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Volatility estimation by combining stock price
data and option data

Yi Liu and Yazhen Wang
∗†

Volatility modeling and analysis are traditionally based
on either historical price data or option data. Finance the-
ory shows that option prices heavily depend on the under-
lying stocks’ prices, thus the two kinds of data are related.
This paper explores the approach that combines both stock
price data and option data to perform the statistical analy-
sis of volatility. We investigate the Black-Scholes model and
an exponential GARCH model and derive the relationship
among the Fisher information for volatility estimation based
on stock price data alone or option data alone as well as joint
volatility estimation for combining stock price data and op-
tion data. Under the Black-Scholes model an asymptotic
theory for the joint estimation is established, and a simula-
tion study is conducted to check finite sample performances
of the proposed joint estimation.
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1. INTRODUCTION

Volatility is central to modern finance, and there is much
literature on the study of volatility in finance, economet-
rics and statistics. Two data sources, historical stocks’ price
data and option data, are frequently employed to estimate
and forecast volatility in financial studies and practices, and
it is often the case that either price data or option data
are used. Since the option pricing theory shows that the
prices of options depend on the price models of the under-
lying stocks, option data are related to the stocks’ price
data. Instead of choosing one source against the other, this
paper explores a combined statistical approach for volatil-
ity estimation based on both stock price data and option
data. We consider the Black-Scholes model and an expo-
nential GARCH model and derive an exact or approximate
joint likelihood for the combined two types of data under
the models. The volatility parameter estimation is devel-
oped by maximizing the obtained joint likelihood. We derive
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the Fisher information and establish the asymptotic theory
for the proposed estimators to show the advantage of the
joint estimation approach. A simulation study is conducted
to investigate the finite sample performances of the esti-
mators. Assuming a geometric Brownian motion model for
the stock price, Black and Scholes (1973) established the so-
called Black-Scholes formula for the European option prices.
The model and formula have closed form expressions that
allow us to develop explicit asymptotic results for the com-
bined estimation. For financial models with varying volatili-
ties, there is a great amount of volatility studies and option
pricing on discrete-time GARCH models [Bollerslev (1986),
Engle (1982), Gouriéroux (1997), Lyuu and Wu (2005), Nel-
son (1991)] and continuous-time diffusion models [Fouque
et al. (2000), Heston (1993), Hull and White (1987), Melino
and Turnbull (1990), Rossi (1996), Scott (1987), Stein and
Stein (1991), Wiggins (1987), Duan (1997), Nelson (1990),
Yu, Li and Wells (2010)]. GARCH models use lagged obser-
vation errors to model volatility and obtain the closed form
likelihood functions of historical price data, but the GARCH
option pricing is very complicated. While it is very hard to
derive the likelihood for the price data generated from the
diffusion models, their option prices often have some sort of
explicit expressions. Based on the diffusion limit of an ex-
ponential GARCH model, we take advantage of the explicit
expansion of the diffusion option price to approximate the
GARCH option price, and hence we build an implied volatil-
ity model and develop a joint likelihood for both stock price
data and option price data. We obtain the estimators of
model parameters by maximizing the joint likelihood. We
derive the Fisher information to show the advantage of the
parameter estimation based on the combined data.

The rest of the paper is arranged as follows. Sections 2
and 3 feature the combined estimation for the Black-Scholes
model and an exponential GARCH model, respectively. Sec-
tion 4 presents a simulation study.

2. ESTIMATION UNDER THE
BLACK-SCHOLES PARADIGM

2.1 Constant volatility estimation by either
price data or option data

Let St be the underlying price process of a stock, and
assume

St = S0e
(μ−σ2

2 )t+σBt ,(1)
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where Bt is a standard Brownian motion, μ is drift, and σ is
volatility. Black and Scholes (1973) derived the formula for
the European call option price as a function of spot price S
at time t, strike price K, maturity duration T − t, interest
rate r and volatility σ, as follows,

CBS(t, S;T,K;σ) = Φ(d1)S − Φ(d2)Ke−r(T−t),(2)

where Φ is the cdf of standard normal distribution and

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

Suppose that the stock price governed by (1) is observed at
discrete time tj = j/n, j = 1, . . . , n. LetXj =

√
n(log(Stj )−

log(Stj−1)) be the scaled stock returns, j = 1, . . . , n. Then
X1, . . . , Xn are i.i.d normal and the maximum likelihood
estimator of σ is derived as follows,

σ̂S =

√√√√ 1

n

n∑
j=1

(Xj − X̄)2, X̄ =
1

n

n∑
j=1

Xj .(3)

We can easily compute the Fisher information 2n/σ2 for
estimating σ and derive the asymptotical normality of σ̂S

as follows,

(4)
√
n(σ̂S − σ) → N(0, σ2/2), as n → ∞.

Since the option price CBS(t, S, T,K;σ) depends on
known (t, S, T,K) and unknown σ, we may estimate volatil-
ity σ from the observed option price data. Assume that the
observed option price data are equal to the true option prices
calculated from (2) plus random errors, that is, the observed
option price data obey a nonlinear regression model,

Ci = CBS(ti, Sti , Ti,Ki;σ) + εi, i = 1, . . . ,m,(5)

where ti is the point of purchase and Ti is the time of ex-
piration, Sti and Ki represent the stock and strike prices,
respectively, and εi’s are random errors with mean zero and
variance η2. For model (5), we estimate volatility σ by the
non-linear least squares estimator σ̂BS which minimizes the
sum of squared residuals

m∑
i=1

[Ci − CBS(ti, Sti , Ti,Ki;σ)]
2.

Following Lai (1994) we may derive the asymptotic distri-
bution of σ̂BS as follows,

D1/2(σ̂BS − σ) → N(0, η2), as m → ∞,(6)

where D =
m∑
i=1

E[(∂CBS(xi,σ̂BS)
∂σ )2] and xi = (ti, Sti ;Ti,Ki).

As the Black-Scholes formula indicates a one-to-one cor-
respondence between the option price and the volatility
when we know the starting time t, expiration time T , spot
price S, striking price K, and interest rate r, we define the
implied volatility to be the volatility corresponding to a
given option price for (t, T, S,K, r), and practitioners of-
ten use the implied volatility instead of the corresponding
option prices in financial applications. Alternative to (5) we
may adopt a model based on implied volatility by assum-
ing the observed implied volatilities are equal to the true
volatilities plus some random errors,

Ii = σ + zi, i = 1, . . . ,m,(7)

where σ denotes the true volatility, Ii’s are observed implied
volatilities, and zi’s are i.i.d. random errors with mean 0
and variance τ2. For (7), the Fisher information for σ is
m/τ2, we estimate σ by sample mean Ī = 1

m

∑m
i=1 Ii, and

its asymptotic distribution is given as follows,

√
m(Ī − σ) → N(0, τ2), as m → ∞.(8)

For model (5) we need to solve the optimization prob-
lem and find the non-linear least squares estimator σ̂BS .
Numerical algorithms such as the Newton-Raphson method
can be used to compute the estimator σ̂BS . For model (7)
the estimator Ī is easy to compute once the observed im-
plied volatilities are given. However, we may need numerical
methods such as the Newton-Raphson method to invert the
Black-Scholes formula and calculate the observed implied
volatilities Ii.

2.2 Estimation by combining stock price
data and option price data

In finance, volatilities are often obtained from two esti-
mation approaches based on either stock price data or op-
tion data. A natural question is which approach is better:
Should we collect individual stock data and analyze the data
to scrutinize the degree of variability, or would it be more
beneficial to explore option data traded within the market
at a supposed fair value for volatility estimation? From the
statistical point of view, rather than trying to select one of
the approaches, it is statistically more efficient to combine
the two types of data and develop a volatility estimation
scheme based on the combined data.

We consider the stock price data generated from the ge-
ometric Brownian motion model (1) and the option data
observed from the implied volatility model (7). For the
stock price data, we have the scaled return data Xj =√
n(log(Stj ) − log(Stj−1)) ∼ N(ν, σ2), where ν = (μ −

σ2/2)/
√
n. We assume that random errors z1, . . . , zm in

model (7) are i.i.d. normal and independent of X1, . . . , Xn.
The joint likelihood function based on the observed im-
plied volatility data I1, . . . , Im and the scaled stock returns
X1, . . . , Xn is given by
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(9)
(2π)−

n
2 σ−n exp

{
−

∑n
j=1(xj−ν)2

2σ2

}
×(2π)−

m
2 τ−m exp

{
−

∑m
i=1(Ii−σ)2

2τ2

}
.

We maximize the likelihood to find the maximum likelihood
estimator of σ and denote the resulting maximum likelihood
estimator by σ̂I . The following theorem derives the asymp-
totic distribution of σ̂I .

Theorem 2.1. The Fisher information for σ based on the
combined data is equal to 2n/σ2+m/τ2, and as n,m → ∞,
we have (

2n

σ2
+

m

τ2

)1/2

(σ̂I − σ) → N(0, 1).(10)

Proof. Since both samples, stock returns, X1, . . . , Xn, and
option data, I1, . . . , Im, are i.i.d. normal, and (X1, . . . , Xn)
and (I1, . . . , Im) are independent, the joint distribution of
the two samples follows an exponential family. Define Sx =
1
n (Xj − X̄)2. From (9) we have the log likelihood

l(σ, ν, τ) ∝

−n log σ −
∑n

j=1(xj − ν)2

2σ2
−

∑m
i=1(Ii − σ)2

2τ2
−m log τ.

It is easy to derive that the MLE of ν is X̄, and given σ,
the MLE of τ2 is 1

m

∑m
i=1(Ii − σ)2. We find the derivatives

of the log likelihood with respect to σ,

dl

dσ
= −n

σ
+

∑n
j=1(xj − ν)2

σ3
+

∑m
i=1(Ii − σ)

τ2
,

d2l

dσ2
=

n

σ2
−

3
∑n

j=1(xj − ν)2

σ4
− m

τ2
.

The Fisher information for σ is equal to

−E

[
d2l

dσ2

]
= − n

σ2
+

3
∑n

j=1 E(Xj − ν)2

σ4
+

m

τ2
=

2n

σ2
+

m

τ2
.

For the exponential family, the regularity conditions are
met. Applying the large sample theory of MLE we obtain
that as n,m → ∞,

[
2n

σ2
+

m

τ2

]1/2
(σ̂I − σ) → N(0, 1).

Theorem 2.1 shows that the Fisher information for σ
based on the combined data is equal to the sum of the Fisher
information based on the stock data and the Fisher infor-
mation based on the option data, and thus the MLE for
the combined data has asymptotic variance equal to half
of the harmonic average of those of the volatility estimators
based on either stock return data or option data. It suggests
that the MLE for the combined data has smaller asymptotic

variance than the MLEs for either stock data alone or op-
tion data alone, and thus the joint estimation based on the
combined data is statistically more efficient.

We may also combine the stock price data generated from
the geometric Brownian motion model (1) and the option
data observed from the non-linear option regression model
(5) instead of implied volatility model. The joint likelihood
for this case is more complicated, with the form
(11)

(2π)−
n
2 σ−n exp

{
− 1

2σ2

n∑
j=1

(xj − ν)2

}

×(2π)−
m
2 η−m exp

{
− 1

2η2

m∑
i=1

(Ci − CBS(xi, σ))
2

}
.

We maximize the likelihood to find the maximum likelihood
estimator of σ and denote the resulting maximum likelihood
estimator by σ̂. Similar to the limiting distribution in The-
orem 2.1 we may obtain that as n,m → ∞,

J1/2
n,m(σ̂ − σ) → N(0, 1),(12)

where

Jn,m =
2n

σ2
+

m∑
i=1

E[( d
dσCBS(xi; σ̂))

2]

η2
, xi = (ti, Sti , Ti,Ki).

Again we see that the asymptotic variance of the volatility
estimator for stock return data is σ2/(2n), and that the
asymptotic variance of the volatility estimator for option

data from model (5) is η2/
∑m

j=1 E[∂CBS(xi,σ̂)
∂σ̂ ]2. The MLE,

σ̂, for the combined data has asymptotic variance equal to
the half of the harmonic average of those of the volatility
estimators based on either stock return data or option data.
It indicates that the MLE for the combined data has smaller
asymptotic variance than the MLEs for either stock data
alone or option data alone.

3. ESTIMATION UNDER MODELS WITH
STOCHASTIC VOLATILITY

Typical models with stochastic volatility are GARCH
models and continuous time stochastic volatility models
such as bivariate diffusions. GARCH models are convenient
for statistical inference, and continuous stochastic volatil-
ity models can better handle financial theory such as op-
tion pricing. It turns out that there is a link between a dis-
crete GARCH model and a continuous time bivariate diffu-
sion model [Nelson (1990), Wang (2002), and Duan, Wang
and Zou (2009)]. This section will illustrate the joint max-
imum likelihood estimation approach by combining both
stock price data and option data. Since Fisher information
usually determines the asymptotic variances of the efficient
estimators such as MLE, we derive and compare the Fisher
information for the three approaches based on stock price
data, option data or combined data.
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3.1 GARCH and diffusion models

To define a discrete GARCH model over time interval [0,
1], we divide [0, 1] into n subinterval of length 1/n and set
tk = k/n, k = 0, 1, . . . , n. The GARCH model assumes price
process SG,n,tk , k = 1, . . . , n, to follow

(13)
logSG,n,tk − logSG,n,tk−1

= (μ− σ2
G,n,tk

/2)n−1

+σG,n,tkn
−1/2εk,

where μ is drift, εk is a sequence of i.i.d. standard normal
random variables, and the conditional variance (or volatil-
ity), σ2

G,n,tk
, depends on lagged errors. Existing GARCH

models differ in volatility specification. The representative
exponential GARCH(1, 1) model has the following ARMA
structured volatility,
(14)
log σ2

G,n,tk
= β0 + β1 log σG,n,tk + β2{|εk−1| − (2/π)1/2}

+β3εk−1,

where

β0 = ϑ0n
−1, β1 = 1 + ϑ1n

−1,

β2 = (1− 2/π)−1/2ϑ2n
−1/2, β3 = ϑ3n

−1/2.

To associate the GARCH model with a diffusion, extend
(SG,n,tk , σ

2
G,n,tk

) to [0, 1] by letting

(SG,n,s, σ
2
G,n,s) = (SG,n,tk , σ

2
G,n,tk

),

for s ∈ [tk, tk+1), k = 0, . . . , n− 1.

Then as n −→ ∞, the GARCH process (SG,n,s, σ
2
G,n,s)

weakly converges to the bivariate diffusion process
(SD,s, σ

2
D,s) governed by the following stochastic differen-

tial equation system,

(15) d logSD,s = (μ− σ2
D,s/2)ds+ σD,sdW1,s,

(16)
d log σ2

D,s = (ϑ0 + ϑ1 log σ
2
D,s)ds+ ϑ2dW2,s

+ϑ3dW1,s,

where (W1,s,W2,s) are two independent standard Brownian
motions. The diffusion process (SD,s, σ

2
D,s) is referred to as

the diffusion limit of the exponential GARCH model (13)–
(14). See Nelson (1990) and Wang (2002).

3.2 Estimation for return data

We consider an exponential GARCH model with the fol-
lowing specification,

(17) Xtk = logSG,n,tk − logSG,n,tk−1
= σG,n,tkn

−1/2εk,

(18)
log σ2

G,n,tk
= β0 + β1 log σ

2
G,n,tk−1

+ β2{|εk−1| − (2/π)1/2}
+β3εk−1.

where

β0 = ϑ0n
−1, β1 = 1 + ϑ1n

−1,

β2 = (1− 2/π)−1/2ϑ2n
−1/2, β3 = ϑ3n

−1/2.

For model (17)–(18), the log likelihood function is of the
following form

(19) ln(ϑ) = −1

2

n∑
k=1

(
log σ2

G,n,tk
+

nX2
tk

σ2
G,n,tk

)
− n

2
log(2π),

where ϑ = (ϑ0, ϑ1, ϑ2, ϑ3). We may maximize the likelihood
function to find the MLE of ϑ. The Fisher information for
ϑ is given by

(20) − E

[
∂2ln(ϑ)

∂ϑ2

]
,

where ∂2ln(ϑ)
∂ϑ2 denotes the second partial derivative matrix

of ln(ϑ) with respect to ϑ.

3.3 Estimation for option data

For the bivariate diffusion model (15)–(16), we have the
following formula for the price of the European call option
(with stock price S at time t, strike price K, maturity du-
ration T − t, interest rate r, and initial value σ0 = y),

CD(t, S;T,K; y) = E

[
CBS

(
t, SMD;T,K;

√
σ2
D

)]
,

where CBS is the Black-Scholes formula in (2) and

σ2
D =

1− ρ2

T − t

∫ T

t

σ2
D,s,t,yds,

MD = exp

(
ρ

∫ T

t

σD,s,t,ydBV,s −
ρ2

2

∫ T

t

σ2
D,s,t,yds

)
,

BV,s = ρW1,s + sign(ϑ2)
√

1− ρ2W2,s, ρ =
ϑ3√

ϑ2
2 + ϑ2

3

,

σD,s,t,y denotes σD,s beginning at σD,t = y, and the expec-
tation is taken with respect to the random source BV,s. See
Fouque et al. (2000), Heston (1993), Hull and White (1987),
Scott (1987), Stein and Stein (1991), and Wiggins (1987).
Furthermore, we have the following approximation for the
option price,
(21)
CD(t, S;T,K; y) ≈ CBS (t, SMD;T,K; σ̄)

−(T − t)
(
V2S

2 ∂2CBS

∂2S2 + V3S
3 ∂3CBS

∂S3

)
,

and using (21) to solve CD(t, S;T,K; y) = CBS(t, SMD;
T,K; ID) we obtain an approximate implied volatility ID as
follows,

ID ≈ a+ b
log(K/S)

T − t
,(22)

where a and b are given by
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a = σ̄ +
V3

σ̄3

(
r +

3

2
σ̄2

)
− V2

σ̄
, b =

V3

σ̄3
,(23)

and

σ̄2 = exp

(
−θ0 + θ22/4

θ1

)
,

V3

σ̄3
=

ρ

θ2

[
exp

(
θ22
16θ1

)
− exp

(
− 3θ2

16θ1

)]
,

V2

σ̄
=

2ρ

θ2
exp

(
−θ0 + θ22/4

θ1

)[
exp

(
θ22
16θ1

)

− exp

(
− 3θ22
16θ1

)]
,

θ0 = ϑ0, θ1 = ϑ1, θ2 =
√

ϑ2
2 + ϑ2

3, ρ =
ϑ3√

ϑ2
2 + ϑ2

3

.

See Fouque et al. (2000, chapter 5).
Formula (22) provides an approximate relationship of the

implied volatility ID with (t, S, T, K). It suggests that the
observed implied volatility may obey the following model,

Ii = a+ b
log(Ki/Si)

Ti − ti
+ zi, i = 1, . . . ,m,(24)

where a and b are defined as above and zi’s are indepen-
dent normal random variables with mean zero and variance
τ2. Let Yi = log(Ki/Si)

Ti−ti
. Then model (24) is a simple lin-

ear regression model with parameters a and b, and the log-
likelihood function is given by

(25)
lm(a, b) = − 1

2τ2

m∑
i=1

[Ii − (a+ bYi)]
2

−m log τ − m
2 log(2π).

Denote the MLE of (a, b) by (â, b̂). Then

â = Ī − b̂Ȳ , b̂ =

∑m
i=1 Yi(Ii − Ī)∑m
i=1 Yi(Yi − Ȳ )

.

Note that a and b are functions of ϑ0, ϑ1, ϑ2, and
ϑ3 (or ρ), which are denoted by a(ϑ0, ϑ1, ϑ2, ϑ3) and
b(ϑ0, ϑ1, ϑ2, ϑ3), respectively, to stress their dependence
on ϑ = (ϑ0, ϑ1, ϑ2, ϑ3), and we can estimate only a
and b from model (24). Suppose that a(ϑ0, ϑ1, ϑ2, ϑ3) and
b(ϑ0, ϑ1, ϑ2, ϑ3) are differentiable, and assume that we know
ϑ0 and ϑ3 (or ρ). With the given ϑ0 and ϑ3, and the MLE,

(â, b̂), of (a, b) from model (24) we may use the invari-
ant principle of MLE to find the MLE of (ϑ1, ϑ2). Denote

by (ϑ̂1, ϑ̂2) the MLE of (ϑ1, ϑ2) based on I1, . . . , Im from
model (24).

The Fisher information for (a, b) is equal to

1

τ2

⎛
⎜⎜⎝

m
m∑
i=1

EYi

m∑
i=1

EYi

m∑
i=1

EY 2
i

⎞
⎟⎟⎠ ,

and the Fisher information for (ϑ1, ϑ2) is given by

(26)
1

τ2
∂(a, b)

∂(ϑ1, ϑ2)

⎛
⎜⎜⎝

m
m∑
i=1

EYi

m∑
i=1

EYi

m∑
i=1

EY 2
i

⎞
⎟⎟⎠

(
∂(a, b)

∂(ϑ1, ϑ2)

)′
,

where ∂(a,b)
∂(θ1,θ2)

denotes the partial derivative matrix of (a, b)

with respect to (ϑ1, ϑ2).

3.4 Estimation for both return data and
option data

Option pricing for GARCH models is very hard. For ex-
ample, GARCH option pricing has no explicit formula such
as the one described in Section 3.3. As illustrated in Sec-
tion 3.1, the limit of a GARCH model is a bivariate diffu-
sion, and the European option prices of the GARCH model
converge to the European option prices of its diffusion limit
given in Section 3.3 [see Duan, Wang and Zou (2009)]. Thus,
we may consider joint parameter estimation for both return
data from model (17)–(18) and option data from model (24),
where the price process Si in model (22) are equal to SG,n,ti

in (17).
By conditional arguments, we combine the stock data

from the GARCH model (17)–(18) and the option data from
the implied volatility model (24) and derive the joint log
likelihood for ϑ = (ϑ0, ϑ1, ϑ2, ϑ3) as follows,
(27)

lm,n(ϑ) = −
m∑
i=1

[Ii−(a+bYi)]
2

2τ2 −m log τ

−1
2

n∑
k=1

(
log σ2

G,n,tk
+

nX2
tk

σ2
G,n,tk

)
− m+n

2 log(2π),

where (a, b) are functions of ϑ described by (23). We max-
imize the log likelihood to find the MLE of ϑ. From (19),
(25) and (27) we see that lm,n(ϑ) = ln(ϑ) + lm(a(ϑ), b(ϑ)),
which indicates the Fisher information for ϑ based on the
combined data is equal to the sum of the Fisher information
matrix (20) for the stock data and

1

τ2

∂(a, b)

∂(ϑ0, ϑ1, ϑ2, ϑ3)

⎛
⎜⎝

m
m∑
i=1

EYi

m∑
i=1

EYi

m∑
i=1

EY 2
i

⎞
⎟⎠
(

∂(a, b)

∂(ϑ0, ϑ1, ϑ2, ϑ3)

)′
,

which is an extension of the information matrix (26) for the

option data, where ∂(a,b)
∂(ϑ0,ϑ1,ϑ2,ϑ3)

denotes the partial deriva-

tive matrix of (a, b) with respect to (ϑ0, ϑ1, ϑ2, ϑ3). We con-
clude that the Fisher information relationship among those
different data sources for the varying volatility models is
similar to the case of constant volatility, and the joint es-
timation based on the combined data is statistically more
efficient.

4. A SIMULATION STUDY

We conducted a simulation study to check the finite
sample performances of the proposed estimators under the
Black-Scholes set-up. We simulated stock prices over a year
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Table 1. Simulation results for volatility estimation based on 1000 replications

Model Var(σ̂) Error Mean(σ̂) Var(σ̂)

Stock (n = 252) 3.0386× 10−5 0.12348 3.0267× 10−5

Implied Volatility 5× 10−5 Normal 0.12400 5.14× 10−5

(m = 200) Uniform 0.12400 4.83× 10−5

Exponential 0.12400 4.94× 10−5

t (df = 10) 0.12402 6.21× 10−5

B-S 2.843× 10−8 Normal 0.12375 2.7129× 10−8

(m = 200) Uniform 0.12375 2.3935× 10−8

Exponential 0.12375 2.9317× 10−8

t (df = 10) 0.12375 3.4969× 10−8

Stock & Implied volatility 4.919× 10−7 Normal 0.12401 4.823× 10−7

Stock & B-S volatility 2.466× 10−8 Normal 0.12376 2.3169× 10−8

(252 trading days) from model (1) with a mean return of
1.2841 and a standard deviation of 0.12375 annually. We

calculated Var(σ̂) to be 0.123752

2×252 = 3.0386 × 10−5, and re-
peated the simulation procedure 1,000 times. The simulated
results are summarized in the second row of Table 1. From
the table we see that the mean and variance of σ̂S based on
the 1,000 repetitions are almost equal to their corresponding
true values.

The values of options placed upon this stock were
recorded. These options have a life remaining between three
and six months until expiration, and the strike price is some
value close to the stock price, a certain percentage either
above or below the current amount. The risk free rate of
interest is set to be 3.31%. We simulated 200 option data
from each of the option model (5) and the implied volatil-
ity model (7). Four random errors considered in the models

are N(0, τ2), U(−
√
0.0012
2 ,

√
0.0012
2 ), E(−0.01, 100), and t10,

where τ = 0.01, and η = 0.04. The simulation procedure
was repeated 1, 000 times, and the simulation results are
displayed in the third and fourth rows of Table 1. The simu-
lation indicates that the averages of σ̂BS and Ī based on the
1, 000 repetitions are very close to the true value 0.12375,
with very small variances for all four error distributions.

Finally we generated together stock price data over a year
from model (1) and 200 option data from each of the option
model (5) and the implied volatility model (7) as described
in Section 2.2, where the model parameters σ, η, τ are the
same as above. As the results are very similar, we considered
only normal random errors in models (5) and (7). Accord-
ing to the description in Section 2.2 we combined the stock
data with 200 option data from either (5) or (7) to com-
pute estimators σ̂I and σ̂, respectively. The last two rows of
Table 1 show the simulation results for the volatility estima-
tor with combined stock price data and option data. Again
the simulation shows excellent performances of σ̂I and σ̂,
with their averages over the 1000 repetitions very close to
the true value and extremely small variances. In comparison
with estimators based on either stock data or option data,
the combined estimators σ̂I and σ̂ have much smaller vari-
ances than estimator σ̂S based on stock data alone and the

respective volatility estimators Ī and σ̂BS based on option
data alone. The simulation findings confirm the theoretical
results established in Section 2.

5. CONCLUSION

Volatility analysis in empirical financial studies is often
developed for either historical price data or option data.
As option prices heavily depend on the underlying stocks’
prices, and financial models for the two kinds of data are
highly related, in this paper we study volatility analysis
by combining historical stock price data and option data.
We consider the Black-Scholes model and an exponential
GARCH model and establish the relationship among the
Fisher information for volatility estimation based on stock
price data alone or option data alone and for joint volatility
estimation based on combining stock price data and option
data. An asymptotic theory for the joint estimation under
the Black-Scholes model is provided. A simulation study is
conducted to check finite sample performances of the pro-
posed joint estimation.
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