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1. Introduction

A stochastic process Y (t) is de�ned as self-similar with self-similarity parameter H if

for any positive stretching factor c, the distribution of the rescaled and reindexed process

c�H Y (c t) is equivalent to that of the original process Y (t). This means for any sequence of

time points t1; : : : ; tn and any positive constant c, the collections fc�H Y (c t1); : : : ; c�H Y (ctn)g
and fY (t1); : : : ; Y (tn)g are governed by the same probability law. As a consequence, the qual-

itative features of a sample path of a self-similar process are invariant to magni�cation or

shrinkage, so that the path will retain the same general appearance regardless of the distance

from which it is observed.

Although self-similar processes were �rst introduced in a theoretical context by Kol-

mogorov (1941), statisticians were made aware of the practical applicability of such pro-

cesses through the work of B.B. Mandelbrot (Mandelbrot and van Ness, 1968; Mandelbrot

and Wallis, 1968, 1969). Self-similarity is a pervasive characteristic in naturally occurring

phenomena. As a result, self-similar processes have been used to successfully model data

arising in a variety of di�erent scienti�c �elds, including hydrology, geophysics, medicine, ge-

netics, economics, and computer science. Recent applications include Buldyrev et al. (1993),

Lelend et al. (1994), Ossadnik et al. (1994), Percival and Guttorp (1994), Peng et al. (1992,

1995a, 1995b), and Willinger et al. (1998).

1



The dynamics of a self-similar process Y (t) are principally dictated by the value of the

self-similarity parameter or scaling exponent H. For practical applications, it may be as-

sumed that Y (t) has �nite second moments, and that its associated increment process

X(t) = Y (t) � Y (t � 1) is stationary. Under these assumptions, H may be taken to lie

over the interval (0; 1), and the value of H may be used in describing the autocorrelation

structure of the increment sequence X(t);X(t + 1); : : : (see Beran, 1994, pp. 52{53). For

H 2 (1=2; 1), X(t) is characterized by serial correlations that decay slowly, and therefore

exhibits long-range dependence or long memory. For H 2 (0; 1=2), X(t) is characterized by

serial correlations that decay rapidly and sum to zero. For H = 1=2, X(t) is serially uncor-

related. The estimation of H as a constant has been extensively studied, predominantly in

the context of long memory where it is assumed that H 2 (1=2; 1). A partial list of relevant

references includes Geweke and Porter-Hudak (1983), Taylor and Taylor (1991), Constantine

and Hall (1994), Chen et al. (1995), Robinson (1995), Taqqu et al. (1995), Abry and Sellan

(1996), Comte (1996), McCoy and Walden (1996), Hall et al. (1997), Kent and Wood (1997),

Moulines and Soulier (1999), Abry et al. (2000), Bardet et al. (2000), Abry et al. (2001),

and Bardet et al. (2001).

In modeling applications, treating the self-similarity parameter H as a constant implies

that the self-similar features of the underlying phenomenon persist over time. However,

many phenomena exhibit self-similar patterns that change as the phenomenon itself evolves:

this characteristic may be embodied in the associated data by sections of irregular roughness.

To adequately model such data, the class of self-similar processes must be expanded to allow

the scaling exponent to vary as a function of time. Moreover, a procedure must be available

that provides a statistical characterization of the exponent's progression.

In what follows, we consider a class of processes that are locally (as opposed to globally)

self-similar. The de�ning property of this class is based on the covariance function, and

relates the local autocorrelation of the process to the value of H(t). We provide two examples

of stochastic processes that are locally self-similar. One of these, generalized fractional

Brownian motion, is explored in detail. We then propose and describe a procedure based

on wavelets for constructing an estimate of the time-varying scaling exponent of a locally

self-similar process. We establish a consistency result for this estimate. We investigate the
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e�ectiveness of the procedure in a simulation study, and demonstrate its applicability in

several practical analyses.

Techniques for estimating a constant self-similarity parameter H are often based on log-

linear regression (e.g., Geweke and Porter-Hudak, 1983; Taylor and Taylor, 1991; Constan-

tine and Hall, 1994). Such methods frequently exploit an approximate log-linear relationship

between either the spectrum of X(t) or the variogram of Y (t) and the time index t, using

least-squares regression to obtain the estimate of H. With a locally self-similar process Y (t),

H(t) is a function of t; as a result, the associated increment process X(t) is non-stationary.

To estimate H(t) locally, we take advantage of an approximate local log-linear relationship

between the square of the wavelet transformation of Y (t) and the scale for the transfor-

mation. Local least-squares regression is used to obtain the estimate of H(t). The basic

procedure is detailed in Wang et al. (2001) and was �rst presented by Wang et al. (1997).

The method may be viewed as an extension of previously proposed log-linear regression

techniques for the estimation of constant H.

Replacing the role of the spectrum or variogram with that of the wavelet transformation

is logical for the problem at hand. Since wavelets are ideal for characterizing changes in

scale content over time, they can accommodate the time-varying dynamics of Y (t) induced

by changes in H(t). Our reliance on wavelets is further motivated by the computational e�-

ciency of the discrete wavelet transformation as well as the successful application of wavelets

in problems dealing with both non-stationarity and self-similarity (e.g., Farge et al., 1993;

Hwang and Mallat, 1994). In fact, for globally self-similar processes, log-linear regression

methods that utilize the wavelet transformation have been recently proposed for the estima-

tion of constant H (e.g., Abry et al., 2000; Bardet et al., 2000; Abry et al., 2001). An early

inspiration for these methods as well as for our procedure is provided by an illustration in

Daubechies (1992, pp. 301{303) for estimating the H�olderian exponent.

The exposition in this chapter is organized as follows. Section 2 de�nes and briey

discusses locally self-similar processes. Section 3 provides an in{depth exploration of the

properties of generalized fractional Brownian motion. Section 4 presents the procedure for

the estimation for H(t) via the continuous wavelet transformation. Section 5 outlines the

implementation of the procedure to data collected in discrete time via the discrete wavelet
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transformation. Section 6 presents simulations designed to check the e�ectiveness of the

procedure, and section 7 features three practical applications. Section 8 concludes.

2. Locally self-similar processes

Let Y (t) represent a mean-zero stochastic process with covariance function

�t(u1; u2) = CovfY (t+ u1); Y (t+ u2)g (2.1)

and variogram

�t(u1; u2) = VarfY (t+ u1)� Y (t+ u2)g: (2.2)

The process Y (t) is said to be locally self-similar if

�t(u1; u2) = �t(0; 0) �C(t) ju1 � u2j2H(t)f1 + o(1)g; as ju1j+ ju2j ! 0; (2.3)

where C(t) is a non-negative function of t, and H(t) represents the local scaling exponent

function, or scaling function for short. Note that (2.3) suggests

�t(u1; u2) = 2C(t) ju1 � u2j2H(t)f1 + o(1)g; as ju1j+ ju2j ! 0: (2.4)

Provided that

�t(u1; u1) + �t(u2; u2) = 2�t(0; 0) + o(ju1 � u2j2H(t)); as ju1j+ ju2j ! 0;

the relations (2.3) and (2.4) are equivalent.

De�nition (2.3) relates the local autocorrelation of Y (t) to the value of H(t). With

C(t) > 0, for �xed ju1�u2j near 0, the covariance between Y (t+u1) and Y (t+u2) becomes

smaller as H(t) moves from 1 towards 0. As a consequence, sections of sample paths where

H(t) is near 0 should appear more rough and erratic than sections where H(t) is near 1.

Let X(t) = Y (t)�Y (t�1) denote the increment process of Y (t), with covariance function

	t(u1; u2) = CovfX(t+ u1);X(t+ u2)g:

The Wigner-Ville distribution of X(t), which functions as a local version of the power spec-

trum, is de�ned as

gt(�) =
1

2�

Z
	t(�=2;��=2) e�i � �d�:
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It can be shown that

gt(�) = K(t)�1�2H(t) f1 + o(1)g; as �! 0; (2.5)

where K(t) is a non-negative function of t. When H(t) 2 (1=2; 1), (2.5) implies that gt(�) is

unbounded at � = 0. This spectral characteristic is indicative of long-range dependence.

If the increment process X(t) is stationary, gt(�) is independent of t and reduces to the

ordinary power spectrum of X(t). In this instance, K(t) and H(t) are constant, and (2.5)

becomes

g(�) = K�1�2H f1 + o(1)g; as �! 0: (2.6)

Estimation of constant H in (2.6) has been considered by many authors, mostly in the

context of long-memory time series where H 2 (1=2; 1).

We now present and discuss examples of processes that exhibit locally self-similar behav-

ior. First, consider the process de�ned for real t � 0 by the stochastic integral

Y (t) =
Z 0

�1

n
(t� u)H(t)�1=2� (�u)H(t)�1=2

o
dW (u) +

Z t

0
(t� u)H(t)�1=2 dW (u); (2.7)

where W (t) is standard Brownian motion, and H(t) 2 (0; 1) represents the scaling function.

This process is an extension of fractional Brownian motion, fBm, that allows for the self-

similarity parameter to vary over time. For this reason, the process is called generalized

fractional Brownian motion, gfBm.

In the following section, we explore many of the important theoretical and conceptual

properties of gfBm. We provide simple, explicit forms for its variance function, covariance

function, and variogram. We show that gfBm may be locally approximated by fBm, and

establish that gfBM obeys the law of the iterated algorithm. Finally, we derive the fractal,

Hausdor�, and local dimensions of gfBM sample paths.

The increment process of fBm is called fractional Gaussian noise, fGn. fGn is stationary

with a spectrum that satis�es (2.6). The increment process of gfBm is non-stationary (unless

H(t) is constant) with a spectrum that satis�es (2.5). Since gfBm relaxes many homogeneous

restrictions of fBm, the process may be used to model many natural phenomena with time-

varying dynamics that cannot be accommodated by either standard Brownian motion or

fBm (cf. Mandelbrot, 1983; Gon�calv�es and Flandrin, 1993; Flandrin and Gon�calv�es, 1994).
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Next, consider the process de�ned for non-negative integer t as

�(B)(1� B)H(t)�1=2X(t) = �(B)�(t); (2.8)

where B is a backshift operator de�ned by BX(t) = X(t�1), �(B) and �(B) are polynomials

in B having characteristic roots outside the unit circle, �(t) is Gaussian white noise, and

H(t) 2 (0; 1) represents the scaling function. This process is an extension of a fractional

autoregressive integrated moving-average, or fARIMA, process. Again, the extension allows

for the self-similarity parameter to evolve over time. We refer to this process as a generalized

fARIMA or gfARIMA process.

A fARIMA process is stationary with a spectrum that satis�es (2.6). A gfARIMA pro-

cess is non-stationary (unless H(t) is constant) with a spectrum that satis�es (2.5). It can

be shown that the normalized partial sums of a fARFIMA process have the same limiting

distribution as that of a globally self-similar process (see Beran, 1994, pp. 48{50). Analo-

gously, it can be shown that the normalized partial sums of a gfARIMA process have the

same limiting distribution as that of a locally self-similar process. Thus, a fARIMA process

may be regarded as the increment process for a globally self-similar process, and a gfARIMA

process may be regarded as the increment process for a locally self-similar process.

fARIMA processes have been extensively studied in the context of long-memory time

series (see Beran, 1994). gfARIMA processes have even greater potential for widespread

applicability, since they provide for the modeling of non-stationary time series that exhibit

irregular patterns of roughness.

A special case of (2.8) is de�ned by

(1� B)H(t)�1=2X(t) = �(t): (2.9)

We refer to such a process as generalized fractionally integrated noise, g�n, since it represents

an extension of fractionally integrated noise, �n.

Many of the fundamental properties of the two aforementioned locally self-similar pro-

cesses have yet to be established. In the next section, we investigate the �rst of these

processes, gfBm. We exhibit the form of its variance function, covariance function, and

variogram. We show that gfBm may be locally approximated by fBm, and establish that
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gfBM obeys the law of the iterated algorithm. We also derive the fractal, Hausdor�, and

local dimensions of gfBM sample paths.

3. Generalized fractional Brownian motion

Fractional Brownian motion has been used in modeling a host of natural phenomena

from a wide range of scienti�c �elds (e.g., Mandelbrot and van Ness, 1968; Mandelbrot,

1983; Peitgen et al., 1992; Wornell and Oppenheim, 1992). Such a process may be de�ned

by (2.7) provided thatH(t) � H is regarded as constant. As with any self-similar process, the

process dynamics are largely characterized by the value of H 2 (0; 1). When H = 1=2, (2.7)

reduces to ordinary Brownian motion. When H > 1=2, (2.7) involves fractional integration,

which is a smoothing operation. In this case, the process is said to be persistent, yielding

sample paths that appear trend-like, exhibiting gradual, sustained ripples. When H < 1=2,

(2.7) involves fractional di�erentiation, which is an unsmoothing operation. In this case,

the process is said to be anti-persistent, yielding sample paths that appear noisy, exhibiting

jagged, erratic shifts.

Like Brownian motion, fractional Brownian motion has many properties that are homo-

geneous in nature, including stationary increments, global self-similarity, and constant local

dimensions. Such properties prohibit fBm from being used to describe complicated phenom-

ena characterized by di�erent modes of regularity. For instance, in modeling landscapes via

random fractals and 1=f signals, processes that allow for varying patterns of roughness are

desirable (cf. Mandelbrot, 1983; Wang, 1997). In this section, we explore the properties of

generalized fractional Brownian motion and demonstrate that the process has the capability

to describe the dynamics of complex phenomena.

We begin in subsection 3.1 by exhibiting the form of the covariance function for gfBm,

which then leads to expressions for the variance function and the variogram. In subsec-

tion 3.2, we investigate local properties of gfBm. We show that the process may be locally

approximated by fBm, and establish that it obeys the law of the iterated algorithm. Finally,

in subsection 3.3, we derive the fractal, Hausdor�, and local dimensions of its sample paths.
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3.1 Covariance function, variance function, variogram

In the de�nition of gfBm provided in section 2, we assume that the process Y (t) has

mean zero. Thus, the covariance between Y (t) and Y (s) is given by EfY (t)Y (s)g and the

variance of Y (t)� Y (s) by E[fY (t)� Y (s)g2]. In this section, we will denote the covariance

function and variogram respectively by writing

R(s; t) = EfY (t)Y (s)g and V (s; t) = E[fY (t)� Y (s)g2]:

Thus, in the notation of (2.1) and (2.2), we have �t(u1; u2) = R(t+u1; t+u2) and �t(u1; u2) =

V (t+ u1; t+ u2)

We note that in the de�nition of gfBm in section 2, a constant starting value Y (0) may

be added to the right-hand side of (2.7). Without loss of generality, we have assumed this

constant is zero.

The following theorem provides an explicit form for the covariance function of gfBm. All

proofs appear in the Appendix.

Theorem 1.

R(s; t) = tH(s)+H(t)
�
fH(s) +H(t)g�1 +

Z 1

0
fH(u; s; t) du

�
=2

+ sH(s)+H(t)
�
fH(s) +H(t)g�1 +

Z 1

0
fH(u; t; s) du

�
=2

� jt� sjH(s)+H(t)
�
fH(s) +H(t)g�1 +

Z 1

0
fH(u; s ^ t; s _ t) du

�
=2;

where

fH(u; s; t) = uH(s)+H(t)�1 + (1 + u)H(s)+H(t)�1� 2uH(s)�1=2 (1 + u)H(t)�1=2:

FromTheorem 1, formulas immediately follow for the variance function and the variogram

of gfBm.

Corollary 1.

VarfY (t)g = t2H(t)
�
f2H(t)g�1 +

Z 1

0
fH(u; t; t) du

�
;
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V(t; s) = jt� sjH(s)+H(t)
�
fH(s) +H(t)g�1 +

Z 1

0
fH(u; s ^ t; s _ t) du

�

+ t2H(t)
�
f2H(t)g�1 +

Z 1

0
fH(u; t; t) du

�

� tH(s)+H(t)
�
fH(s) +H(t)g�1 +

Z 1

0
fH(u; s; t) du

�

+ s2H(s)
�
f2H(s)g�1 +

Z 1

0
fH(u; s; s) du

�

� sH(s)+H(t)
�
fH(s) +H(t)g�1 +

Z 1

0
fH(u; t; s) du

�
:

Remark 1.1. If H(t) � H is constant, Y (t) is fBm with self-similarity parameter H. The

formula in Theorem 1 reduces to the exact covariance function of fBm. Indeed, since

fH(u; s; t) = u2H�1 + (1 + u)2H�1 � 2uH�1=2 (1 + u)H�1=2

=
n
uH�1=2 � (1 + u)H�1=2

o2
;

we have

R(s; t) =
�
t2H + s2H � jt� sj2H

� �
(2H)�1 +

Z 1

0

n
uH�1=2 � (1 + u)H�1=2

o2
du
�
=2:

Remark 1.2. If H(s) +H(t) = 1, then

H(s)� 1=2 = 1=2 �H(t) = fH(s)�H(t)g=2;

and

fH(u; s; t) = 2 � 2
�

u

1 + u

�H(s)�H(t)
2

:

The formula for R(s; t) simpli�es to

R(s; t) = (s ^ t)
2
41 + Z 1

0

8<
:2 �

�
u

1 + u

�H(s)�H(t)
2 �

�
u

1 + u

�H(t)�H(s)
2

9=
; du

3
5 :

As an example of an instance where the preceding formula would be applicable, suppose

H(t) = � for t 2 (0; 1=3] and H(t) = 1 � � for t 2 [2=3; 1). Then over the intervals (0; 1=3]

and [2=3; 1), Y (t) corresponds to fBm with respective self-similarity parameters � and 1��,
and for s 2 (0; 1=3] and t 2 [2=3; 1),

R(s; t) = s

"
1 +

Z 1

0

(
2�

�
u

1 + u

���1=2
�
�

u

1 + u

�1=2��
)
du

#
:
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For � 6= 1=2, � and 1 � � fall on opposite sides of 1=2, so Y (t) is persistent over one of the

intervals (H > 1=2) and anti-persistent over the other (H < 1=2). Moreover, the preced-

ing covariance function provides the covariance between the persistent and anti-persistent

sections of the process.

3.2 Local properties

Consider a �xed time point t�. The following theorem shows for small �, the variance of

Y (t� + �)� Y (t�) is approximately the same as that for fBm with self-similarity parameter

H(t�). The theorem further establishes that Y (t) may be locally approximated at t� by fBm.

Theorem 2. Suppose H(t) is twice continuously di�erentiable at t�.

(1)

V (t� + �; t�) = j�j2H(t�)
�
f2H(t�)g�1 +

Z 1

0
fH(u; t�; t�) du

�
+O

�
�2
�
:

(2) Let ~Y (t) be fBm with parameter H(t�), i.e.,

~Y (t) =
Z 0

�1

n
(t� u)H(t�)�1=2 � (�u)H(t�)�1=2

o
dW (u) +

Z t

0
(t� u)H(t�)�1=2 dW (u):

Then,

VarfY (t� + �)� ~Y (t� + �)g = O
�
�2
�
:

Remark 2.1. If H(t�) < 1=2, under the assumption that H(t) is once continuously

di�erentiable, the proof of Theorem 2 can be modi�ed to show that the results of the

theorem hold with error terms of order �.

Remark 2.2. Note that the �rst result of Theorem 2 reects the local self-similarity of

gfBm, since it clearly suggests the variogram property (2.4).

The following theorem establishes the law of the iterated logarithm for gfBm.

Theorem 3. Let

M(t�; �) = sup fjY (s)� Y (t)j; s; t 2 (t� � �; t� + �)g :

Then there exist constants c and C depending only on H(t�) such that

lim inf
�!0

M(t�; �)

(�= log j log �j)H(t�)
= c; lim sup

�!0

M(t�; �)

�H(t�)=(log j log �j)1=2 = C:
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3.3 Fractal, Hausdor�, and local dimensions

Fundamental characteristics of the behavior of a stochastic process are quanti�ed via

the fractal, Hausdor�, and local dimensions of its sample paths. In what follows, we show

that for gfBm, these dimensions are solely determined by H(t). The results reinforce the

assertion that the dynamics of a locally self-similar process Y (t) are principally dictated by

the scaling function H(t).

We begin by providing general de�nitions for the fractal, Hausdor�, and local dimensions

based on the graph of a function g(x). The �rst two of these de�nitions will involve the graph

of the function over an interval [a; b] � [0;1), denoted by G = f(x; g(x));x 2 [a; b]g � IR2.

Let d(z; �) represent a disk centered at z 2 IR2 with radius � > 0, and let N�(G) be the

minimum number of disks d(z; �) that cover G. The fractal dimension (or box dimension) of

g(x) on [a; b] is de�ned as

�[a;b](g) = lim
�!0

logN�(G)

j log �j : (3.1)

Next, let fdig denote a collection of open disks with diameter bounded by � > 0 chosen

so that the union of the disks covers G. Let the �-dimensional outer measure be de�ned as

S�;�(G) = inf

(X
i

(diameter di)
�

)
;

where the in�mum is taken over all such collections fdig, and the sum is taken over all disks

in a collection. The Hausdor� dimension of g(x) on [a; b] is de�ned as

D[a;b](g) = inff� : S�(G) = 0g = supf� : S�(G) =1g: (3.2)

(See Mandelbrot, 1983; Adler, 1981; Barnsley, 1993; Tricot, 1995.)

Finally, the local dimensions of g(x) at a point x are de�ned in terms of (3.1) and (3.2)

as

�x(g) = lim
�!0

�[x��;x+�](g); Dx(g) = lim
�!0

D[x��;x+�](g):

The following two theorems provide the fractal and Hausdor� dimensions for the sample

paths of gfBm.

Theorem 4. Let Hab = minfH(t); t 2 [a; b]g. If Hab < 1=2, suppose H(t) is once continu-

ously di�erentiable on [a; b]; if Hab � 1=2, suppose H(t) is twice continuously di�erentiable
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on [a; b]. Then the fractal and Hausdor� dimensions of the sample paths of Y(t) are given

by

�[a;b](Y ) = D[a;b](Y ) = 2�Hab:

Remark 4.1. Theorem 4 con�rms the intuition that the fractal and Hausdor� dimensions

of gfBm are dominated by the roughest segments of its sample paths.

Our �nal theorem provides the local dimensions for the sample paths of gfBm. The result

is obtained by applying Theorem 4 to the interval [a; b] = [t� �; t+ �] and letting �! 0.

Theorem 5. If H(t) < 1=2, suppose H(t) is once continuously di�erentiable at t; if

Hab � 1=2, suppose H(t) is twice continuously di�erentiable at t. Then the local dimensions

of the sample paths of Y (t) are given by

�t(Y ) = Dt(Y ) = 2�H(t):

4. Estimating the local self-similarity parameter

The results of subsection 3.3 demonstrate the importance of the role of the scaling func-

tion H(t) in characterizing the behavior of a locally self-similar process. In this section, we

outline the procedure used to estimate this function.

Our development is based on the application of the continuous wavelet transformation

to a locally self-similar process Y (t) de�ned in continuous time. Of course, in practice,

Y (t) will be measured over a collection of discrete time points, yielding a �nite sample of

measurements. Thus, in section 5, we discuss the implementation of the procedure to a �nite

series via the discrete wavelet transformation.

To begin, let  denote the mother wavelet, assumed to have at least two vanishing

moments and to be at least twice continuously di�erentiable. Let TY (a; t) denote the wavelet

transformation of the locally self-similar process Y (t) corresponding to the scale a and the

location t. We may then write

TY (a; t) = a�1=2
Z
 
�
u� t

a

�
Y (u) du = a1=2

Z
 (x)Y (t+ ax) dx: (4.1)
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Using (4.1), (2.3), and the �rst vanishing moment of  , we obtain

E
n
jTY (a; t)j2

o
=

1

a

Z Z
 
�
u� t

a

�
 
�
v � t

a

�
EfY (u)Y (v)g du dv

= a
Z Z

 (x) (y)EfY (t+ ax)Y (t+ a y)g dx dy

= a
Z Z

 (x) (y)�t(ax; a y) dx dy

� a
Z Z

 (x) (y)
n
�t(0; 0) � C(t) jax� a yj2H(t)

o
dx dy

= C1 a
1+2H(t); as a! 0; (4.2)

where

C1 = �C(t)
Z Z

jx� yj2H(t) (x) (y) dx dy:

Now let

yt(a) = log
n
jTY (a; t)j2

o
;

C2 = E
�
log

h
jTY (a; t)j2

.
E
n
jTY (a; t)j2

oi�
;

and

"t(a) = log
h
jTY (a; t)j2

.
E
n
jTY (a; t)j2

oi
� C2:

Then clearly,

yt(a) = C2 + log
h
E
n
jTY (a; t)j2

oi
+ "t(a): (4.3)

Note that (4.2) and (4.3) imply the approximate regression model

yt(a) � c+ f2H(t) + 1g log a+ "t(a); for small scale a; (4.4)

where c = log C1 + C2.

Assuming that the error terms in model (4:4) are at least approximately uncorrelated,

the model suggests the use of ordinary least squares to estimateH(t). The general procedure

is outlined as follows.

1. Select a sequence of small scales a1 > � � � > ak, say aj = 2�j where j = 1; : : : ; k.

2. De�ne a set of bivariate data (xj; yj), j = 1; � � � ; k, by setting

xj = log aj and yj = yt(aj) for each j:
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3. Evaluate the least-squares estimate of H(t) in (4.4) via

Ĥ(t) =

(P
(xj � �x) (yj � �y)P

(xj � �x)2
� 1

)
=2; (4.5)

where �x =
P
xj=k, �y =

P
yj=k.

In the Appendix, we establish the following consistency result for the estimator Ĥ(t).

Theorem 6. Suppose that Y(t) is Gaussian with a covariance function that satis�es (2.3).

Then as k !1, Ĥ(t) converges in probability to H(t).

Intuitively, the magnitude of TY (a; t) reects the content of scale a present in the process

at time t. The approximate regression model (4.4) implies that at time t, the degree to which

the magnitude of TY (a; t) decreases with a is governed by H(t). According to the model,

the larger the value of H(t), the greater the rate at which the scale content decays with

the corresponding scale. Since �ne scale content should be more prevalent at times where

a sample path appears rough than at times where a path appears smooth, larger values of

H(t) should therefore be associated with smoother sample paths.

Having conceptualized the procedure in terms of the continuous wavelet transformation,

we now discuss its implementation to a �nite series via the discrete wavelet transformation.

5. Implementation of the estimation procedure

In practice, we generally observe a process Y (t) at a set of discrete time points. For

convenience, we will assume that the points are scaled to lie over the interval [0,1). We will

also assume that the points are equally spaced, and that the sample size is a power of two.

Thus, we may index our measurements with ti = (i� 1)=n, where i = 1; : : : ; n = 2J .

If the sample size is not a power of two, the series may be extended to achieve such a

sample size by repeating the �nal data value, and the results may be adjusted accordingly.

(See the application in subsection 7.1 for an example.)

Let the vector Y = [Y (t1); : : : ; Y (tn)]0 represent our sample of n measurements on Y (t).

To implement the estimation procedure, the discrete wavelet transformation or DWT will

be applied to the vector Y , and an estimate of H(t) will be derived from the transformed

data.
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The DWT of Y is a one-to-one transformation which recon�gures the information in Y

so that two objectives are served: (1) large-scale behavior (e.g., trends, long-term cycles)

may be easily delineated from small-scale behavior (e.g., local irregularities, noise), (2) the

evolution of scale content may be monitored over time. The discrete Fourier transformation

or DFT serves the �rst objective yet not the second, since the DFT is formulated under the

assumption that frequencies persist over time.

The DWT may be written in the form WY , where W is an n � n orthogonal ma-

trix that depends on both the wavelet and the boundary adjustment (Cohen et al., 1993a;

Daubechies, 1994). Fast algorithms with complexity of order n are available for performing

both the DWT and the inversion of the transformation that results in the reconstruction

of the original data. (Such algorithms are even less computationally intensive than the fast

Fourier transformation, which has complexity of order n log2 n.) Thus, the DWT provides

an e�cient, information-preserving mechanism for the characterization of scale content over

time.

To label the n = 2J coe�cients of the DWT, we index n�1 of the coe�cients dyadically:

yj;k; k = 0; : : : ; 2j � 1; j = 0; : : : ; J � 1:

We then label the remaining coe�cient y�1;0. The coe�cient yj;k is referred to as the DWT

of Y at level j and location k2�j . For k = 0; : : : ; 2j�1 and j = 0; : : : ; J�1; the quantity yj;k

may be viewed as an approximation to TY (2�j ; k2�j), the continuous wavelet transformation

TY (a; t) evaluated at scale a = 2�j and location t = k2�j (Donoho and Johnstone, 1994).

Intuitively, the magnitude of yj;k reects the content of scale a = 2�j in that portion of the

series which lies over the interval [k2�j ; (k + 1)2�j ).

In what follows, we outline the implementation of the estimation procedure for H(t) in

a series of �ve steps.

1. Perform the DWT on the series Y to obtain the DWT coe�cients

fyj;k j k = 0; : : : ; 2j � 1; j = 0; : : : ; J � 1g:

2. Partition the sampling interval [0; 1) into 2l nonoverlapping subintervals of equal length,

where l is an integer chosen such that 0 � l � (J � 1). The 2l subintervals are of the
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form

Im = [m2�l; (m+ 1)2�l); m = 0; : : : ; 2l � 1:

3. Choose an integer J 0 � (J � 1) such that 2�J
0

represents the largest scale to be used

in the procedure. All DWT coe�cients yj;k where J 0 � j � (J � 1) will be used in

estimating the H(t) curve.

4. For each Im, m = 0; : : : ; 2l�1, pool together values of yj;k to be used in constructing the
local estimate forH(t). Use the yj;k corresponding to levels j such that J 0 � j � (J�1),
and to locations k2�j such that the associated interval [k2�j; (k+1)2�j) overlaps with

Im. Speci�cally, for each m = 0; : : : ; 2l � 1, perform the following steps.

a. De�ne the bivariate collection of data

(Xm; Ym) =
n�
log

�
2�j

�
; log

�
jyj;kj2

��
j

[k2�j; (k + 1)2�j ) \ Im 6= �; 0 � k � 2j � 1; J 0 � j � (J � 1)
o
:

b. Fit an ordinary least-squares line to (Xm; Ym), treating the Xm as the regressor

measurements and the Ym as the response measurements.

c. Solve for the estimate Ĥ(t) by adjusting the estimate of the slope in the least-

squares �t by �rst subtracting 1 and then dividing by 2, as indicated in (4.5).

One may envision each Ĥ(t) as estimating the average value of the scaling function

H(t) over the corresponding subinterval Im. The appropriate time index for the Ĥ(t)

associated with Im might be regarded as the midpoint of Im, namely 2�l�1(2m+ 1).

5. Construct a curve from the collection of local estimates Ĥ(t) by employing a smoothing

algorithm, such as local polynomial smoothing. This curve then serves to approximate

the shape of the scaling function H(t).

As mentioned in the introduction, if a globally self-similar process Y (t) has stationary

increments and �nite second moments,H may be taken to lie over the interval (0; 1). Values

of H outside of this range lead to processes that are not of practical interest. However, in
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applying our estimation procedure for H(t) to real data, estimates of H(t) that fall below

0 or above 1 will occasionally occur. Such estimates may arise for a variety of reasons. For

instance, if the procedure is applied to the �rst di�erence of a locally self-similar process,

estimates of H(t) between �1 and 0 generally result; if the procedure is applied to the

partial sums of a locally self-similar process, estimates of H(t) between +1 and +2 generally

result. Thus, estimates of H(t) outside the interval (0,1) may imply that the underlying

series (or subseries) must be suitably di�erenced or accumulated in order to obtain a series

amenable to our algorithm (i.e., one that may be regarded as locally self-similar with locally

stationary increments and �nite second moments). Of course, such estimates may also occur

if the underlying series (or subseries) reects the dynamics of a process that lies outside the

realm of locally self-similar processes. This issue, however, is beyond the scope of the present

paper.

6. Simulations

We test the performance of our algorithm in twelve simulation sets: six based on the

gfBm process (2.7) and six based on the partial sums of the g�n process (2.9). We simulate

the processes so that the time index t is con�ned to the interval [0; 1).

To simulate realizations of the gfBm process (2.7), consider setting

Wn(ti) =
1p
n

iX
k=1

�(tk); ti =
(i� 1)

n
; i = 1; : : : ; n; (6.1)

where the �(tk) are variates of a Gaussian white noise process. For large n, the values of

Wn(ti) may be treated as realizations of Brownian motion, since the normalized partial sum

in (6.1) approximates the stochastic integral that de�nes such a process. The second of the

two stochastic integrals that comprise (2.7) may then be approximated by its discretized

analogue

Y2;n(ti) =
iX

k=1

(ti � tk)
H(ti)�1=2 fWn(tk)�Wn(tk�1)g fW (t0) � 0g

=
1p
n

iX
k=1

(ti � tk)
H(ti)�1=2�(tk); ti =

(i� 1)

n
; i = 1; : : : ; n:
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Similarly, the �rst of the two stochastic integrals in (2.7) can be approximated by a sum of

the form

Y1;N (ti) =
1p
N

0X
k=�N

n
(ti � uk)

H(ti)�1=2 � (�uk)H(ti)�1=2
o
�(uk);

uk =

 
k

N

!
K; k = 0;�1; : : : ;�N ; ti =

(i� 1)

n
; i = 1; : : : ; n;

where the �(uk) are variates of a Gaussian white noise process, and the integer N > 0 and

constant K > 0 are chosen such that (u�N ; u�N+1]; (u�N+1; u�N+2]; : : : ; (u�1; u0] provides a

su�ciently �ne partition of a suitably large interval (�K; 0]. The sequence

Yn(ti) = Y1;N (ti) + Y2;n(ti); ti =
(i� 1)

n
; i = 1; : : : ; n;

may then be treated as realizations of the process (2.7).

We remark that the contribution of Y1;N(ti) to Yn(ti) is negligible for the purpose at

hand. This contribution is therefore omitted in generating our sample paths. We also note

that certain components in the sums that comprise Y1;N(ti) and Y2;n(ti) may be of the form

0a where a � 0. Components of the form 00 can be treated as 1, and those of the form 0a

where a < 0 can be treated as 0.

To simulate realizations of the g�n process de�ned by (2.9), we use the fact that (2.9)

may be represented as an in�nite moving average of the form

X(ti) =
1X
k=0

a(ti; k)�(ti�k); (6.2)

where the �(ti�k) are variates of a Gaussian white noise process, and the a(ti; k) are de�ned

by

a(ti; k) =
�(k + fH(ti)� 1=2g)
�(k + 1)�(H(ti)� 1=2)

(6.3)

(see Beran, 1994, p. 65). (Here, �(�) denotes the gamma function.) The in�nite sum in (6.2)

may be approximated by the �nite sum

Xn(ti) =
NX
k=0

a(ti; k)�(ti�k); ti =
(i� 1)

n
; i = 1; : : : ; n; (6.4)

provided that N is chosen to be a suitably large integer. The sequence (6.4) may then be

treated as realizations of the process (6.2), or equivalently, (2.9). Accordingly, for large n,
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the normalized partial sums

Yn(ti) =
1p
n

iX
k=1

Xn(tk); ti =
(i� 1)

n
; i = 1; : : : ; n;

may be regarded as realizations of a locally self-similar process with a covariance function of

the form (2.3). These sums are therefore amenable to our algorithm.

In computing the coe�cients a(ti; k), we note that evaluating �(k) for large k may lead

to overow. This problem can be avoided by using the log gamma function to compute

log a(ti; k) and exponentiating. We also note that when H(ti) = 1=2, formula (6.3) for the

a(ti; k) involves �(0). In this instance, the a(ti; k) should be assigned the value 1 when k = 0

and 0 otherwise.

We generate six samples of the gfBm process (2.7) and six of the g�n process (2.9) using

the following six scaling functions:

H1(t) = 0:7 (constant)

H2(t) = 0:2 + 0:5t (linear)

H3(t) = 3:0(t� 0:5)2 + 0:1 (quadratic)

H4(t) = 4:0f(t� 0:5)3 + 0:125g (cubic)

H5(t) = 0:25flog(10:0 t + 0:5) + 1:0g (logarithmic)

H6(t) = 0:01 exp(4:0 t) + 0:25 (exponential)

In each instance, we consider a sample of size n = 212 = 4096 (J = 12).

In the estimation algorithm, we use the least asymmetric wavelet with a width of 8

(Daubechies, 1992) and the interval boundary conditions (Cohen et al., 1993b). We par-

tition the sampling interval [0; 1) into 32 = 25 (l = 5) subintervals, which results in 32

local estimates of H(t) corresponding to the time indices t = 1=64; 3=64; : : : ; 63=64. In

pooling values of yj;k for each estimate, we use the coe�cients corresponding to the scales

2�4; 2�5; : : : ; 2�11 (i.e., J 0 = 4). We smooth the estimates using local polynomial smoothing.

For the simulation sets based on the gfBm processes, the sample paths and the estimated

curves forH(t) are displayed in Figs. 1.1 through 1.12; for the sets based on the g�n processes,

the partial sums for the sample paths and the estimated curves for H(t) are displayed in

Figs. 2.1 through 2.12.

19



Each estimated curve e�ectively approximates the general shape of the corresponding

scaling function H(t). Note that the curves reect a minor amount of negative bias in the

Ĥ(t): this phenomenon is also apparent in the simulation results reported by Wang et al.

(2001). Not surprisingly, the number of subintervals used in the sampling interval partition

(i.e., the choice of l) a�ects the bias: the larger the number of subintervals, the smaller the

bias. Of course, employing a �ner partition also inates the variability of the estimated curve.

However, the impact of this increased variation can be partly controlled by the manner in

which the estimate is smoothed.

The encouraging results obtained in our simulations suggest that our estimation proce-

dure should result in an e�ective characterization of H(t) in large-sample settings. We now

apply the procedure to three real data sets: two from hydrology and one from computer

science.

7. Applications

7.1 Vertical ocean shear measurements

Percival and Guttorp (1994) analyze a set of vertical ocean shear measurements. The data

for the measurements are collected by dropping a probe into the ocean that records the water

velocity every 0.1 meter as it descends. The \time" index is depth (in meters). The shear

measurements (in 1/seconds) are obtained by taking a �rst di�erence of the velocity readings

over 10 meter intervals, and then applying a low-pass �lter to the di�erenced readings.

Vertical shear measurements display characteristics typical of self-similar processes; in

particular, the increments of such a series often exhibit long-memory behavior. The data

considered by Percival and Guttorp consist of 6875 values collected from a depth of 350.0

meters down to 1037.4 meters. The authors analyze 4096 of the values (chosen from the

middle of the series) using wavelets and the Allan variance. Their justi�cation for selecting

the central part of the sample for their analysis is that \this subseries can be regarded

as a portion of one realization of a process whose �rst backward di�erence is a stationary

process" (p. 334). In other words, this part of the sample can be regarded as a sample path

of a globally self-similar process with stationary increments.
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We analyze the entire sample under the premise that the series can be treated as a

realization of a locally self-similar process. Our goal is to estimate the scaling function H(t).

Rather than rede�ning the time index so that the sampling interval is [0; 1), we retain

the values of the original index (in meters). Since the size of the series is not a power of

two, we extend its length to 213 = 8192 (J = 13) by repeating the last value in the series

1317 times. We then apply our estimation algorithm by partitioning the sampling interval

into 32 = 25 (l = 5) subintervals, which results in 32 local estimates of H(t). Only the �rst

27 estimates are relevant, since the remaining estimates pertain to the augmented portion

of the series. We smooth these 27 estimates using local polynomial smoothing.

In implementing our procedure, we employ the least asymmetric wavelet with a width of

8 and the interval boundary conditions. We use the DWT coe�cients corresponding to the

scales 2�4; 2�5; : : : ; 2�12 (i.e., J 0 = 4).

The series is plotted in Fig. 3.1, and the smoothed estimated curve for H(t) in Fig. 3.2.

In both �gures, the range of t corresponding to the portion of the sample analyzed by

Percival and Guttorp is delineated with dotted lines. We note that the H(t) curve provides

strong evidence that the self-similarity parameter is not constant. The curve varies over

the range from 0.65 to 1.00, which reinforces the notion that the increments of the series

exhibit long-memory behavior. However, the shape of the curve indicates that the nature

of the long-range dependence changes as the depth increases. To model H(t) as a constant

over the entire sampling interval would be to ignore the local aspect of self-similarity that

appears to characterize the series.

The estimated curve for H(t) appears somewhat quadratic. The shape of the curve is

similar to that featured in Wang et al. (2001), where the series is analyzed using the same

estimation algorithm, albeit with a di�erent choice for the wavelet. Note that the curve

appears reasonably at over the middle section between the dotted lines. This supports the

argument of Percival and Guttorp that the central section of the series may be regarded as

globally self-similar with stationary increments. However, when taken as a whole, the series

exhibits depth-varying self-similarity patterns that can only be characterized by modeling

the scaling exponent as a function of t and by estimating H(t) accordingly.
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7.2 Yearly minimum water levels for the Nile River

In the study of long-range dependence, one of the most widely analyzed time series

is a collection of yearly minimum water levels for the Nile River. The 660 levels were

recorded from 622 A.D. to 1281 A.D. at the Roda Gauge near Cairo, Egypt. Percival and

Walden (2000, pp. 190{193) and Beran (1994, p. 22) discuss the data and provide interesting

perspectives on its history.

Beran (1994, pp. 117{118) initially analyzes the series using two models: fGn (the incre-

ment process of fBm), and �n. Using a discrete version of Whittle's estimator, he constructs

point estimates as well as 95% con�dence intervals for the global self-similarity parameter

H. The results are summarized below.

Model Point Estimate 95% Con�dence Interval

fGn 0.84 (0.79,0.89)

�n 0.90 (0.84,0.96)

Beran (1994, p. 206-207) presents a second analysis of the series based on a suspected

change point in the self-similarity parameter around 722 A.D. He partitions the initial 600

observations of the series into 6 sections consisting of 100 observations each. The Whittle

estimates for each of these 6 sections are featured below.

Time Interval (622,721) (722,821) (822,921) (922,1021) (1022,1121) (1122,1221)

Point Estimate 0.54 0.85 0.86 0.83 0.84 0.93

Treating the series as a realization of the increment process of a locally self-similar process,

we analyze the initial 29 = 512 (J = 9) measurements. The objective of our analysis is to

estimate H(t) over two sections of the series: the points collected prior to 722 A.D., and the

points collected from 722 onwards. We will then compare our results to those obtained by

Beran.

To make the series amenable to our algorithm, the mean of the observations is subtracted,

and the normalized partial sums of the resulting data are computed. The original series is

plotted in Fig. 4.1 and the partial sums in Fig. 4.2. The time point of interest, 722 A.D., is

demarcated with a dotted line.
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Rather than rede�ning the time index so that the sampling interval is [0; 1), we retain the

values of the original index (in years). We apply our algorithm by partitioning the sampling

interval into 16 = 24 (l = 4) subintervals, which results in 16 local estimates of H(t). Of

these 16 estimates, the �rst 3 apply to the time period prior to 722 A.D., and the remaining

13 apply to the period from 722 onwards. Using local polynomial smoothing, we smooth the

�rst 3 estimates and the last 16 estimates separately, allowing for a discontinuity in the H(t)

curve at the time point 722 A.D.

In implementing our procedure, we employ the least asymmetric wavelet with a width of

12 and the interval boundary conditions. We use the DWT coe�cients corresponding to the

scales 2�5; 2�6; : : : ; 2�8 (i.e., J 0 = 5).

The smoothed estimated curve for H(t) is featured in Fig. 4.3, again with the time point

722 A.D. highlighted with a dotted line. The �rst 5 of Beran's 6 Whittle estimates are

superimposed on the plot with dots. Clearly, our results support Beran's assertion that a

change point in H(t) occurs around 722 A.D.

Over the section of the series extending from 722 A.D. onwards, our results seem quite

consistent with Beran's Whittle estimates: theH(t) curve appears roughly level and oscillates

around 0.85. In fact, the mean of the 13 local estimates of H(t) is 0.85; curiously, this value

lies within both of Beran's con�dence intervals for the global estimation of H.

For the section of the series collected prior to 722 A.D., our results are somewhat di�erent

from Beran's. Here, the H(t) curve rises abruptly from about 0.1 to about 0.4, and the mean

of the 3 local estimates ofH(t) is 0.25. These results are indicative of anti-persistent behavior.

On the other hand, Beran's Whittle estimate for this section is 0.54, which implies that the

observations are characteristic of white noise.

As a point of interest, Percival and Walden (2000, pp. 326{327, 386{388) discuss a sus-

pected shift in the variance of the series around 715 A.D. They speculate that this shift is due

to a change in the method used to measure the minimum water level. A test is conducted

to determine if a change point occurs at 715 A.D., and the test shows signi�cance. Based on

the �nal 512 points in the series, a maximum likelihood estimate is constructed for a long-

memory parameter �, which is related to the self-similarity parameter H by H = � + 0:5.

The result is �̂ = 0:4452 (p. 286), which corresponds to the estimate Ĥ = 0:9452. Thus, for
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the latter section of the series, the analysis of Percival and Walden indicates long-range de-

pendence which is slightly stronger than that reected by either our analysis or the analyses

of Beran.

7.3 Ethernet network tra�c measurements

Our �nal analysis considers a series comprised of 218 = 262; 144 Ethernet local area

network (LAN) tra�c measurements collected over a one-hour period at the Bellcore Morris

Research and Engineering Center. Each observation represents the number of packets sent

over the Ethernet during a 10 millisecond period. A larger version of the series, featuring

360,000 observations spanning the entire hour of the experiment, is analyzed by Leland et

al. (1994). The data were collected during a period of \normal" tra�c load.

As explained by Leland et al., self-similarity is present in Ethernet LAN tra�c data due

to the absence of a natural length of a \burst." At various time scales, ranging from a

few milliseconds to minutes to hours, tra�c bursts are present that are similar in structure.

Thus, a series of tra�c measurements has the same basic appearance whether it is viewed

over very short time scales (e.g., milliseconds), or over much longer scales (e.g., hundreds of

seconds).

Analyzing the series of length 360,000, Leland et al. recovers the self-similarity parameter

H in three ways: by using the slope of a variance-time curve, by using the slope of an R/S

plot, and by using a maximum likelihood estimator based on the periodogram. The results

are as follows.

Method Point Estimate 95% Con�dence Interval

slope of variance-time curve 0.87 NA

slope of R/S plot 0.90 NA

periodogram-based MLE 0.90 (0.85,0.95)

We consider an analysis of the series of length 218 = 262; 144 that treats the series as

a realization of the increment process of a locally self-similar process. Our objective is to

estimate H(t), and to interpret our results in light of the analysis of Leland et al.
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To make the series amenable to our algorithm, the mean of the observations is subtracted,

and the normalized partial sums of the resulting data are computed. The �rst 1000 observa-

tions of the original series (covering a 10 second interval) are plotted in Fig. 5.1; the entire

set of partial sums (covering roughly 2600 seconds) is plotted in Fig. 5.2.

Rather than rede�ning the time index so that the sampling interval is [0; 1), we retain

the values of the original index (in 10 millisecond increments). We apply our algorithm by

partitioning the sampling interval into 1024 = 210 (l = 10) subintervals, which results in

1024 local estimates of H(t). We smooth these estimates using local polynomial smoothing.

In implementing our procedure, we employ the least asymmetric wavelet with a width of

8 and the interval boundary conditions. We use the DWT coe�cients corresponding to the

scales 2�4; 2�5; : : : ; 2�9 (i.e., J 0 = 4).

The smoothed estimated curve for H(t) is featured in Fig. 5.3. The limits of the afore-

mentioned con�dence interval reported by Leland et al. are represented in the �gure by

dotted lines. Note that the curve for H(t) is somewhat at, and lies entirely within the

con�dence interval limits. Both our analysis and that of Leland et al. indicate that the series

exhibits strong long-range dependence.

Our analysis suggests that in applications where the self-similarity parameter is roughly

constant, our procedure should produce an estimated H(t) curve which accurately reects

this characteristic. The simulation results based on the constant scaling function H1(t)

reinforce this assertion. Thus, in analyzing data where it is not apparent whether the self-

similar behavior remains globally constant or changes over time, our procedure provides a

promising alternative to methods that assume the former.

8. Conclusion

Many naturally occurring phenomena produce data that exhibits self-similar behavior

which evolves as the phenomenon progresses. Adequate modeling of such data requires the

consideration of locally self-similar processes with time-varying scaling exponents.

In the preceding chapter, we have considered two examples of locally self-similar pro-

cesses: generalized fractional Brownian motion, gfBm, and the limit of the normalized partial

sums of generalized fractional ARIMA processes, gfARIMA.We have investigated several key
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theoretical properties of gfBM. Additionally, we have proposed, discussed, and investigated

an algorithm for estimating the time-varying scaling function H(t) of a locally self-similar

process. Our algorithm exploits the time-scale localization facility of wavelets to produce a

consistent estimator of H(t) at a given time point t. Our simulation results, which feature

both gfBm and gfARIMA processes, indicate that our method provides an accurate reec-

tion of the progression of H(t). Moreover, our applications illustrate that our method can

be used to quantify time-dependent self-similarity patterns that arise in actual spatial and

temporal series.
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Figure Captions

Fig. 1.1. Sample path of gfBm with scaling function H1(t) (n = 4096).

Fig. 1.2. Estimate of H1(t) for gfBm sample path in Fig. 1.1.

Fig. 1.3. Sample path of gfBm with scaling function H2(t) (n = 4096).

Fig. 1.4. Estimate of H2(t) for gfBm sample path in Fig. 1.3.

Fig. 1.5. Sample path of gfBm with scaling function H3(t) (n = 4096).

Fig. 1.6. Estimate of H3(t) for gfBm sample path in Fig. 1.5.

Fig. 1.7. Sample path of gfBm with scaling function H4(t) (n = 4096).

Fig. 1.8. Estimate of H4(t) for gfBm sample path in Fig. 1.7.

Fig. 1.9. Sample path of gfBm with scaling function H5(t) (n = 4096).

Fig. 1.10. Estimate of H5(t) for gfBm sample path in Fig. 1.9.

Fig. 1.11. Sample path of gfBm with scaling function H6(t) (n = 4096).

Fig. 1.12. Estimate of H6(t) for gfBm sample path in Fig. 1.11.

Fig. 2.1. Partial sums for sample path of g�n with scaling function H1(t) (n = 4096).

Fig. 2.2. Estimate of H1(t) for g�n sample path in Fig. 2.1.

Fig. 2.3. Partial sums for sample path of g�n with scaling function H2(t) (n = 4096).

Fig. 2.4. Estimate of H2(t) for g�n sample path in Fig. 2.3.

Fig. 2.5. Partial sums for sample path of g�n with scaling function H3(t) (n = 4096).

Fig. 2.6. Estimate of H3(t) for g�n sample path in Fig. 2.5.

Fig. 2.7. Partial sums for sample path of g�n with scaling function H4(t) (n = 4096).

Fig. 2.8. Estimate of H4(t) for g�n sample path in Fig. 2.7.

Fig. 2.9. Partial sums for sample path of g�n with scaling function H5(t) (n = 4096).

Fig. 2.10. Estimate of H5(t) for g�n sample path in Fig. 2.9.

Fig. 2.11. Partial sums for sample path of g�n with scaling function H6(t) (n = 4096).

Fig. 2.12. Estimate of H6(t) for g�n sample path in Fig. 2.11.
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Fig. 3.1. Vertical ocean shear series (n = 6875).

Fig. 3.2. Smoothed estimates of H(t) for vertical ocean shear series.

Fig. 4.1. Nile River water level series (n = 512).

Fig. 4.2. Partial sums for Nile River water level series.

Fig. 4.3. Smoothed estimates of H(t) for Nile River water level series.

Fig. 5.1. Ethernet network tra�c series (n = 262; 144).

Fig. 5.2. Partial sums for Ethernet network tra�c series.

Fig. 5.3. Smoothed estimates of H(t) for Ethernet network tra�c series.
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Appendix

In what follows, we present proofs for Theorems 1, 2, 3, and 4 (from section 3), and for

Theorem 6 (from section 4). In our proofs, we use K to denote constants that may vary in

speci�cation from one usage to the next. In the proof of Theorem 6, these constants may

depend on t but not on the scales a.

Proof of Theorem 1.

Assume s � t. Direct calculations establish

R(s; t) =
Z 0

�1

n
(t� u)H(t)�1=2� (�u)H(t)�1=2

o n
(s� u)H(s)�1=2 � (�u)H(s)�1=2

o
du

+
Z s

0
(t� u)H(t)�1=2 (s� u)H(s)�1=2 du

=
Z 1

0

n
(t+ u)H(t)�1=2� uH(t)�1=2

o n
(s+ u)H(s)�1=2� uH(s)�1=2

o
du

+
Z 0

�s
(t+ u)H(t)�1=2 (s+ u)H(s)�1=2 du

= lim
M!1

AM ;

where

AM =
Z M

0

n
(t+ u)H(t)�1=2� uH(t)�1=2

o n
(s+ u)H(s)�1=2� uH(s)�1=2

o
du

+
Z 0

�s
(t+ u)H(t)�1=2 (s+ u)H(s)�1=2 du

=
Z M

�s
(t+ u)H(t)�1=2 (s+ u)H(s)�1=2 du�

Z M

0
(t+ u)H(t)�1=2uH(s)�1=2 du

�
Z M

0
uH(t)�1=2 (s+ u)H(s)�1=2 du+

Z M

0
uH(s)+H(t)�1 du

=
Z s+M

0
(t� s+ u)H(t)�1=2uH(s)�1=2 du�

Z M

0
(t+ u)H(t)�1=2 uH(s)�1=2 du

�
Z M

0
uH(t)�1=2 (s+ u)H(s)�1=2 du+MH(s)+H(t)=fH(s) +H(t)g:

To make the integrals in AM converge as M ! 1, we must �rst subtract uH(s)+H(t)�1

and (1 + u)H(s)+H(t)�1 from each of the integrands, and then perform a change of variables

in the integrals. We obtain
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AM =
Z s+M

0

n
(t� s+ u)H(t)�1=2 uH(s)�1=2� uH(s)+H(t)�1=2 � (t� s+ u)H(s)+H(t)�1=2

o
du

�
Z M

0

n
(t+ u)H(t)�1=2uH(s)�1=2� uH(s)+H(t)�1=2� (t+ u)H(s)+H(t)�1=2

o
du

�
Z M

0

n
uH(t)�1=2 (s+ u)H(s)�1=2 � uH(s)+H(t)�1=2 � (s+ u)H(s)+H(t)�1=2

o
du

+
n
tH(s)+H(t)+ sH(s)+H(t) � (t� s)H(s)+H(t)

o
=f2H(s) + 2H(t)g

= �
(
(t� s)H(s)+H(t)

Z (s+M)=(t�s)

0
fH(u; s; t) du

)
=2

+

(
tH(s)+H(t)

Z M=t

0
fH(u; s; t) du

)
=2 +

(
sH(s)+H(t)

Z M=s

0
fH(u; t; s) du

)
=2

+
n
tH(s)+H(t)+ sH(s)+H(t) � (t� s)H(s)+H(t)

o
=f2H(s) + 2H(t)g:

The theorem is then established by letting M !1. 2

Proof of Theorem 2.

(1) We consider � # 0 only. By Corollary 1, we have

V (t� + �; t�) =

�H(t�)+H(t�+�)
�
fH(t�) +H(t� + �)g�1 +

Z 1

0
fH(u; t�; t� + �) du

�

+ (t� + �)2H(t�+�)
�
f2H(t� + �)g�1 +

Z 1

0
fH(u; t� + �; t� + �) du

�

� (t� + �)H(t�)+H(t�+�)
�
fH(t�) +H(t� + �)g�1 +

Z 1

0
fH(u; t�; t� + �) du

�

+ t2H(t�)
�

�
f2H(t�)g�1 +

Z 1

0
fH(u; t�; t�) du

�

� tH(t�)+H(t�+�)
�

�
fH(t�) +H(t� + �)g�1 +

Z 1

0
fH(u; t� + �; t�) du

�
:

Note that
R1
0 fH(u; s; t) du is �nite and has continuous derivatives with respect to s and

t. Also, we can argue that

xH(t+�) � xH(t) = � H 0(t)xH(t) log x+ �2 xH(t�)
h
fH 0(t�) log xg2 +H 00(t�) log x

i
;

where t� is between t� and t� + �, and that

H 0(t)xH(t) log x; xH(t�)
h
fH 0(t�) log xg2 +H 00(t�) log x

i
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are both bounded. Therefore, we have

V (t� + �; t�) =

�2H(t�)
�
f2H(t�)g�1 +

Z 1

0
fH(u; t�; t�) du

�
+O(�2)

+ t2H(t�)
�

Z 1

0
ffH(u; t� + �; t� + �)� fH(u; t�; t� + �) + fH(u; t�; t�)� fH(u; t� + �; t�)g du

+ t2H(t�)
�

h
f2H(t� + �)g�1 � 2 fH(t�) +H(t� + �)g�1 + f2H(t�)g�1

i
+� H 0(t�) t

2H(t�)
� log t�

Z 1

0
f2 fH(u; t� + �; t� + �)� fH(u; t�; t� + �)� fH(u; t� + �; t�)g du

+� H 0(t�) t
2H(t�)
� log t� [2 f2H(t� + �)g�1 � 2 fH(t�) +H(t� + �)g�1]

+2 � H(t�) t
2H(t�)�1
�

Z 1

0
ffH(u; t� + �; t� + �)� fH(u; t�; t� + �)g du

+2 � H(t�) t
2H(t�)�1
� [f2H(t� + �)g�1 � fH(t�) +H(t� + �)g�1]

= �2H(t�)
�
f2H(t�)g�1 +

Z 1

0
fH(u; t�; t�) du

�
+O(�2):

(2) By the arguments in the proof of Theorem 1, we can establish that

EfY (t� + �) ~Y (t� + �)g = (t� + �)H(t�)+H(t�+�)
h
fH(t�) +H(t� + �)g�1

+
Z 1

0
ffH(u; t�; t� + �) + fH(u; t� + �; t�)g=2 du

i
:

Using Corollary 1 and the arguments from part (1), we can then prove VarfY (t� + �) �
~Y (t� + �)g is of order �2. 2

Proof of Theorem 3.

Since ~Y (t) is fBm with self-similarity parameter H(t�), by the law of the iterated logarithm

for fBm (Oodaira, 1972; Cs�aki, 1980; Goodman and Kuelbs, 1991; Monrad and Rootz�en,

1995), there exist constants c and C depending only on H(t�) such that

lim inf
�!0

sup

( j~Y (s)� ~Y (t)j
(�= log j log �j)H(t�)

; s; t 2 (t� � �; t� + �)

)
= c;

lim sup
�!0

sup

( j~Y (s)� ~Y (t)j
�H(t�)=(log j log �j)1=2 ; s; t 2 (t� � �; t� + �)

)
= C:

Let Z(t) = Y (t)� ~Y (t), and

m(t�; �) = sup fjZ(s)� Z(t)j; s; t 2 (t� � �; t� + �)g :
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Then it is su�cient to prove

lim
�!0

m(t�; �)

�H(t�)= log j log �j = 0: (A.1)

By Theorem 2.1 of Monrad and Root�zen (1995) and by Theorem 2, for 2H(t�) <  < 2,

we have that

Pfm(t�; �) > "g � 1 � exp
�
�K � "�2=

�
:

Let 0 < � < =2 �H(t�), and for k = 1; 2; � � � ; set

�k = k1=[fH(t�)+�g=�1=2] and "k = �
H(t�)+�
k :

Then,

X
k

P
n
m(t�; �k) > �

H(t�)+�
k

o
� X

k

�
1� exp

h
�K �

1�2fH(t�)+�g=
k

i�

� X
k

K �
1�2fH(t�)+�g=
k

= K
X
k

k�2 <1:

By the Borel-Cantelli lemma, it follows that m(t�; �k) � �
H(t�)+�
k . Furthermore, for �k+1 <

� � tk,

m(t�; �) � m(t�; �k) � �
H(t�)+�
k � �H(t�)+� (�k=�k+1)

H(t�)+�:

Thus, for small �, m(t�; �) � 2 �H(t�)+�. This establishes (A.1). 2

Proof of Theorem 4.

Since D[a;b](Y ) � �[a;b](Y ), we need to show D[a;b](Y ) � 2�Hab and �[a;b](Y ) � 2�Hab.

(1) �[a;b](Y ) � 2�Hab. It is su�cient to show that for any  < Hab, we have �[a;b](Y ) � 2�.
Suppose that for any  < Hab,

P [sup fjY (t)� Y (s)j=js� tj; s; t 2 [a; b]g <1] = 1: (A.2)

We will then have �[a;b](Y ) � 2� (Adler, 1981, Chapter 8; Tricot, 1995, Chapter 12). Now
for t� s bounded below from zero, with probability one, jY (t)� Y (s)j=js� tj <1, so we

need only show (A.2) for small t� s.

39



Theorem 2 implies that there exists a positive constant K such that for s; t 2 [a; b] and

t� s! 0,

V (t; s) � K jt� sj2Hab:

Let

m(�) = sup fjY (t)� Y (s)j; s; t 2 [a; b]; jt� sj � �g :

By Theorem 2.1 of Monrad and Root�zen (1995), we have

Pfm(�) � "g � 1� exp
�
�K � "�1=Hab

�
:

For k = 1; 2; � � �, set �k = k2=(=Hab�1) and "k = �k . Then

X
k

Pfm(�k) � �kg � X
k

n
1� exp

�
�K �k "

�1=Hab

k

�o

� X
k

K �
1�=Hab

k

= K
X
k

k�2 <1:

By the Borel-Cantelli lemma, it follows that m(�k) �

k � 1. Furthermore, for �k+1 < � � tk,

m(�)

�
� m(�k)

�k

 
�k
�k+1

!

:

Since �k=�k+1 ! 1, we have m(�)=� � 2. Finally,

jY (t)� Y (s)j=jt� sj � m(jt� sj)=jt� sj:

This establishes (A.2).

(2) D[a;b](Y ) � 2�Hab. It it su�cient to show that for any  > Hab, we haveD[a;b](Y ) � 2�.
Suppose t� 2 [a; b] is such that Hab = H(t�). There exists an � > 0 such that for

t 2 [t� � �; t� + �], we have  > H(t) + �. Since D[a;b](Y ) � D[t���;t�+�](Y ), to prove

D[a;b](Y ) � 2 � , it su�ces to show that D[t���;t�+�](Y ) � 2 � , which is implied by

Z t�+�

t���

Z t�+�

t���
E
n
jY (t)� Y (s)j2 + js� tj2

o=2�1
ds dt <1:

(See Adler, 1981, Chapter 8, Lemma 8.2.4.)
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Note that Y (t)� Y (s) follows a normal distribution with mean zero. If �(y) denotes the

probability density function of the standard normal distribution, we then have

Z t�+�

t���

Z t�+�

t���
E
n
jY (t)� Y (s)j2 + js� tj2

o=2�1
ds dt

=
Z t�+�

t���

Z t�+�

t���

Z n
y2 V (s; t) + js� tj2

o=2�1
�(y)dy ds dt

� K
Z t�+�

t���

Z 2 �

�2 �

Z n
y2 V (t+ u; t) + u2

o=2�1
dy du dt:

Now the integral over [�2 �; 2 �] with respect to u need only be considered over [��; �] for
small 0 < � � 2 �. By Theorem 2, we have that for small u, V (t+ u; t) � C(t) juj2H(t), with

C(t) bounded below from zero and above from in�nity. Thus it is su�cient to establish the

�niteness of Z t�+�

t���

Z �

��

Z n
y2 juj2H(t)+ u2

o=2�1
dy du dt:

This integral in turn is bounded by

8 �
Z t�+�

t���

Z �

0

Z 1

0

n
y2 u2H(t) + u2

o=2�1
dy du dt

= 8 �
Z t�+�

t���

Z �

0
uH(t)(�2)

Z 1

0

n
y2 + u2�2H(t)

o=2�1
dy du dt

� K
Z t�+�

t���

Z �

0
uH(t) (�2) uf1�H(t)g(�1) du dt

= K
Z t�+�

t���

Z �

0
u�H(t)�1 du dt

� K
Z t�+�

t���

Z �

0
u��1 du dt

= K � �� <1: 2

Proof of Theorem 6.

The theorem can be easily established by proving

E
n
Ĥ(t)

o
! H(t) and Var

n
Ĥ(t)

o
! 0: (A.3)

The result then follows by Chebyshev's inequality.

Recall from section 4 that the bivariate data values which lead to Ĥ(t) are denoted by

xj = log(2�j) and yj = yt(2�j) for j = 1; : : : ; k, where yt(a) = log fjTY (a; t)j2g. Thus,
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Ĥ(t) is based on a bivariate sample of size k. We will prove (A.3) by demonstrating that as

k !1,

EfĤ(t)g = H(t) + o(k�1); VarfĤ(t)g = O(k�3): (A.4)

To ease notation, we suppress the time index t in the speci�cations of yt(a), H(t), and Ĥ(t),

and write these objects simply as y(a), H, and Ĥ, respectively.

Direct computations show that

kX
j=1

(xj � �x)2 = (log 2)2

8<
:

kX
j=1

j2 � k (k + 1)2=4

9=
; = (log 2)2 k (k + 1) (k � 1)=12 � k3; (A.5)

and
kX

j=1

jxj � �xj = (log 2)
kX

j=1

jj � (k + 1)=2j � k2: (A.6)

By (4.2), we have as a! 0,

E
n
jTY (a; t)j2

o
= C1 a

2H+1 f1 + o(1)g;

and thus

log
h
E
n
jTY (a; t)j2

oi
= logC1 + (2H + 1) log a+ o(1):

The preceding relation and (4.3) together imply

E(yj) = c+ (2H + 1)xj + o(1); (A.7)

where c = logC1 + C2. From (4.5) along with (A.5), (A.6), and (A.7), we obtain

E(Ĥ) =

P
(xj � �x) E(yj � �y)

2
P
(xj � �x)2

� 1

2

= H + o

 P jxj � �xjP
(xj � �x)2

!

= H + o(k�1):

This establishes the �rst result of (A.4). We now derive the second result.

Utilizing (4.1), the covariance property (2.3), and the �rst vanishing moment of the

mother wavelet  , we have
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CovfTY (a1; t); TY (a2; t)g
=

1

(a1 a2)1=2

Z Z
 
�
u� t

a1

�
 
�
v � t

a2

�
EfY (u)Y (v)g du dv

= (a1 a2)
1=2

Z Z
 (x) (y)EfY (t+ a1 x)Y (t+ a2 y)g dx dy

= (a1 a2)
1=2

Z Z
 (x) (y)�t(a1 x; a2 y) dx dy

� (a1 a2)
1=2

Z Z
 (x) (y)

n
�t(0; 0) �C(t) ja1 x� a2 yj2H

o
dx dy

= �C(t) (a1 a2)1=2
Z Z

 (x) (y) ja1 x� a2 yj2H dx dy

= �C(t) a2H+1=2
1 a

1=2
2

Z Z
 (u+ y a2=a1) (y) juj2H du dy; as a1; a2 ! 0: (A.8)

Now assume the mother wavelet hasM vanishing moments and isM times continuously

di�erentiable where M � 2. We take an M th-order expansion of  (u+ y a2=a1) about u to

establish that as (a2=a1)! 0,

 (u+ y a2=a1) =  (u) + y 0(u)(a2=a1) + : : :+ (1=M !)yM (M)(u)(a2=a1)
Mf1 + o(1)g:

This expansion allows us to show

Z Z
 (u+ y a2=a1) (y) juj2H du dy � K(a2=a1)

M ; as (a2=a1)! 0:

Using the preceding in (A.8), we see that as a1; a2 ! 0 with (a2=a1)! 0,

CovfTY (a1; t); TY (a2; t)g � K a
2H+1=2
1 a

1=2
2 (a2=a1)

M :

This result implies that for small a1; a2 chosen such that a2 < a1,

jCorrfTY (a1; t); TY (a2; t)gj � K (a2=a1)
M�H : (A.9)

Now for a bivariate normal pair of random variables (W;Z) with E(W ) = E(Z) = 0, it

can be shown that

jCorrflog(W 2); log(Z2)gj � [Corr(W;Z)]2 :

It therefore follows from (A.9) that for small a2 < a1,

jCorrfy(a1); y(a2)gj � [CorrfTY (a1; t); TY (a2; t)g]2 � K (a2=a1)
2M�2H: (A.10)
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Furthermore, if W is normal with variance �2, the variance of log(W 2) does not depend on

�2, as can be seen by writing log(W 2) = logf(W=�)2g+log �2. Utilizing this fact along with

(A.10), we have that for small a2 < a1,

jCovfy(a1); y(a2)gj � K (a2=a1)
2M�2H :

From the preceding, we have

jCov(yi; yj)j � K 2ji�jj (2H�2M): (A.11)

With (A.11), we can write

jX
ij

xi xj Cov(yi; yj)j � K
X
ij

i j 2ji�jj (2H�2M)

� K
X
i�j

i j 2(j�i) (2H�2M)

= K
kX

i=1

2
4i 2�i (2H�2M)

8<
:

kX
j=i

j 2j (2H�2M)

9=
;
3
5

� K
kX

i=1

h
i 2�i (2H�2M)

n
i 2i (2H�2M)

oi

= K
kX

i=1

i2

� k3: (A.12)

Similarly, we can show

�x jX
ij

xiCov(yi; yj)j � k3; (�x)2 jX
ij

Cov(yi; yj)j � k3: (A.13)

By (A.12) and (A.13), we have

X
ij

(xi � �x) (xj � �x)Cov(yi; yj) =
X
ij

xi xj Cov(yi; yj)� �x
X
ij

(xi + xj)Cov(yi; yj)

+ (�x)2
X
ij

Cov(yi; yj)

� k3;

Finally, using the preceding along with (4.5) and (A.5), we have

Var(Ĥ) =

P
ij(xi � �x) (xj � �x)Cov(yi; yj)

4fP(xi � �x)2g2 � k�3: 2
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