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Graphing The History Of Philosophy




e Let G=(V,E) be a graph with n vertices, i.e., |V| = n.
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Clustering of graphs

e Let G= (V,E) be a graph with n vertices, i.e.,

V|=n.

e Goal : partition the vertices into several blocks (subsets)
such that some criterion is satisfied.

@ The deterministic approach vs. statistical model approach.
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Stochastic block model

e Stochastic Block Model (SBM): (two equal-sized blocks)
Goal: recover unknown index set J € [n] with |J| = n/2.

Observations:

A Ber(pn), ifi,jedori,jeJ°
! Ber(qn), otherwise

for all i <j. Assume that p, > gn. Allow self-loops.

5/24



Stochastic block model

e Stochastic Block Model (SBM): (two equal-sized blocks)
Goal: recover unknown index set J € [n] with |J| = n/2.

Observations:

Ber(pn), ifi,jedori,jeJ°

Aj ~
! Ber(qn), otherwise

for all i <j. Assume that p, > gn. Allow self-loops.

5/24



e Equivalently, recover (estimate) block membership vector
xe{£1}"

«O» «4F>r «=)r «FH» El= QR
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Phase transitions

e Equivalently, recover (estimate) block membership vector
x e {£1}"

e Exact recovery find X = X(A) such that X = x w.p.
1—0(1).
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Va—+vb> V2.

No estimator achieves exact recovery if v/a— vb < v/2.
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Phase transitions

e Equivalently, recover (estimate) block membership vector
x e {£1}"

e Exact recovery find X = X(A) such that X = x w.p.
1—o0(1).

e If p, = alogn/n,q, = blogn/n, then information limit for

exact recovery:
Va—+vb> V2.

No estimator achieves exact recovery if v/a— vb < v/2.

o Related phase transition: weak recovery (detection): find
x such that 1#{i € [n] : X; = x;} > 0.5+€ew.p. 1—0o(1).
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@ Lots of works in the literature.
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@ Lots of works in the literature.

o Efficient methods that works down to the threshold:
e Semidefinite relaxation
e Spectral method with local refinement.

@ (Incomplete) references: Abbe et al. [2014], Abbe and
Sandon [2015], Yun and Proutiere [2016]
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What algorithms?

@ Lots of works in the literature.

o Efficient methods that works down to the threshold:
o Semidefinite relaxation;

e Spectral method with local refinement.

@ (Incomplete) references: Abbe et al. [2014], Abbe and
Sandon [2015], Yun and Proutiere [2016]

@ One-shot spectral method works?
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Does spectral algorithm work?

@ Rank-2 structure (up to permutation):

1
EA— Pn
anl
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e

The first eigenvector uj = ﬁh; the second

NS NS
IS NS
NS NS
NS NS

X X

Uzzﬁ( 10 o —1p2 )
J JC
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@ Rank-2 structure (up to permutation):
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pPn1

X X
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e

The first eigenvector uj = ﬁh; the second

NS NS
IS NS
NS NS
NS NS

X X

Uzzﬁ( 10 o —1p2 )
J JC

e Target: wo, i.e., the second eigenvector of A.

8/24



e Good news for exact recovery.

See Feige and Ofek [2005].
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Does spectral algorithm work?

e Good news for exact recovery.

e recall p, = alogn/n, g, = blogn/n, so A = %’ log n,
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o = Tlogn.
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Does spectral algorithm work?

e Good news for exact recovery.

b
e recall p, = alogn/n, g, = blogn/n, so X = 22logn,
*

_a-b
2= "5 IOg n.

@ eigenvalues preserve ordering:

.~ 0(ylogn)
A3 .. A M
I 1 I (| 1
1 1 1 -
0 5 A1 .
“s @(logn)
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Does spectral algorithm work?

e Good news for exact recovery.

e recall p, = alogn/n, g, = blogn/n, so A} = %’ log n,
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@ eigenvalues preserve ordering:
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e Weyl's inequality + Feige-Ofek’s’: w.h.p

|A—EA||2 = O(+/logn).
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Does spectral algorithm work?

e Good news for exact recovery.

e recall p, = alogn/n, g, = blogn/n, so A} = # log n,

*x _ a—b
> = “5-logn.

@ eigenvalues preserve ordering:

.~ 0(/logn)
23 Ay A4 o
[ (I (I =
1 1 1 >
0 2 ZET
“s @(logn)

e Weyl's inequality + Feige-Ofek’s’: w.h.p
|A—EA||2 = O(+/logn).

ime (weak recovery),
See Feige and Ofek [2005].
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e Implies consistency: |{u3, u2)| 2.

«4O0>r «Fr «=Hr «F)» El= HQQR
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e Implies consistency: |(u3, uz)| 2.

@ So, 1— o(1) fraction of vertices have correct signs...but
doesn’t solve exact recovery.

@ Need uniform control. Key insight:

Negligible (higher-order) term
y

Au; oAU
uz = A* i + uz — A*
25 2

v
Linearized (first-order) term

under the £, norm.

. Auj
e Thatis, u, = AT‘f ~ 2.
2
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Does spectral algorithm work?

Left: From a typical realization of A, distribution of 5000 coordinates. Right: From 100
realizations, three errors (1) v/nl|uz — U3 || (2) /|| Atz /A5 — U3 || (3) /Nt — Atb /A5 |o-




Does spectral algorithm work? Yes!

If A~ SBM(n, a3, p3" ), then with probability 1 — O(n~2)

we have

C
min ||uo — SAUS /NS ][0 < ———
se{£1} e 2/ Rl < ~— y/nloglogn’

where C = C(a, b) is some constant only depending on a and b.



Let Xeig(A) = sign(u) be the simple eigenvector estimator.

«O» «4F>r «=)r «FH» El= QR
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Does spectral algorithm work? Yes!

Let Xeig(A) = sign(u) be the simple eigenvector estimator.

Corollary

Suppose a > b > 0 with \/a+# v/b+ /2. Then, whenever the
MLE is successful, in the sense that Xy, e = x (up to sign) with
probability 1 — o(1), we have

Xeig(A) = XuLe(A) = x

with probability 1 — o(1), where x is the sign indicator of the true
communities.
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Eigenvector analysis: a formal setup

Random matrix: A € R"*"” symmetric, (Aj);>; independent,
EA= A"

Eigenpairs: A~ {&;,uj}7 1, M > ho > -+ > Ap;
A AN U A 2 A > >

Assume A* hasrank r, r = O(1), and A7 < A;. Fix k € [r]. How
does uk look like?
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Eigenvector analysis: a formal setup

Random matrix: A € R"*"” symmetric, (Aj);>; independent,
EA= A"

Eigenpairs: A~ {A;, uj}j”:1, M>Ao > > Ay
A* ~ {k}‘,uj‘}j’-’:1, A >A > > A

Assume A* hasrank r, r = O(1), and A7 < A;. Fix k € [r]. How
does uy look like?

Eigengap: A" =min{A;_, —A;, A, — A} fork e r].

Spectral norm concentration: there exists Yy = o(1) such that
|A—A*2 <YA* w.hp.

Delocalization (incoherence): || A*||2e < YA*, ||kl < 7.
* (| X[|2—e0 = Max e[y || Xm-||2 is the maximum £z norm of rows.
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Row concentration assumption

¢ : [0,+00) — [0,+0o0) non-decreasing, ¢(x)/x non-increasing
on (0, +4-e<). For any fixed w € R” and m € [n],

ES ES W
I(A—A)mWISAIIWIIw(P( I wllz )

Vil wlle
with probability 1 —o(n~"). @ is allowed to change with n.
¢(x)
Bernoulli Gaussian
X

Typical choices of ¢ for Gaussian noise and Bernoulli noise.
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s, approximation of uk

Theorem: Let s = sgn(u/ u}). With probability 1 — o(1),
Isuk — Aui /Ay lleo S (YH@()) (1 + (1)) [ 0o
Usually (1) = O(1). Then Auj; /A, approximates ux well since
stk — Auge/Ailleo = O([| U |<o)-

Indeed, the first-order approximation (linearization) idea is
correct.
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e Proof idea = leave-one-out decoupling + Davis-Kahan’s.

«4O0>r «Fr «=Hr «F)» El= HQQR
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One-slide proof idea

e Proof idea = leave-one-out decoupling + Davis-Kahan'’s.

@ uk = Auk/\g. Observe: A and uk are weakly correlated.
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One-slide proof idea

e Proof idea = leave-one-out decoupling 4+ Davis-Kahan’s.
@ ux = Auk /M. Observe: A and ux are weakly correlated.

e For each m € [n], introduce n x n matrix
(A = At (1 mm)-

Let u,((m) be the eigenvector of A™).
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One-slide proof idea

@ Proof idea = leave-one-out decoupling 4 Davis-Kahan’s.

ux = Auk /M. Observe: A and uk are weakly correlated.

For each m € [n], introduce n x n matrix

[A(m)]ij = Aij1 {i#m, j#m} -

Let u,((m) be the eigenvector of A™).

Decoupling: independence in mth coordinate of Au,((m).

Dacis-Kahan: ||ux — u,((m) |2 very small.
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Exact recovery for SBM

Back to SBM, what about the linearized term?

Lemma (E. Abbe, A. Bandeira, G. Hall, 2014)

Suppose a> b, {W;}"/2 are i.i.d Ber( aloany and (Z}"2 are

i.i.d. Ber(2°9), independent of { W,'},Z % Foranye € R, we
have the following tail bound:

n/2 n/2
P(LWi- Y Z<eiogn) < (Ver/oiescoalalne
i=1 i=1



Exact recovery for SBM

Corollary
(i) If /Ja— /b > \/2, then there existsm = 1(a, b) > 0 and
s € {£1} such that with probability 1 — o(1),

vnminszi(u); > 1.

i€[n]

As a consequence, our spectral method achieves exact
recovery.
(ii) Let the misclassification rate be r(z,z). If

va—+/be(0,v2], then
Er(Z,z) < n-(1+o()(Va-vb)*/2

This upper bound matches the minimax lower bound.



Simulations

y-axis: a, x-axis: b, red curve: \/5— \/E = :t\/E. Fix n = 300. Heatmap from 100 realizations.
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Simulations

Log plot of misclassification rate. Fix b = 2. x-axis: a € [2, 8], y-axis: logr(X, x)/log n.
Red: theoretical, black: n = 100, green: n = 500, blue: n = 5000
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Generalizations and open problems

Beyond SBM: &
e Extension to eigenspaces. v’

Unsolved problems: ©

2References: Zhong and Boumal [2017], Chen, Fan, Ma, and Wang.[2017]=etc.
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Generalizations and open problems

Beyond SBM: &
e Extension to eigenspaces. v’
e Synchronization problems (Z,-synchronization). v*
e Matrix completion. v

@ Analyze iterative algorithms.?v’

Unsolved problems: ©

e How to analyze normalized Laplacian?

@ More than two blocks?

2References: Zhong and Boumal [2017], Chen et al. [2017], etc:
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Thank you!

» A <= <= [z DAl
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