) only, we establish the
tail probability of Gij (1) in Proposition 7 from the subGaussianity of εi(t�) im-
posed by condition A1; Gij (2) and Gij (3) are bilinear forms in X(t�) and εi(t�),
thus we obtain the tail probabilities for Gij (2) and Gij (3) in Proposition 6 from the
subGaussian tails of εi(t�) and Vij as well as the independence between εi(t�) and
X(t) given by condition A1. Since �̂ is the matrix estimator obtained by thresh-
olding �̃, we use the tail probability result in Theorem 1 and the sparsity of � to
analyze �̂ − � and control its matrix norm for proving Theorem 2.
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PROOF OF THEOREM 1. From (25) we have

P
(|�̃ij − �ij | ≥ x

)≤ P
(|Vij − �ij | ≥ x/4

)+ 3∑
r=1

P
(∣∣Gij (r)

∣∣≥ x/4
)
,

and thus the theorem is a consequence of Propositions 5–7. �

PROOF OF THEOREM 2. Define

Aij = {|�̂ij − �ij | ≤ 2 min
{|�ij |,� }}, Dij = (�̂ij − �ij )1

(
Ac

ij

)
,

D = (Dij )1≤i,j≤p.

As the matrix norm of a symmetric matrix is bounded by its �1-norm, then

E‖�̂ − �‖2
2 ≤ E‖�̂ − �‖2

1 ≤ 2E‖�̂ − � − D‖2
1 + 2E‖D‖2

1.(26)

We can bound E‖�̂ − � − D‖2
1 as follows:

E‖�̂ − � − D‖2
1

= E

[
max

1≤j≤p

p∑
i=1

|�̂ij − �ij |1(|�̂ij − �ij | ≤ 2 min
{|�ij |,� })

]2

≤ E

[
max

1≤j≤p

p∑
i=1

2|�ij |1(|�ij | < �
)]2

+ E

[
max

1≤j≤p

p∑
i=1

2�1
(|�ij | ≥ �

)]2

≤ 8E
[
2]π2

n(p)� 2(1−q) ≤ Cπ2
n(p)

(
n−1/4

√
logp

)2−2q
,

where the second inequality is due to the fact that the sparsity of � implies

max
1≤j≤p

p∑
i=1

1
(|�ij | ≥ �

)≤ πn(p)�−q,

max
1≤j≤p

p∑
i=1

|�ij |1(|�ij | < �
)≤ πn(p)� 1−q,

which are the respective bounds on the number of those entries on each row with
absolute values larger than or equal to � and the sum of those absolute entries on
each row with magnitudes less than � ; see Lemma 1 in Wang and Zou (2010).
The rest of the proof is to show that E‖D‖2

1 = O(n−2), a negligible term. Indeed,
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the threshold rule indicates that �̂ij = 0 if |�̃ij | < � and �̂ij = �̃ij if |�̃ij | ≥ � ,
thus

E‖D‖2
1 ≤ p

p∑
i,j=1

E
[|�ij |21

(|�ij | > 2 min
{|�ij |,� })1(�̂ij = 0)

]

+ p

p∑
i,j

E
[|�̃ij − �ij |21

(|�̃ij − �ij | > 2 min
{|�ij |,� })1(�̂ij = �̃ij )

]
≡ I1 + I2.

For term I1, we have

I1 ≤ p

p∑
i,j=1

E
[|�ij |21

(|�̃ij − �ij | > �
)]≤ Cp

p∑
i,j=1

P
(|�̃ij − �ij | > �

)
≤ Cp3 exp

{
logn − √

n� 2/ς0
}≤ Cn−2,

where the third inequality is from Theorem 1, and the last inequality is due to
� = �n−1/4√log(np) with �

2/ς0 > 4.
On the other hand, we can bound term I2 as follows:

I2 ≤ p

p∑
i,j=1

E
[|�̃ij − �ij |21

(|�̃ij − �ij | > �
)]

+ p

p∑
i,j=1

E
[|�̃ij − �ij |21

(|�ij | < �/2, |�̃ij | ≥ �
)]

≤ 2p

p∑
i,j=1

E
[|�̃ij − �ij |21

(|�̃ij − �ij | > �/2
)]

≤ 2p

p∑
i,j=1

{
E
[|�̃ij − �ij |4]P (|�̃ij − �ij | > �/2

)}1/2

≤ Cp3 exp
{
logn/2 − √

n� 2/(8ς0)
}≤ Cn−2,

where the third inequality is due to Hölder’s inequality, the fourth inequality is
from Theorem 1 and

max
1≤i,j≤p

E
[|�̃ij − �ij |4]≤ C(27)

and the last inequality is due to the fact that � = �n−1/4√log(np) with
�

2/(8ς0) > 3.
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To complete the proof we need to show (27). As in Zhang, Mykland and Aït-
Sahalia (2005), we adjust �̃Km to account for the noise variances. Let

η̃ = diag(η̃1, . . . , η̃p), η̃i = 1

2n

n∑
�=2

[
Yi(t�) − Yi(t�−1)

]2
,(28)

and define

�̃∗Km = �̃Km − 2
n − Km + 1

Km

η̃,(29)

which are the average realized volatility matrix (ARVM) estimators where the con-
vergence rates for any finite moments of �̃

∗Km

ij − �ij are derived in Wang and Zou
[(2010), Theorem 1]. Applying Theorem 1 of Wang and Zou (2010) to the fourth
moment of �̃

∗Km

ij − �ij , we have for 1 ≤ i, j ≤ p and 1 ≤ m ≤ N ,

E
(∣∣�̃∗Km

ij − �ij

∣∣4)
(30)

≤ C
[(

Kmn−1/2)−4 + K−2
m + (n/Km)−2 + K−4

m + n−2]≤ C.

From (5), (6) and (29) together with simple algebraic manipulations we can ex-
press �̃ by �̃∗Km as follows:

�̃ =
N∑

m=1

am�̃∗Km + ζ
(
�̃∗K1 − �̃∗KN

)
,

and thus

�̃ − � =
N∑

m=1

am

(
�̃∗Km − �

)+ ζ
[(

�̃∗K1 − �
)− (�̃∗KN − �

)]
.(31)

Combining (30) and (31) and using (6) we conclude for 1 ≤ i, j ≤ p,

E
[|�̃ij − �ij |4]

≤ (N + 2)3

[
N∑

m=1

a4
mE
(∣∣�̃∗Km

ij − �ij

∣∣4)

+ ζ 4E
(∣∣�̃∗K1 − �ij

∣∣4 + ∣∣�̃∗KN − �ij

∣∣4)]
≤ C. �

6.2. Proofs of Theorems 3 and 4. Section 4.1 shows that Theorem 3 is a con-
sequence of Theorem 4. The proof of Theorem 4 is similar to but much more
involved than the proof of Theorem 2 in Cai and Zhou (2012) which considered
only i.i.d. observations. It contains four major steps. In the first step we construct in
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detail a finite subset F∗ of the parameter space Gq(πn(p)) in the minimax problem
Qq(πn(p)) such that the difficulty of estimation over F∗ is essentially the same as
that of estimation over Gq(πn(p)), where Gq(πn(p)) is the class of constant ma-
trices � satisfying (17) and ‖�‖2 ≤ τ for constant τ > 0. The second step applies
the lower bound argument in Cai and Zhou [(2012), Lemma 3] to the carefully
constructed parameter set F∗. In the third step we calculate the factor α defined
in (40) below and the total variation affinity between two average of products of
n independent but nonidentically distributed multivariate normals. The final step
combines together the results in steps 2 and 3 to obtain the minimax lower bound.

Step 1: Construct parameter set F∗. Set r = �p/2�, where �x� denotes the
smallest integer greater than or equal to x, and let B be the collection of all row
vectors b = (vj )1≤j≤p such that vj = 0 for 1 ≤ j ≤ p − r and vj = 0 or 1 for
p − r + 1 ≤ j ≤ p under the constraint ‖b‖0 = k (to be specified later). Each el-
ement λ = (b1, . . . , br) ∈ Br is treated as an r × p matrix with the ith row of λ

equal to bi . Let � = {0,1}r . Define � ⊂ Br to be the set of all elements in Br

such that each column sum is less than or equal to 2k. For each b ∈ B and each
1 ≤ m ≤ r , define a p × p symmetric matrix Am(b) by making the mth row of
Am(b) equal to b, mth column equal to bT and the rest of the entries 0. Then each
component λi of λ = (λ1, . . . , λr) ∈ � can be uniquely associated with a p × p

matrix Ai(λi). Define � = � ⊗ �, and let εn,p ∈ R be fixed (the exact value of
εn,p will be chosen later). For each θ = (γ, λ) ∈ � with γ = (γ1, . . . , γr) ∈ � and
λ = (λ1, . . . , λr) ∈ �, we associate θ = (γ1, . . . , γr , λ1, . . . , λr) with a volatility
matrix �(θ) by

�(θ) = Ip + εn,p

r∑
m=1

γmAm(λm).(32)

For simplicity we assume that τ > 1 in the definition of the parameter space
Gq(πn(p)) for the minimax problem Qq(πn(p)); otherwise we replace Ip in (32)
by CIp with a small constant C > 0. Finally we define F∗ to be a collection of
covariance matrices as

F∗ =
{
�(θ) :�(θ) = Ip + εn,p

r∑
m=1

γmAm(λm), θ = (γ, λ) ∈ �

}
.(33)

Note that each matrix � ∈ F∗ has value 1 along the main diagonal and contains an
r × r submatrix, say, A, at the upper right corner, AT at the lower left corner and 0
elsewhere; each row of the submatrix A is either identically 0 (if the corresponding
γ value is 0) or has exactly k nonzero elements with value εn,p .

Now we specify the values of εn,p and k:

εn,p = υ

(
logp√

n

)1/2

, k =
⌈

1

2
πn(p)ε−q

n,p

⌉
− 1,(34)
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where υ is a fixed small constant that we require

0 < υ <

[
min

{
1

3
, τ − 1

}
1

ℵ
]1/(1−q)

(35)

and

0 < υ2 <
β − 1

27cκβ
,(36)

where cκ = (2κ)−1 satisfies
n∑

l=1

a−2
l ≤ cκ

√
n,(37)

since
n∑

l=1

a−2
l ≤

∫ n

0

[
1 + 4κ2n sin2

(
πx

2(n + 1)

)]−2

dx ≤ n + 1

πκ
√

n

∫ ∞
0

[
1 + v2]−2

dv

=
√

n + 1/
√

n

4κ
.

Note that εn,p and k satisfy maxj≤p

∑
i 
=j |�ij |q ≤ 2kε

q
n,p ≤ πn(p),

2kεn,p ≤ πn(p)ε1−q
n,p ≤ ℵυ1−q < min

{1
3 , τ − 1

}
,(38)

and consequently every �(θ) is diagonally dominant and positive definite, and
‖�(θ)‖2 ≤ ‖�(θ)‖1 ≤ 2kεn,p + 1 < τ . Thus we have F∗ ⊂ Gq(πn(p)).

Step 2: Apply the general lower bound argument. Let Ul be independent with

Ul ∼ N
(
0,�(θ) + (al − 1)Ip

)
,

where l = 1, . . . , n, θ ∈ �, and we denote the joint distribution by Pθ . Applying
Lemma 3 in Cai and Zhou (2012) to the parameter space �, we have

inf
�̌

max
θ∈�

Eθ

∥∥�̌ − �(θ)
∥∥2

2 ≥ α · r

8
· min

1≤i≤r
‖P̄i,0 ∧ P̄i,1‖,(39)

where we use ‖P‖ to denote the total variation of P,

α ≡ min{(θ,θ ′) : H(γ (θ),γ (θ ′))≥1}
‖�(θ) − �(θ ′)‖2

2

H(γ (θ), γ (θ ′))
,

(40)

H
(
γ (θ), γ

(
θ ′))= r∑

i=1

∣∣γi(θ) − γi

(
θ ′)∣∣

and

P̄i,a = 1

2r−1D�

∑
θ∈�

Pθ · {θ :γi(θ) = a
}
,(41)
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where a ∈ {0,1} and D� = Card{�}.
Step 3: Bound the affinity and per comparison loss. We need to bound the two

factors α and mini ‖P̄i,0 ∧ P̄i,1‖ in (39). A lower bound for α is given by the
following proposition whose proof is the same as that of Lemma 5 in Cai and
Zhou (2012).

PROPOSITION 8. For α defined in equation (40) we have

α ≥ (kεn,p)2

p
.

A lower bound for mini ‖P̄i,0 ∧ P̄i,1‖ is provided by the proposition below. Since
its proof is long and very much involved, the proof details are collected in Ap-
pendix II.

PROPOSITION 9. Let Ul be independent with Ul ∼ N(0,�(θ) + (al − 1)Ip),
l = 1, . . . , n, with θ ∈ � and denote the joint distribution by Pθ . For a ∈ {0,1} and
1 ≤ i ≤ r , define P̄i,a as in (41). Then there exists a constant C1 > 0 such that

min
1≤i≤r

‖P̄i,0 ∧ P̄i,1‖ ≥ C1

uniformly over �.

Step 4: Obtain the minimax lower bound. We obtain the minimax lower bound
for estimating � over Gq(πn(p)) by combining together (39) and the bounds in
Propositions 8 and 9,

inf
�̌

sup
Gq (πn(p))

E‖�̌ − �‖2
2 ≥ inf

�̌
max

�(θ)∈F∗
Eθ

∥∥�̌ − �(θ)
∥∥2

2 ≥ (kεn,p)2

p
· r

8
· C1

≥ C1

16
(kεn,p)2 = C2π

2
n(p)

(
n−1/4

√
logp

)2−2q

for some constant C2 > 0.

6.3. Proof of (16) for optimal convergence rate under general matrix norm.
The Riesz–Thorin interpolation theorem [Thorin (1948)] implies for 1 ≤ d1 ≤ d ≤
d2 ≤ ∞,

‖A‖d ≤ max
{‖A‖d1,‖A‖d2

}
.(42)

Set d1 = 1 and d2 = ∞, then (42 ) yields ‖A‖d ≤ max{‖A‖1,‖A‖∞} for
1 ≤ d ≤ ∞. When A is symmetric, (8) shows that ‖A‖1 = ‖A‖∞. Then immedi-
ately we have ‖A‖d ≤ ‖A‖1, which means that for a symmetric matrix estimator,
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an upper bound under the matrix �1 norm is also an upper bound under the general
matrix �d norm. Thus, as �̂ is symmetric, Theorem 2 indicates that for 1 ≤ d ≤ ∞,

sup
Pq (πn(p))

E‖�̂ − �‖2
d ≤ C∗[πn(p)

(
n−1/4

√
logp

)1−q]2
.

Now consider the lower bound under the general matrix �d norm for 1 ≤ d ≤ ∞.
We will show

inf
�̌s

sup
Pq (πn(p))

E‖�̌s − �‖2
d ≥ inf

�̌
sup

Pq (πn(p))

E‖�̌ − �‖2
d

(43)

≥ 1

4
inf
�̌s

sup
Pq (πn(p))

E‖�̌s − �‖2
d,

where �̌ denotes any matrix estimators of �, and �̌s any symmetric matrix esti-
mators of �. (43) indicates that it is enough to consider estimators of symmetric
matrices.

For symmetric A, (9) shows that ‖A‖2 ≤ ‖A‖1 = ‖A‖∞. For d ∈ (1,∞),
1/d + (d − 1)/d = 1, by duality we have ‖A‖d = ‖A‖d/(d−1). Also since 2
is always between d and d/(d − 1), applying (42) we obtain that ‖A‖2 ≤
max{‖A‖d,‖A‖d/(d−1)} = ‖A‖d . This means that within the class of symmetric
matrix estimators, a lower bound under the matrix �2 norm is also a lower bound
under the general matrix �d norm. Thus (43) and Theorem 3 together imply that
for 1 ≤ d ≤ ∞,

inf
�̌

sup
Pq (πn(p))

E‖�̌ − �‖2
d ≥ C∗

4

[
πn(p)

(
n−1/4

√
logp

)1−q]2
.

To complete the proof we need to prove (43). The first inequality of (43) is obvi-
ous. For a given matrix estimator �̌ we project it onto the parameter space of the
minimax problem Pq(πn(p)) by minimizing the matrix �d norm of �̌ − �∗ over
all �∗ in the parameter space. Denote its projection by �̌p . Since the parameter
space consists of symmetric matrices, �̌p is symmetric. Hence

inf
�̌s

sup
Pq (πn(p))

E‖�̌s − �‖2
d

≤ sup
Pq (πn(p))

E‖�̌p − �‖2
d

≤ 2 sup
Pq (πn(p))

[
E‖�̌p − �̌‖2

d + E‖�̌ − �‖2
d

]
≤ 2 sup

Pq (πn(p))

[
E‖� − �̌‖2

d + E‖�̌ − �‖2
d

]
≤ 4 sup

Pq (πn(p))

E‖�̌ − �‖2
d,
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where the second inequality is from the triangle inequality and the third one fol-
lows from the definition of �̌p . Since the above inequality holds for every �̌, we
have

inf
�̌s

sup
Pq (πn(p))

E‖�̌s − �‖2
d

≤ 4 inf
�̌

sup
Pq (πn(p))

E‖�̌ − �‖2
d,

which is equivalent to the second inequality of (43).

APPENDIX I: PROOFS OF PROPOSITIONS 5–7

I.1. Proof of Proposition 5. From the expression of Vij in terms of V
Km

ij

given by (25), we have

P
(|Vij − �ij | ≥ d

)
≤ P

(
N∑

m=1

|am|∣∣V Km

ij − �ij

∣∣+ ζ
(∣∣V K1

ij − �ij

∣∣+ ∣∣V KN

ij − �ij

∣∣)≥ d

)

≤ P

(
N∑

m=1

|am|∣∣V Km

ij − �ij

∣∣≥ d/2

)
(44)

+ P
(
ζ
∣∣V K1

ij − �ij

∣∣+ ζ
∣∣V KN

ij − �ij

∣∣≥ d/2
)

≤
N∑

m=1

P
(∣∣V Km

ij − �ij

∣∣≥ d/(2A)
)+ P

(
ζ
∣∣V K1

ij − �ij

∣∣≥ d/4
)

+ P
(
ζ
∣∣V KN

ij − �ij

∣∣≥ d/4
)
,

where A =∑N
m=1 |am| = 9/2 + o(1).

The definition of V
Km

ij in (24) shows

V
Km

ij = 1

Km

Km∑
km=1

|τ km |∑
r=2

{
Xi

(
τ km
r

)− Xi

(
τ

km

r−1

)}{
Xj

(
τ km
r

)− Xj

(
τ

km

r−1

)}

≡ 1

Km

Km∑
km=1

[Xi,Xj ](km)

and

V
Km

ij − �ij = 1

Km

Km∑
km=1

[
[Xi,Xj ](km) −

∫ 1

0
γij (s) ds

]
.
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With the above expression for V
Km

ij −�ij we obtain that for d1 > 0 and 1 ≤ m ≤ N ,

P
(∣∣V Km

ij − �ij

∣∣≥ d1
)≤ P

(
1

Km

Km∑
km=1

∣∣∣∣[Xi,Xj ](km) −
∫ 1

0
γij (s) ds

∣∣∣∣≥ d1

)

≤
Km∑

km=1

P

(∣∣∣∣[Xi,Xj ](km) −
∫ 1

0
γij (s) ds

∣∣∣∣≥ d1

)
(45)

≤ C1Km exp
{
− n

Km

d2
1

C2

}
≤ C3

√
n exp

{−√
nd2

1/C4
}
,

where the third inequality is from Lemma 10 below and the last inequality is due
to the fact that

√
n ≤ Km ≤ 2

√
n and the maximum distance between consecutive

grids in τ km is bounded by Km/n ≤ 2/
√

n.
Substituting (45) into (44) we immediately prove Proposition 5 as follows:

P
(|Vij − �ij | ≥ d

)≤ C3N
√

n exp
{−√

nd2/
(
4A2C4

)}
+ 2C3

√
n exp

{−√
nd2/

(
16ζ 2C4

)}
≤ C5n exp

{−√
nd2/C6

}
.

LEMMA 10. Under model (1) and condition A2, for any sequence 0 = ν0 ≤
ν1 < ν2 < · · · < νm ≤ νm+1 = 1 satisfying max1≤r≤m+1 |νr − νr−1| ≤ C/m, we
have for 1 ≤ i, j ≤ p and small d > 0,

P

(∣∣∣∣∣
m∑

r=2

(
Xi(νr) − Xi(νr−1)

)(
Xj(νr) − Xj(νr−1)

)− ∫ 1

0
γij (s) ds

∣∣∣∣∣≥ d

)

≤ C1 exp
(−md2/C2

)
.

PROOF. Let X∗
i (t) = Xi(t) − ∫ t

0 μis ds and X∗(t) = (X∗
1(t), . . . ,X∗

p(t))T .
Then X∗(t) is a stochastic integral with respect to Bt and has the same quadratic
variation as X(t). Let Bt = (B1(t), . . . ,Bp(t))T . With σ t = (σij (t)) and γ (t) =
(γij (t)) = σ T

t σ t we have

X∗
i (t) =

∫ t

0

p∑
�=1

σ�i(s) dB�(s), i = 1, . . . , p,

with quadratic variation 〈X∗
i ,X

∗
i 〉t = ∫ t

0 γii(s) ds. Also X∗
i ± X∗

j have quadratic
variations 〈

X∗
i ± X∗

j ,X
∗
i ± X∗

j

〉
t =

∫ 1

0

[
γii(s) + γjj (s) ± 2γij (s)

]
ds.
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Define

B∗
i (t) =

∫ t

0
γ

−1/2
ii (s)

p∑
�=1

σ�i(s) dB�(s).

Then

X∗
i (t) =

∫ t

0
γ

1/2
ii (s) dB∗

i (s),

B∗
i is a continuous-time martingale and has quadratic variation

〈
B∗

i ,B∗
i

〉
t =

∫ t

0
γ −1
ii (s)

p∑
�=1

σ 2
�i(s) ds =

∫ t

0
γ −1
ii (s)γii(s) ds = t,

and hence Lévy’s martingale characterization of Brownian motion shows that B∗
i

is a one-dimensional Brownian motion; see Karatzas and Shreve [(1991), Theo-
rem 3.16]. We can apply Lemma 3 in Fan, Li and Yu (2012) to each X∗

i and obtain
for 1 ≤ i ≤ p,

P

(∣∣∣∣∣
m∑

r=2

[
X∗

i (νr) − X∗
i (νr−1)

]2 −
∫ νm

ν1

γii(s) ds

∣∣∣∣∣≥ d

)
(46)

≤ 4 exp
{−md2/C0

}
.

Similarly for X∗
i ± X∗

j , we define

B±
ij (s) =

∫ t

0

[
γii(s) + γjj (s) ± 2γij (s)

]−1/2
p∑

�=1

[
σ�i(s) ± σ�j (s)

]
dB�(s).

Then

X∗
i (t) ± X∗

j (t) =
∫ t

0

[
γii(s) + γjj (s) ± 2γij (s)

]1/2
dB±

ij (s),

B±
ij are continuous-time martingales with quadratic variations

〈
B±

ij ,B±
ij

〉
t =

∫ t

0

[
γii(s) + γjj (s) ± 2γij (s)

]−1

×
p∑

�=1

[
σ 2

�i(s) + σ 2
�j (s) ± 2σ�i(s)σ�j (s)

]
ds

=
∫ t

0

[
γii(s) + γjj (s) ± 2γij (s)

]−1[
γii(s) + γjj (s) ± 2γij (s)

]
ds = t,

and hence Lévy’s martingale characterization of Brownian motion implies that B±
ij

are one-dimensional Brownian motions. We can apply Lemma 3 in Fan, Li and Yu
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(2012) to each of X∗
i + X∗

j and X∗
i − X∗

j and obtain for 1 ≤ i, j ≤ p,

P

(∣∣∣∣∣
m∑

r=2

([
X∗

i (νr) − X∗
i (νr−1)

]± [
X∗

j (νr) − X∗
j (νr−1)

])2
−
∫ νm

ν1

[
γii(s) + γjj (s) ± 2γij (s)

]
ds

∣∣∣∣∣≥ d

)
(47)

≤ 4 exp
{−md2/C0

}
.

Note that

4γij (s) = [
γii(s) + γjj (s) + 2γij (s)

]− [γii(s) + γjj (s) − 2γij (s)
]
,

4
m∑

r=2

(
X∗

i (νr) − X∗
i (νr−1)

)(
X∗

j (νr) − X∗
j (νr−1)

)

=
m∑

r=2

{[
X∗

i (νr) − X∗
i (νr−1)

]+ [X∗
j (νr) − X∗

j (νr−1)
]}2

−
m∑

r=2

{[
X∗

i (νr) − X∗
i (νr−1)

]− [X∗
j (νr) − X∗

j (νr−1)
]}2

,

and thus

4

∣∣∣∣∣
m∑

r=2

(
X∗

i (νr) − X∗
i (νr−1)

)(
X∗

j (νr) − X∗
j (νr−1)

)− ∫ νm

ν1

γij (s) ds

∣∣∣∣∣
≤
∣∣∣∣∣

m∑
r=2

{[
X∗

i (νr) − X∗
i (νr−1)

]+ [X∗
j (νr) − X∗

j (νr−1)
]}2

−
∫ νm

ν1

[
γii(s) + γjj (s) + 2γij (s)

]
ds

∣∣∣∣∣
+
∣∣∣∣∣

m∑
r=2

{[
X∗

i (νr) − X∗
i (νr−1)

]− [X∗
j (νr) − X∗

j (νr−1)
]}2

−
∫ νm

ν1

[
γii(s) + γjj (s) − 2γij (s)

]
ds

∣∣∣∣∣.
Combining (47) and above inequality we conclude

P

(∣∣∣∣∣
m∑

r=2

(
X∗

i (νr) − X∗
i (νr−1)

)(
X∗

j (νr) − X∗
j (νr−1)

)− ∫ νm

ν1

γij (s) ds

∣∣∣∣∣≥ d

)
(48)

≤ 8 exp
{−m(d/8)2/C0

}= 8 exp
{−md2/(64C0)

}
.
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On the other hand,
m∑

r=2

(
Xi(νr) − Xi(νr−1)

)(
Xj(νr) − Xj(νr−1)

)

=
m∑

r=2

{[
X∗

i (νr) − X∗
i (νr−1)

]+ ∫ νr

νr−1

μis ds

}

×
{[

X∗
j (νr) − X∗

j (νr−1)
]+ ∫ νr

νr−1

μjs ds

}

=
m∑

r=2

(
X∗

i (νr) − X∗
i (νr−1)

)(
X∗

j (νr) − X∗
j (νr−1)

)
(49)

+
m∑

r=2

∫ νr

νr−1

μis ds

∫ νr

νr−1

μjs ds

+
m∑

r=2

[
X∗

i (νr ) − X∗
i (νr−1)

] ∫ νr

νr−1

μjs ds

+
m∑

r=2

[
X∗

j (νr) − X∗
j (νr−1)

] ∫ νr

νr−1

μis ds.

From condition A2 we have that μi and μj are bounded by c1, and thus∣∣∣∣∣
m∑

r=2

∫ νr

νr−1

μis ds

∫ νr

νr−1

μjs ds

∣∣∣∣∣≤ c2
1

m
.(50)

Applications of Hölder’s inequality lead to∣∣∣∣∣
m∑

r=2

[
X∗

i (νr) − X∗
i (νr−1)

] ∫ νr

νr−1

μjs ds

∣∣∣∣∣
2

≤
m∑

r=2

[
X∗

i (νr) − X∗
i (νr−1)

]2 m∑
r=2

∣∣∣∣∫ νr

νr−1

μjs ds

∣∣∣∣2(51)

≤ c2
1

m

m∑
r=2

[
X∗

i (νr) − X∗
i (νr−1)

]2
,

∣∣∣∣∣
m∑

r=2

[
X∗

j (νr) − X∗
j (νr−1)

] ∫ νr

νr−1

μis ds

∣∣∣∣∣
2

(52)

≤ c2
1

m

m∑
r=2

[
X∗

j (νr) − X∗
j (νr−1)

]2
.
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From (49) we have

P

(∣∣∣∣∣
m∑

r=2

(
Xi(νr) − Xi(νr−1)

)(
Xj(νr) − Xj(νr−1)

)− ∫ νm

ν1

γij (s) ds

∣∣∣∣∣≥ d

)

≤ P

(∣∣∣∣∣
m∑

r=2

(
X∗

i (νr) − X∗
i (νr−1)

)(
X∗

j (νr) − X∗
j (νr−1)

)

−
∫ νm

ν1

γij (s) ds

∣∣∣∣∣≥ d/4

)

+ P

(∣∣∣∣∣
m∑

r=2

∫ νr

νr−1

μis ds

∫ νr

νr−1

μjs ds

∣∣∣∣∣≥ d/4

)

+ P

(∣∣∣∣∣
m∑

r=2

[
X∗

i (νr) − X∗
i (νr−1)

] ∫ νr

νr−1

μjs ds

∣∣∣∣∣≥ d/4

)
(53)

+ P

(∣∣∣∣∣
m∑

r=2

[
X∗

j (νr) − X∗
j (νr−1)

] ∫ νr

νr−1

μis ds

∣∣∣∣∣≥ d/4

)

≤ 8 exp
{−m(d/4)2/(64C0)

}+ 1
(

c2
1

m
≥ d/4

)

+ P

(
m∑

r=2

[
X∗

i (νr) − X∗
i (νr−1)

]2 ≥ md2/
(
16c2

1
))

+ P

(
m∑

r=2

[
X∗

i (νr) − X∗
i (νr−1)

]2 ≥ md2/
(
16c2

1
))

,

where the last inequality is due to the bounds obtained from (48) and (50)–
(52) for the four respective probability terms. We handle the last two terms on
the right-hand side of (53) as follows. If md2/(16c2

1) − c2 > 0 [or equivalently
d > 4c1(c2/m)1/2], using condition A2 (which implies γii ≤ c2 and γjj ≤ c2)
and (46), we get

P

(
m∑

r=2

[
X∗

i (νr) − X∗
i (νr−1)

]2 ≥ md2/
(
16c2

1
))

+ P

(
m∑

r=2

[
X∗

j (νr) − X∗
j (νr−1)

]2 ≥ md2/
(
16c2

1
))

≤ P

(
m∑

r=2

[
X∗

i (νr ) − X∗
i (νr−1)

]2 −
∫ νm

ν1

γii(s) ds ≥ md2/
(
16c2

1
)− c2

)
(54)
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+ P

(
m∑

r=2

[
X∗

j (νr) − X∗
j (νr−1)

]2 −
∫ νm

ν1

γjj (s) ds ≥ md2/
(
16c2

1
)− c2

)

≤ P

(∣∣∣∣∣
m∑

r=2

[
X∗

i (νr) − X∗
i (νr−1)

]2 −
∫ νm

ν1

γii(s) ds

∣∣∣∣∣≥ md2/
(
16c2

1
)− c2

)

+ P

(∣∣∣∣∣
m∑

r=2

[
X∗

j (νr) − X∗
j (νr−1)

]2 −
∫ νm

ν1

γjj (s) ds

∣∣∣∣∣≥ md2/
(
16c2

1
)− c2

)

≤ 8 exp
{−m

[
md2/

(
16c2

1
)− c2

]2
/C0

}
,

which is bounded by 8 exp{−md2/C0}, if m[md2/(16c2
1) − c2]2 > md2, which is

true provided that

d >
8c2

1

m
+ 4c1

m

(
4c2

1 + mc2
)1/2

.(55)

Putting together (53) and the probability bound from (54)–(55), we conclude that
if

d > max
{

4c2
1

m
,

4c1c
1/2
2

m1/2 ,
8c2

1

m
+ 4c1

m

(
4c2

1 + mc2
)1/2

}

= 8c2
1

m
+ 4c1

m

(
4c2

1 + mc2
)1/2

,

P

(∣∣∣∣∣
m∑

r=2

(
Xi(νr) − Xi(νr−1)

)(
Xj(νr) − Xj(νr−1)

)

−
∫ νm

ν1

γij (s) ds

∣∣∣∣∣≥ d

)
(56)

≤ 8 exp
{−md2/(1024C0)

}+ 8 exp
{−md2/C0

}
≤ 16 exp

{−md2/(1024C0)
}
.

From condition A2 we have |γij | ≤ (γiiγjj )
1/2 ≤ c2 and∣∣∣∣∫ νm

ν1

γij (s) ds −
∫ 1

0
γij (s) ds

∣∣∣∣
≤ c2(ν1 + 1 − νm) ≤ 2c2/m.

Then (56) and above inequality imply that if

d > max
{

4c2

m
,

8c2
1

m
+ 4c1

m

(
4c2

1 + mc2
)1/2

}
,(57)
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P

(∣∣∣∣∣
m∑

r=2

(
Xi(νr) − Xi(νr−1)

)(
Xj(νr) − Xj(νr−1)

)− ∫ 1

0
γij (s) ds

∣∣∣∣∣≥ d

)

≤ P

(∣∣∣∣∣
m∑

r=2

(
Xi(νr) − Xi(νr−1)

)(
Xj(νr) − Xj(νr−1)

)

−
∫ νm

ν1

γij (s) ds

∣∣∣∣∣≥ d/2

)

≤ 16 exp
{−m(d/2)2/(1024C0)

}= 16 exp
{−md2/(4096C0)

}
.

This proves the lemma with C1 = 16 and C2 = 4096C0 for d satisfies (57).
If (57) is not satisfied, we have

d ≤ max
{

4c2

m
,

8c2
1

m
+ 4c1

m

(
4c2

1 + mc2
)1/2

}
≤ 8c2

1 + 4c2 + 4c1c
1/2
2

m1/2 ≡ C

m1/2 .

Then the tail probability bound in the lemma obeys

C1 exp
{−md2/C2

}≥ C1 exp
{−C2/C2

}
,

and we easily show the probability inequality in the lemma by choosing C1 = C′
1

and C2 = C′
2, where C′

1 and C′
2 satisfy C′

1 exp{−C2/C′
2} ≥ 1.

Finally taking C1 = max(16,C′
1) and C2 = max(4096C0,C

′
2) we establish the

tail probability, regardless whether d satisfies (57) or not, and complete the proof.
�

I.2. Proof of Proposition 6. As the proofs for Gij (2) and Gij (3) are similar,
we give arguments only for Gij (2). Lemma 11 below establishes the tail probabil-
ity for G

Km

ij (2). Using the expression of Gij (2) in terms of G
Km

ij (2) given by (25)
and applying Lemma 11, we obtain

P
(∣∣Gij (2)

∣∣≥ d
)

≤
N∑

m=1

P
(∣∣GKm

ij (2)
∣∣≥ d/(2A)

)+ P
(
ζ
∣∣GK1

ij (2)
∣∣≥ d/4

)
+ P

(
ζ
∣∣GKN

ij (2)
∣∣≥ d/4

)
≤ C1N

√
n exp

{−√
nd2/

(
4A2C2

)}+ 2C1
√

n exp
{−√

nd2/
(
16ζ 2C2

)}
≤ C3n exp

{−√
nd2/C4

}
,

where A =∑N
m=1 |am| = 9/2 + o(1).

LEMMA 11. Under the assumptions of Theorem 1, we have for 1 ≤ i, j ≤ p

and 1 ≤ m ≤ N ,

P
(∣∣GKm

ij (2)
∣∣≥ d

)≤ C1
√

n exp
{−√

nd2/C2
}
.
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PROOF. Simple algebraic manipulations show

G
Km

ij (2) = 1

Km

Km∑
km=1

|τ km |∑
r=2

[
Xi

(
τ km
r

)− Xi

(
τ

km

r−1

)][
εj

(
τ km
r

)− εj

(
τ

km

r−1

)]

= 1

Km

Km∑
km=1

|τ km |∑
r=2

[
Xi

(
τ km
r

)− Xi

(
τ

km

r−1

)]
εj

(
τ km
r

)

− 1

Km

Km∑
km=1

|τ km |∑
r=2

[
Xi

(
τ km
r

)− Xi

(
τ

km

r−1

)]
εj

(
τ

km

r−1

)
≡ R

Km

5 − R
Km

6 .

The lemma is proved if we establish tail probabilities for both R
Km

5 and R
Km

6 .

Due to similarity, we give the arguments only for R
Km

5 . Since Xt and εi(t�) are

independent, conditional on the whole path of Xt , R
Km

5 is the weighted sum of
εj (·). Hence,

P
(∣∣RKm

5

∣∣≥ d
)

= E
[
P
(∣∣RKm

5

∣∣≥ d|Xt , t ∈ [0,1])]
= E

[
P

(∣∣∣∣∣
Km∑

km=1

|τ km |∑
r=2

[
Xi

(
τ km
r

)− Xi

(
τ

km

r−1

)]
εj

(
τ km
r

)∣∣∣∣∣≥ dKm|Xt , t ∈ [0,1]
)]

(58)

≤ E

[
c0 exp

{
− d2Km

2τ0V
Km

ii ηj

}]

= E

[
c0 exp

{
− d2Km

2τ0V
Km

ii ηj

}
1(�0)

]
+ E

[
c0 exp

{
− d2Km

2τ0V
Km

ii ηj

}
1
(
�c

0
)]

≡ R
Km

5,1 + R
Km

5,2 ,

where the inequality is due to the subGaussianity of εj (·) defined in (10), ηj is the
variance of εj (·), V

Km

ii is given by (24) with an expression

V
Km

ii = 1

Km

Km∑
km=1

[Xi,Xi]km = 1

Km

Km∑
km=1

|τ km |∑
r=2

[
Xi

(
τ km
r

)− Xi

(
τ

km

r−1

)]2
and

�0 = {∣∣V Km

ii − �ii

∣∣≥ d
}
.
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From the definition of �0 and conditions A1–A2, we have ηj ≤ κ2, �ii ≤ c2 and
V

Km

ii ≤ �ii + d ≤ c2 + d on �c
0. Thus for small d we have

R
Km

5,2 = E

[
c0 exp

{
− Kmd2

2τ0V
Km

ii ηj

}
1
(
�c

0
)]

(59)
≤ C1 exp

{−Kmd2/C2
}≤ C1 exp

{−√
nd2/C2

}
.

On the other hand, from (45) (in the proof of Proposition 5) we have

P(�0) ≤ C3
√

n exp
{−√

nd2/C4
}
,

and thus

R
Km

5,1 = E

[
c0 exp

{
− d2Km

2τ0V
Km

ii ηj

}
1(�0)

]
≤ c0P(�0)

(60)
≤ c0C3

√
n exp

{−√
nd2/C4

}
.

Finally substituting (59) and (60) into (58) we obtain

P
(∣∣RKm

5

∣∣≥ d
)≤ C1 exp

{−√
nd2/C2

}+ c0C3
√

n exp
{−√

nd2/C4
}

≤ C5
√

n exp
{−√

nd2/C6
}
. �

I.3. Proof of Proposition 7. Denote by ρij (0) the correlation between εi(t1)

and εj (t1). From the expression of Gij (1) in terms of G
Km

ij (1) given by (25) we
obtain that P(|Gij (1)| ≥ d) is bounded by

P

(∣∣∣∣∣
N∑

m=1

amG
Km

ij (1) + 2
√

ηiηjρij (0)

∣∣∣∣∣≥ d/2

)

+ P
(∣∣ζ (GK1

ij (1) − G
KN

ij (1)
)− 2

√
ηiηjρij (0)

∣∣≥ d/2
)

≤ C1
√

n exp
{−√

nd2/(4C2)
}+ C3 exp

{−nd2/(4C4)
}

≤ C5
√

n exp
{−√

nd2/C6
}
,

where the first inequality is from Lemmas 12 and 13 below.

LEMMA 12. Under the assumptions of Theorem 1, we have for 1 ≤ i, j ≤ p,

P

(∣∣∣∣∣
N∑

m=1

amG
Km

ij (1) + 2
√

ηiηjρij (0)

∣∣∣∣∣≥ d

)
≤ C1

√
n exp

{−√
nd2/C2

}
.
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PROOF. From the definition of GKm = (G
Km

ij (1)) in (24), we have

G
Km

ij (1) = 1

Km

Km∑
km=1

|τ km |∑
r=2

[
εi

(
τ km
r

)− εi

(
τ

km

r−1

)][
εj

(
τ km
r

)− εj

(
τ

km

r−1

)]

= 1

Km

Km∑
km=1

|τ km |∑
r=2

[
εi

(
τ km
r

)
εj

(
τ km
r

)− εi

(
τ km
r

)
εj

(
τ

km

r−1

)− εi

(
τ

km

r−1

)
εj

(
τ km
r

)
+ εi

(
τ

km

r−1

)
εj

(
τ

km

r−1

)]
= 2

Km

n∑
r=1

εi(tr )εj (tr ) − 1

Km

Km∑
r=1

εi(tr )εj (tr ) − 1

Km

n∑
r=n−Km+1

εi(tr )εj (tr )

− 1

Km

n∑
r=Km+1

εi(tr )εj (tr−Km) − 1

Km

n∑
r=Km+1

εi(tr−Km)εj (tr )

≡ I
Km

0 − I
Km

1 − I
Km

2 − I
Km

3 − I
Km

4

and
N∑

m=1

amG
Km

ij (1) =
N∑

m=1

amI
Km

0 −
4∑

i=1

N∑
m=1

amI
Km

i ≡ I0 − I1 − I2 − I3 − I4.(61)

Note that
∑N

m=1 am/Km = 0, and

I0 =
N∑

m=1

amI
Km

0 =
N∑

m=1

am

Km

n∑
r=1

εi(tr )εj (tr ) = 0.

Hence,

P

(∣∣∣∣∣
N∑

m=1

amG
Km

ij (1) + 2
√

ηiηjρij (0)

∣∣∣∣∣≥ d

)
(62)

≤
2∑

i=1

P
(∣∣Ii − √

ηiηjρij (0)
∣∣≥ d/4

)+ 4∑
i=3

P
(|Ii | ≥ d/4

)
.

To prove the lemma we need to derive the four tail probabilities on the right-hand
side of (62). Below we will establish the tail probabilities for I1, I2, I3 and I4
by using large deviation results for the case of m-dependent random variables in
Saulis and Statulevičius (1991). Because of similarity, we give arguments only for
the tail probabilities of I1 and I3.

First for I1, from the definition of am in (6) we have

I1 − √
ηiηjρij (0) =

N∑
m=1

am

[
I

Km

1 − √
ηiηjρij (0)

]
,
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P
(∣∣I1 − √

ηiηjρij (0)
∣∣≥ d/4

) ≤
N∑

m=1

P
(∣∣IKm

1 − √
ηiηjρij (0)

∣∣≥ d/(4A)
)
,(63)

where A =∑N
m=1 |am| = 9/2+o(1). The M-dependence of (ε1(t�), . . . , εp(t�)) in

condition A1 indicates that εi(tr )εj (tr ), r = 1, . . . , n, are M-dependent, I
Km

1 is the

average of εi(tr )εj (tr ), r = 1, . . . ,Km, and Lemma 14 below calculates E(I
Km

1 ) =√
ηiηjρij (0) and Var(IKm

1 ) ≤ Cn−1/2. Also for any integer k,

E
(∣∣εi(tr )εj (tr )

∣∣k)≤√E
(∣∣εi(tr )

∣∣2k)
E
(∣∣εj (tr )

∣∣2k)
≤ c0(2k)!(2τ0)

2k ≤ c0(k!)2(16τ 2
0
)k ≤ (k!)2[16τ 2

0 (c0 ∨ 1)
]k

,

where the first inequality is from the Cauchy–Schwarz inequality, and the second
inequality is from the subGaussian tails of εi(tr ) and εj (tr ), which imply that their
2k-moments are bounded by

∫∞
0 c0 exp[−x1/(2k)/(2τ0)]dx = c0(2k)!(2τ0)

2k . Ap-
plying Theorem 4.30 in Saulis and Statulevičius (1991) to M-dependent random
variables εi(tr )εj (tr ) we obtain

P
(∣∣IKm

1 − √
ηiηjρij (0)

∣∣≥ d1
)≤ C1 exp

{
−

√
nd2

1

C2

}
.(64)

Plugging (64) with d1 = d/(4A) into (63) we establish the tail probability for I1

P
(∣∣I1 − √

ηiηjρij (0)
∣∣≥ d/4

)≤ C1N exp
{
−

√
nd2

16A2C2

}
(65)

≤ C3
√

n exp
{
−

√
nd2

C4

}
.

Second, consider I3. We may express it as follows:

I3 =
N∑

m=1

n∑
r=Km+1

am

Km

εi(tr )εj (tr−Km) =
n−K1∑
r=1

(n−N−r)∧N∑
m=1

am

Km

εj (tr )εi(tr+Km),

and Lemma 14 below derives E(I3) = 0 and Var(I3) ≤ Cn−1/2.
As (ε1(t�), . . . , εp(t�)), � = 1, . . . , n, are serially M-dependent, that is, for any

integers k and k′, and integer sets {�1, . . . , �k} and {�′
1, . . . , �

′
k′ }, {εi(t�1), . . . ,

εi(t�k
), i = 1, . . . , p} and {εi(t�′

1
), . . . , εi(t�′

k′ ), i = 1, . . . , p} are independent if ev-

ery integer in {�1, . . . , �k} differs by more than M from any integer in {�′
1, . . . , �

′
k′ }.

Since Km > M for n large enough, if integers r and r ′ differ by more than KN +M ,
for two integer sets {r, r +Km;m = 1, . . . , (n−N − r)∧N} and {r ′, r ′ +Km;m =
1, . . . , (n − N − r ′) ∧ N}, every element in one integer set must be more than
M apart from any element in the other integer set. Then {εj (tr ), εi(tr+Km);m =
1, . . . , (n−N − r)∧N} and {εj (tr ′), εi(tr ′+Km

);m = 1, . . . , (n−N − r ′)∧N} are
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independent, and thus εj (tr )εi(tr+Km), r = 1, . . . , n−Km, are serially (KN +M)-
dependent. Also for any integer k,

E
(∣∣εj (tr )εi(tr+Km)

∣∣k)≤√E
(∣∣εj (tr )

∣∣2k)
E
(∣∣εi(tr+Km)

∣∣2k)
≤ c0(2k)!(2τ0)

2k ≤ c0(k!)2(16τ 2
0
)k ≤ (k!)2[16τ 2

0 (c0 ∨ 1)
]k

,

where the first inequality is from the Cauchy–Schwarz inequality, and the second
inequality is from the subGaussian tails of εj (tr ) and εi(tr+Km). Applying theo-
rem 4.16 in Saulis and Statulevičius (1991) we derive a bound (k!)3Ck

0 on the kth
cumulant of n1/4I3, and then using Lemmas 2.3 and 2.4 in Saulis and Statulevičius
(1991) we establish the tail probability for I3 as follows:

P
(|I3| ≥ d/4

)≤ C1 exp
{
−

√
n(d/4)2

C2

}
≤ C3 exp

{
−

√
nd2

C4

}
.(66)

Since I2 and I4 have the same tail probabilities as I1 and I3 given by (65)
and (66), respectively, combining them with (62) we conclude

P

(∣∣∣∣∣
N∑

m=1

amG
Km

ij (1) + 2
√

ηiηjρij (0)

∣∣∣∣∣≥ d

)

≤ 2C3
√

n exp
{
−

√
nd2

C4

}
+ 2C3 exp

{
−

√
nd2

C4

}

≤ C5
√

n exp
{
−

√
nd2

C6

}
. �

LEMMA 13. Under the assumptions of Theorem 1, we have for 1 ≤ i, j ≤ p,

P
(∣∣ζ (GK1

ij (1) − G
KN

ij (1)
)− 2

√
ηiηjρij (0)

∣∣≥ d
)≤ C1 exp

{−nd2/C2
}
.(67)

PROOF. First consider ζG
K1
ij (1) term:

ζG
K1
ij (1) = KN

n(N − 1)

K1∑
k1=1

|τ k1 |∑
r=2

(
εi

(
τ k1
r

)− εi

(
τ

k1
r−1

))(
εj

(
τ k1
r

)− εj

(
τ

k1
r−1

))

= KN

n(N − 1)

n∑
r=K1+1

(
εi(tr )εj (tr ) + εi(tr−K1)εj (tr−K1)

− εi(tr )εj (tr−K1) − εi(tr−K1)εj (tr )
)

≡ R1 + R2 − R3 − R4.

Due to similarity, we show the tail probabilities only for R1 and R3. Lemma 14
below calculates the mean and variances of R1 and R3. Since R1 and R3 have,
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respectively, the same structures as I
Km

1 and I3 used in the proof Lemma 12, the

arguments for establishing the tail probabilities for I
Km

1 and I3 can be used to
derive the tail probability bounds for R1 and R3. Consequently we obtain that

P

(∣∣∣∣ζG
K1
ij (1) − 2KN(n − K1)

n(N − 1)

√
ηiηjρij (0)

∣∣∣∣≥ d

)
≤ C1 exp

{−nd2/C2
}
.(68)

As G
KN

ij (1) has the same structure as ζG
K1
ij (1), similarly we can establish a tail

probability for ζG
KN

ij (1) as follows:

P

(∣∣∣∣ζG
KN

ij (1) − 2K1(n − KN)

n(N − 1)

√
ηiηjρij (0)

∣∣∣∣≥ d

)
≤ C1 exp

{−nd2/C2
}
.(69)

Since

KN(n − K1)

n(N − 1)
− K1(n − KN)

n(N − 1)
= 1,

combining (68) and (69) we prove the lemma. �

LEMMA 14. Under the assumptions of Theorem 1 and for large enough n so
that M < K1, we have

E(I3) = E(R3) = 0, E
(
I

Km

1

)= √
ηiηjρij (0),

E(R1) = KN(n − K1)

n(N − 1)

√
ηiηjρij (0),

Var
(
I

Km

1

) ≤ Cn−1/2, Var(I3) ≤ Cn−1/2, Var(R1) ≤ Cn−1,

Var(R3) ≤ Cn−1.

PROOF. Because Km > M , εi(tr ) and εj (tr−Km) are independent, so

E(I3) =
N∑

m=1

am

Km

n∑
Km+1

E
[
εi(tr )εj (tr−Km)

]

=
N∑

m=1

am

Km

n∑
Km+1

E
[
εi(tr )

]
E
[
εj (tr−Km)

]= 0,

E(R3) = KN

n(N − 1)

n∑
r=K1+1

E
[
εi(tr )εj (tr−K1)

]

= KN

n(N − 1)

n∑
r=K1+1

E
[
εi(tr )

]
E
[
εj (tr−K1)

]= 0.
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For I
Km

1 and R1, we have

E
(
I

Km

1

)= 1

Km

Km∑
r=1

E
[
εi(tr )εj (tr )

]= 1

Km

Km∑
r=1

√
ηiηjρij (0) = √

ηiηjρij (0),

ER1 = KN

n(N − 1)

n∑
r=K1+1

E
[
εi(tr )εj (tr )

]= KN(n − K1)

n(N − 1)

√
ηiηjρij (0).

With the M-dependence of εi(tr )εj (tr ), we directly compute the variances of I
Km

1
and R1 as follows:

Var
(
I

Km

1

)= 1

K2
m

Km∑
r=1

Var
(
εi(tr )εj (tr )

)
+ 2

K2
m

∑∑
1≤r<r ′≤Km

Cov
(
εi(tr )εj (tr ), εi(tr ′)εj (tr ′)

)
≤ 1

Km

Var
(
εi(t1)εj (t1)

)
+ 2

Km

M+1∑
�=2

Cov
(
εi(t1)εj (t1), εi(t�)εj (t�)

)≤ Cn−1/2,

Var(R1) =
(

KN

n(N − 1)

)2
[

n∑
r=K1+1

Var
(
εi(tr )εj (tr )

)

+ 2
∑∑

K1+1≤r<r ′≤n

Cov
(
εi(tr )εj (tr ), εi(tr ′)εj (tr ′)

)]

≤
(

KN

n(N − 1)

)2
[
(n − K1)Var

(
εi(t1)εj (t1)

)

+ 2(n − K1)

M+1∑
�=2

Cov
(
εi(t1)εj (t1), εi(t�)εj (t�)

)]
≤ C/n.

We evaluate the variance of I3 as follows:

E
(
I 2

3
)= N∑

m=1

(
am

Km

)2

E

(
n∑

r=Km+1

εi(tr )εj (tr−Km)

)2

+ 2
∑∑
m<m′

am

Km

am′

Km′
E

[(
n∑

r=Km+1

εi(tr )εj (tr−Km)

)
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×
(

n∑
r ′=Km′+1

εi

(
t ′r
)
εj (tr ′−Km′ )

)]

=
N∑

m=1

(
am

Km

)2
[

n∑
r=Km+1

E
(
ε2
i (tr )ε

2
j (tr−Km)

)

+ 2
∑∑

r<r ′
E
(
εi(tr )εj (tr−Km)εi(tr ′)εj (tr ′−Km

)
)]

+ 2
∑∑
m<m′

am

Km

am′

Km′

[
n∑

r=Km′+1

E
(
ε2
i (tr )εj (tr−Km)εj (tr−Km′ )

)

+
n−Km′∑
r=1

E
(
ε2
j (tr )εi(tr+Km)εi(tr+Km′ )

)

+ 2
∑∑

r<r ′
E
(
εi(tr )εj (tr−Km)εi(tr ′)εj (tr ′−Km′ )

)]

=
N∑

m=1

(
am

Km

)2
[
(n − Km)ηiηj

+ 2
(n−Km)∧(M+1)∑

�=2

(n − Km − � + 1)E
(
εi(t1)εi(t�)

)

× E
(
εj (t1)εj (t�)

)]

+ 2
∑∑

m<m′<m+M+1

am

Km

am′

Km′

[
(n − Km′)ηiE

(
εj (t1)εj (tKm′−Km+1)

)
+ (n − Km)ηjE

(
εi(tn)εi(tn−Km′+Km)

)
+ 2

(n−Km′ )∧(M+1)∑
�=2

(n − Km′ − � + 1)E
(
εi(t1)εi(t�)

)

× E
(
εj (t1)εj (t�+Km′−Km)

)]

≤ C1ηiηjN
(
1/N2)2(n − K1) + C2ηiηj

(
1/N2)2(n − K1) � Cn−1/2,

where the inequality is from the fact that the M-dependence of (ε1(t�), . . . , εp(t�))

implies zero expectations of εi(·)εj (·) for lags larger than M .
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Similarly, we have

E
(
R2

3
)= (

KN

n(N − 1)

)2

E

(
n∑

r=K1+1

εi(tr )εj (tr−K1)

)2

=
(

KN

n(N − 1)

)2
[

n∑
r=K1+1

E
(
ε2
i (tr )ε

2
j (tr−K1)

)

+ 2
∑∑

r<r ′
E
(
εi(tr )εj (tr−K1)εi(tr ′)εj (tr ′−K1)

)]

=
(

KN

n(N − 1)

)2
[
(n − K1)ηiηj

+ 2
(n−K1)∧(M+1)∑

�=2

(n − K1 − � + 1)E
(
εi(t1)εi(t�)

)

× E
(
εj (t1)εj (t�)

)]

≤ C1ηiηj (1/n)2(n − K1) � C2/n,

where the inequality is from the fact that the M-dependence of (ε1(t�), . . . , εp(t�))

implies zero expectations of εi(·)εj (·) for lags larger than M . �

APPENDIX II: PROOF OF PROPOSITION 9

We break the proof into a few major technical lemmas which are proved in
Sections II.2–II.3. Without loss of generality we consider only the case i = 1 and
prove that there exists a constant C1 > 0 such that ‖P̄1,0 ∧ P̄1,1‖ ≥ C1.

The following lemma turns the problem of bounding the total variation affin-
ity into a chi-square distance calculation. Denote the projection of θ ∈ � to �
by γ (θ) = (γi(θ))1≤i≤r and to � by λ(θ) = (λi(θ))1≤i≤r . More generally, for a
subset A ⊆ {1,2, . . . , r}, we define a projection of θ to a subset of � by γA(θ) =
(γi(θ))i∈A. A particularly useful example of set A is {1, . . . , i −1, i +1, . . . , r} for
which we use γ−i (θ) = (γ1(θ), . . . , γi−1(θ), γi+1(θ), γr(θ)). λA(θ) and λ−i (θ)

are defined similarly. We define the set �A = {λA(θ) : θ ∈ �}. For a ∈ {0,1},
b ∈ {0,1}r−1, and c ∈ �−i ⊆ Br−1, let

�(i,a,b,c) = {
θ ∈ � :γi(θ) = a, γ−i(θ) = b and λ−i (θ) = c

}
,

and D(i,a,b,c) = Card(�(i,a,b,c)) which depends actually on the value of c, not
values of i, a and b for the parameter space � constructed in Section 6.2. Define
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the mixture distribution

P̄(i,a,b,c) = 1

D(i,a,b,c)

∑
θ∈�(i,a,b,c)

Pθ .(70)

In other words, P̄(i,a,b,c) is the mixture distribution over all Pθ with λi(θ) varying
over all possible values while all other components of θ remain fixed. Define

�−1 = {
(b, c) : there exists a θ ∈ � such that γ−1(θ) = b and λ−1(θ) = c

}
.

LEMMA 15. If there is a constant C2 < 1 such that

Average
(γ−1,λ−1)∈�−1

{∫ (
dP̄(1,1,γ−1,λ−1)

dP̄(1,0,γ−1,λ−1)

)2

dP̄(1,0,γ−1,λ−1) − 1
}

≤ C2
2 ,(71)

then ‖P̄1,0 ∧ P̄1,1‖ ≥ 1 − C2 > 0.

We can prove Lemma 15 using the same arguments as the proof of Lemma 8
in Cai and Zhou (2012). To complete the proof of Proposition 9 we need to verify
only equation (71).

II.1. Technical lemmas for proving equation (71). From the definition of
P̄(1,0,γ−1,λ−1) in equation (70) and θ = (γ, λ) with γ = (γ1, . . . , γr) and λ =
(λ1, . . . , λr), γ1 = 0 implies P̄(1,0,γ−1,λ−1) is a product of n multivariate normal
distributions each with a covariance matrix,

�l,0 =
(

1 01×(p−1)

0(p−1)×1 S(p−1)×(p−1)

)
+ (al − 1)Ip for l = 1,2, . . . , n,(72)

where S(p−1)×(p−1) = (sij )2≤i,j≤p is uniquely determined by (γ−1, λ−1) =
((γ2, . . . , γr), (λ2, . . . , λr)) with

sij =
⎧⎨⎩

1, i = j ,
εn,p, γi = λi(j) = 1,
0, otherwise.

Let nλ−1 be the number of columns of λ−1 with column sum equal to 2k and
pλ−1 = r − nλ−1 . Since nλ−1 · 2k ≤ r · k, the total number of 1s in the upper trian-
gular matrix, we have nλ−1 ≤ r/2, which implies pλ−1 = r−nλ−1 ≥ r/2 ≥ p/4−1.
From equations (70) and θ = (γ, λ) with γ = (γ1, . . . , γr) and λ = (λ1, . . . , λr),
P̄(1,1,γ−1,λ−1) is an average of

(pλ−1
k

)
number of products of multivariate normal

distributions each with covariance matrix of the following form:(
1 r1×(p−1)

r(p−1)×1 S(p−1)×(p−1)

)
+ (al − 1)Ip for l = 1,2, . . . , n,(73)

where ‖r‖0 = k with nonzero elements of r equal to εn,p and the submatrix
S(p−1)×(p−1) is the same as the one for �l,0 given in (72). Note that the indices γi

and λi are dropped from r and S to simplify the notation.
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With Lemma 15 in place, it remains to establish equation (71) in order to prove
Proposition 9. The following lemma is useful for calculating the cross product
terms in the chi-square distance between Gaussian mixtures. The proof of the
lemma is straightforward and is thus omitted.

LEMMA 16. Let gi be the density function of N(0,�i) for i = 0,1 and 2,
respectively. Then∫

g1g2

g0
= 1

[det(I − �−2
0 (�1 − �0)(�2 − �0))]1/2

.

Let �l,i , i = 1 or 2, be two covariance matrices of the form (73). Note that
�l,i , i = 0,1 or 2, differs from each other only in the first row/column. Then
�l,i − �l,0, i = 1 or 2, has a very simple structure. The nonzero elements only
appear in the first row/column, and in total there are 2k nonzero elements. This
property immediately implies the following lemma which makes the problem of
studying the determinant in Lemma 16 relatively easy.

LEMMA 17. Let �l,i , i = 1 and 2, be matrices of the form (73). Define J to
be the number of overlapping εn,p’s between �l,1 and �l,2 on the first row, and

Q
�= (qij )1≤i,j≤p = (�l,1 − �l,0)(�l,2 − �l,0).

There are index subsets Ir and Ic in {1,2, . . . , p} with Card(Ir) = Card(Ic) = k

and Card(Ir ∩ Ic) = J such that

qij =
⎧⎪⎨⎪⎩

Jε2
n,p, i = j = 1,

ε2
n,p, i ∈ Ir and j ∈ Ic,

0, otherwise,

and the matrix (�l,0 − �l,1)(�l,0 − �l,2) has rank 2 with two identical nonzero
eigenvalues Jε2

n,p when J > 0.

Let

R
γ−1,λ−1
l,λ1,λ

′
1

= − log det
(
I − �−2

l,0 (�l,0 − �l,1)(�l,0 − �l,2)
)
,(74)

where �l,0 is defined in (72) and determined by (γ−1, λ−1), and �l,1 and �l,2 have
the first row λ1 and λ′

1, respectively. We drop the indices λ1, λ′
1 and (γ−1, λ−1)

from �i to simplify the notation. Define

�−1(a1, a2) = {
(b, c) : there exist θi ∈ �, i = 1,2, , such that λ1(θi) = ai

and λ−1(θi) = c
}
.
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It is a subset of �−1 in which the element can pick both a1 and a2 as the first row
to form parameters in �. From Lemma 16 the left-hand side of equation (71) can
be written as

Average
(γ−1,λ−1)∈�−1

{
Average

λ1,λ
′
1∈�1(λ−1)

[
exp

(
1

2

n∑
l=1

R
γ−1,λ−1
l,λ1,λ

′
1

)
− 1

]}
(75)

= Average
λ1,λ

′
1∈B

{
Average

(γ−1,λ−1)∈�−1(λ1,λ
′
1)

[
exp

(
1

2

n∑
l=1

R
γ−1,λ−1
l,λ1,λ

′
1

)
− 1

]}
,

where B is defined in step 1.
Lemmas 17 and 18 below show that R

γ−1,λ−1
l,λ1,λ

′
1

is approximately equal to

− log det
(
I − a−2

l (�l,0 − �l,1)(�l,0 − �l,2)
)= −2 log

(
1 − a−2

l J ε2
n,p

)
.

Define

�1,J = {(
λ1, λ

′
1
) ∈ �1 ⊗ �1 : the number of overlapping εn,p’s between λ1

and λ′
1 is J

}
.

LEMMA 18. For R
γ−1,λ−1
l,λ1,λ

′
1

defined in equation (74), we have

R
γ−1,λ−1
l,λ1,λ

′
1

= −2 log
(
1 − Ja−2

l ε2
n,p

)+ δ
γ−1,λ−1
l,λ1,λ

′
1

,(76)

where δ
γ−1,λ−1
l,λ1,λ

′
1

satisfies

Average
(λ1,λ

′
1)∈�1,J

[
Average

(γ−1,λ−1)∈�−1(λ1,λ
′
1)

exp

(
1

2

n∑
l=1

δ
γ−1,λ−1
l,λ1,λ

′
1

)]
≤ 3/2,(77)

uniformly over all J defined in Lemma 17.

We will prove Lemma 18 in Section II.3.

II.2. Proof of equation (71). We are now ready to establish equation (71)
using Lemma 18. It follows from equation (76) in Lemma 18 that

Average
λ1,λ

′
1∈B

{
Average

(γ−1,λ−1)∈�−1(λ1,λ
′
1)

[
exp

(
1

2

n∑
l=1

R
γ−1,λ−1
l,λ1,λ

′
1

)
− 1

]}

= AverageJ

{
−

n∑
l=1

log
(

1 − Jε2
n,p

a2
l

)

× Average
(λ1,λ

′
1)∈�1,J

[
Average

(γ−1,λ−1)∈�−1(λ1,λ
′
1)

exp

(
1

2

n∑
l=1

δ
γ−1,λ−1
l,λ1,λ

′
1

)]
− 1

}
.
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Recall that J is the number of overlapping εn,p’s between �l,1 and �l,2 on the
first row. It is easy to see that J has the hypergeometric distribution with

P
(
number of overlapping εn,p’s = J

)
=
(

k

J

)(
pλ−1 − k

k − J

)
/

(
pλ−1

k

)
(78)

≤
(

k2

pλ−1 − k

)J

.

Equations (77) and (78) imply

Average
(γ−1,λ−1)∈�−1

{∫ (
dP̄(1,1,γ−1,λ−1)

dP̄(1,0,γ−1,λ−1)

)2

dP̄(1,0,γ−1,λ−1) − 1
}

≤ ∑
J≥0

(k
J

)(pλ−1−k

k−J

)
(pλ−1

k

) {
−

n∑
l=1

log
(
1 − Jε2

n,p/a2
l

)}3

2
− 1

≤ C
∑
J≥1

(
p(β−1)/β)−J exp

(
2J

n∑
l=1

a−2
l · υ2 logp√

n

)
+ 1/2

≤ C
∑
J≥1

(
p(β−1)/β)−J exp

(
2Jcκ

√
n · υ2 logp√

n

)
+ 1/2

≤ C
∑
J≥1

(
p(β−1)/β)−J exp

(
2cκJυ2 logp

)+ 1/2

≤ C
∑
J≥1

(
p(β−1)/(2β))−J + 1/2 < C2

2 ,

where the third inequality is from (37), the fifth inequality is due to (36) and the
last inequality is obtained by setting C2

2 = 3/4.

II.3. Proof of Lemma 18. Define

Al = [
I − a−2

l (�l,0 − �l,1)(�l,0 − �l,2)
]−1

(79)
× (

a2
l (�l,0)

−2 − I
)
a−2
l (�l,0 − �l,1)(�l,0 − �l,2)

and

δ
γ−1,λ−1
l,λ1,λ

′
1

= − log det(I − Al).
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We rewrite R
γ−1,λ−1
l,λ1,λ

′
1

as follows:

R
γ−1,λ−1
l,λ1,λ

′
1

= − log det
[
I − a−2

l (�l,0 − �l,1)(�l,0 − �l,2)

− (
a2
l �

−2
l,0 − I

)
a−2
l (�l,0 − �l,1)(�l,0 − �l,2)

]
= − log det

{[I − Al] · [I − a−2
l (�l,0 − �l,1)(�l,0 − �l,2)

]}
(80)

= − log det
[
I − a−2

l (�l,0 − �l,1)(�l,0 − �l,2)
]− log det(I − Al)

= −2 log
(
1 − Jε2

n,p/a2
l

)+ δ
γ−1,λ−1
l,λ1,λ

′
1

,

where the last equation follows from Lemma 17.
Now we are ready to establish equation (77). For simplicity we will write matrix

norm ‖ · ‖2 as ‖ · ‖ below. It is important to observe that rank(Al) ≤ 2 due to the
simple structure of (�l,0 − �l,1)(�l,0 − �l,2). Let �l be an eigenvalue of Al . It is
easy to see that

|�l| ≤ ‖Al‖
≤ ∥∥a2

l �
−2
l,0 − I

∥∥ · a−2
l ‖�l,0 − �l,1‖‖�l,0 − �l,2‖

(81)
/
(
1 − a−2

l ‖�l,0 − �l,1‖‖�l,0 − �l,2‖)
≤
((

3

2

)2

− 1
)

1

3
· 1

3

/(
1 − 1

3
· 1

3

)
= 5/32 < 1/6,

since ‖a−1
l (�l,0 − �l,1)‖ ≤ ‖a−1

l (�l,0 − �l,1)‖1 = 2kεn,p < 1/3 and
λmin(a

−1
l �l,0) ≥ 1 − ‖I − a−1

l �l,0‖ ≥ 1 − ‖I − a−1
l �l,0‖1 > 2/3 from equa-

tion (38).
Note that (81) and ∣∣log(1 − x)

∣∣≤ 2|x|, for |x| < 1/6,

imply

δ
γ−1,λ−1
l,λ1,λ

′
1

≤ 4‖Al‖,
and then

exp

(
1

2

n∑
l=1

δ
γ−1,λ−1
l,λ1,λ

′
1

)
≤ exp

(
2

n∑
l=1

‖Al‖
)
.(82)

Since {∥∥I − a−1
l �l,0

∥∥≤ ∥∥I − a−1
l �l,0

∥∥
1 = 2kεn,p < 1/3 < 1,∥∥a−2

l (�l,0 − �l,1)(�l,0 − �l,2)
∥∥≤ 1

3 · 1
3 < 1,

(83)
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we write

a2
l �

−2
l,0 − I = (

I − (
I − a−1

l �l,0
))−2 − I

=
(
I +∑

k=1

(
I − a−1

l �l,0
)k)2

− I(84)

=
[ ∞∑

m=0

(m + 2)
(
I − a−1

l �l,0
)m](

I − a−1
l �l,0

)
,

where ∥∥∥∥∥
∞∑

m=0

(m + 2)
(
I − a−1

l �l,0
)m∥∥∥∥∥≤

∞∑
m=0

(m + 2)

(
1

3

)m

< 3.(85)

Define

Al∗ = (
I − a−1

l �l,0
) · a−2

l (�l,0 − �l,1)(�l,0 − �l,2).(86)

From equations (79) and (83)–(86) we have

‖Al‖ ≤ ∥∥[I − a−2
l (�l,0 − �l,1)(�l,0 − �l,2)

]−1∥∥
×
∥∥∥∥∥

∞∑
m=0

(m + 2)
(
I − a−1

l �l,0
)m∥∥∥∥∥‖Al∗‖

<
1

1 − (1/3) · (1/3)
· 3 · ‖Al∗‖ = 27

8
‖Al∗‖ ≤ 27

8
max

{‖Al∗‖1,‖Al∗‖∞
}
.

The above result and (82) indicate that the proof of Lemma 18 is complete if we
show

Average
(λ1,λ

′
1)∈�1,J

[
Average(γ−1,λ−1)∈�−1(λ1,λ

′
1)

(87)

× exp

(
27

2

n∑
l=1

max
{‖Al∗‖1,‖Al∗‖∞

})]≤ 3/2,

where ‖Al∗‖1 and ‖Al∗‖∞ depend on the values of λ1, λ
′
1 and (γ−1, λ−1). We

dropped the indices λ1, λ′
1 and (γ−1, λ−1) from Al to simplify the notation.

Let Em = {1,2, . . . , r}/{1,m}. Let nλEm
be the number of columns of λEm with

column sum at least 2k − 2 for which two rows cannot freely take value 0 or 1
in this column. Then we have pλEm

= r − nλEm
. Without loss of generality we

assume that k ≥ 3. Since nλEm
· (2k − 2) ≤ r · k, the total number of 1s in the

upper triangular matrix by the construction of the parameter set, we thus have
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nλEm
≤ r · 3

4 , which immediately implies pλEm
= r − nλEm

≥ r
4 ≥ p/8 − 1. Thus

we have for every nonnegative integer t ,

P
(
max

{‖Al∗‖1,‖Al∗‖∞
}≥ 2t · εn,p · kε2

n,p · a−3
l

)
≤ P

(‖Al∗‖1 ≥ 2t · εn,p · kε2
n,p · a−3

l

)+ P
(‖Al∗‖∞ ≥ 2t · εn,p · kε2

n,p · a−3
l

)
≤ 2

∑
m

Average
λEm

(k
t

)(pλEm
k−t

)
(pλEm

k

) ≤ 2p

(
k2

p/8 − 1 − k

)t

from equation (78), which immediately implies

Average
(λ1,λ

′
1)∈�1,J

[
Average

(γ−1,λ−1)∈�−1(λ1,λ
′
1)

exp

(
27

2

n∑
l=1

max
{‖Al∗‖1,‖Al∗‖∞

})]

≤ exp

(
27

2

n∑
l=1

4β

β − 1
· εn,p · kε2

n,p · a−3
l

)

+
∫ ∞

2β/(β−1)

(
27kε3

n,p

n∑
l=1

a−3
l

)

× exp

(
27

2

n∑
l=1

2t · εn,p · kε2
n,p · a−3

l

)
2p

(
k2

p/8 − 1 − k

)t−1

dt(88)

≤ exp

(
54 ·

(
n∑

l=1

a−3
l

)
· β

β − 1
· kε3

n,p

)

+ 2p

∫ ∞
2β/(β−1)

exp

[
(t + 1) · 27

(
n∑

l=1

a−3
l

)
kε3

n,p

− (t − 1) log
p/8 − 1 − k

k2

]
dt.

Note that (37) implies

n∑
l=1

a−3
l ≤

n∑
l=1

a−2
l ≤ cκ

√
n,

using (14) and (34) we have

2
√

nkε3
n,p ≤ √

nπn(p)ε3−q
n,p

≤ ℵv3−qn1/2n(1−q)/4(logp)(q−3)/2n(q−3)/4(logp)(3−q)/2

= ℵv3−q,
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and thus we can bound the first term on the right-hand side of (88),

exp
(

54 ·cκ

√
n · β

β − 1
·kε3

n,p

)
≤ exp

(
β

β − 1
·27cκv2 ·ℵv1−q

)
≤ exp(1/3) < 3/2,

where the second inequality is from (35) and (36). We will show that the second
term on the right-hand side of (88) is negligible and hence establish (87). Indeed,
since we have just shown that

27

(
n∑

l=1

a−3
l

)
kε3

n,p ≤ β − 1

6β
,

the second term on the right-hand side of (88) is bounded by

2p

∫ ∞
2β/(β−1)

exp
[
(t + 1)

β − 1

6β
− (t − 1) log

p/8 − 1 − k

k2

]
dt

= 2
(

log
p/8 − 1 − k

k2 − β − 1

6β

)−1

× exp
[
logp +

(
2β

β − 1
+ 1

)
β − 1

6β
−
(

2β

β − 1
− 1

)
log

p/8 − 1 − k

k2

]
= O

(
p−1/β [logp]6/(β−1)+2)= o(1),

where the second equality is from the fact that (14) and (34) together with p ≥ nβ/2

indicate

k2 ≤ πn(p)ε−2q
n,p /4 ≤ ℵv−2q

√
n

4 log3 p
≤ ℵv−2qp1/β

4 log3 p
,

and then(
2β

β − 1
− 1

)
log

p/8 − k

k2

=
(

2β

β − 1
− 1

)
log
(
pk−2)[1 + o(1)

]
≥
(

2β

β − 1
− 1

)[
β − 1

β
logp + 3 log logp − log

(
Mv−2q/4

)]

=
(

1 + 1

β

)
logp

[
1 + o(1)

]
.
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