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Clustering of graphs

Let G = (V ,E) be a graph with n vertices, i.e., |V |= n.

Goal : partition the vertices into several blocks (subsets)
such that some criterion is satisfied.

The deterministic approach vs. statistical model approach.
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Stochastic block model

Stochastic Block Model (SBM): (two equal-sized blocks)

Goal: recover unknown index set J ∈ [n] with |J|= n/2.

Observations:

Aij ∼

{
Ber(pn), if i, j ∈ J or i, j ∈ Jc

Ber(qn), otherwise

for all i ≤ j . Assume that pn ≥ qn. Allow self-loops.
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Phase transitions

Equivalently, recover (estimate) block membership vector
x ∈ {±1}n.

Exact recovery find x̂ = x̂(A) such that x̂ = x w.p.
1−o(1).

If pn = a logn/n,qn = b logn/n, then information limit for
exact recovery: √

a−
√

b >
√

2.

No estimator achieves exact recovery if
√

a−
√

b <
√

2.

Related phase transition: weak recovery (detection): find
x̂ such that 1

n #{i ∈ [n] : x̂i = xi}> 0.5 + ε w.p. 1−o(1).
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What algorithms?

Lots of works in the literature.

Efficient methods that works down to the threshold:

Semidefinite relaxation;

Spectral method with local refinement.

(Incomplete) references: Abbe, Bandeira, and Hall [2014],
Abbe and Sandon [2015], Yun and Proutiere [2016]

One-shot spectral method works?
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Does spectral algorithm work?

Rank-2 structure (up to permutation):

EA =

(
pn1 n

2×
n
2

qn1 n
2×

n
2

qn1 n
2×

n
2

pn1 n
2×

n
2

)
.

J
Jc

The first eigenvector u∗1 = 1√
n
1n; the second

u∗2 = 1√
n

( 1n/2 ; −1n/2 ).

J Jc

Target: u2, i.e., the second eigenvector of A.
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Does spectral algorithm work?

Good news for exact recovery.

recall pn = a logn/n, qn = b logn/n, so λ∗1 = a+b
2 logn,

λ∗2 = a−b
2 logn.

eigenvalues preserve ordering:

! "#∗ "%∗

"%"#"& '…

)(+,-.)

O( +,-.)

Weyl’s inequality + Feige-Ofek’s1: w.h.p

‖A−EA‖2 = O(
√

logn).

Contrast with sparser regime (weak recovery).

1See Feige and Ofek [2005]. 9 / 24
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Does spectral algorithm work?

Implies consistency: |〈u∗2,u2〉|
p−→ 1.

So, 1−o(1) fraction of vertices have correct signs...but
doesn’t solve exact recovery.

Need uniform control. Key insight:

!" =
$!"∗
&"∗

+ !" −
$!"∗
&"∗

Linearized)(first.order))term

Negligible)(higher.order))term

under the `∞ norm.

That is, u2 = Au2
λ2
≈ Au∗2

λ∗2
.
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Does spectral algorithm work?

Left: From a typical realization of A, distribution of 5000 coordinates. Right: From 100
realizations, three errors (1)

√
n‖u2−u∗2‖∞ (2)

√
n‖Au∗2/λ∗2−u∗2‖∞ (3)

√
n‖u2−Au∗2/λ∗2‖∞.
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Does spectral algorithm work? Yes!

Theorem

If A∼ SBM(n,a logn
n ,b logn

n ,J), then with probability 1−O(n−3)
we have

min
s∈{±1}

‖u2− sAu∗2/λ
∗
2‖∞ ≤

C√
n log logn

.

where C = C(a,b) is some constant only depending on a and b.
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Does spectral algorithm work? Yes!

Let x̂eig(A) = sign(u2) be the simple eigenvector estimator.

Corollary

Suppose a > b > 0 with
√

a 6=
√

b +
√

2. Then, whenever the
MLE is successful, in the sense that x̂MLE = x (up to sign) with
probability 1−o(1), we have

x̂eig(A) = x̂MLE(A) = x

with probability 1−o(1), where x is the sign indicator of the true
communities.
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Eigenvector analysis: a formal setup

Random matrix: A ∈ Rn×n symmetric, (Aij)i≥j independent,
EA = A∗.

Eigenpairs: A∼ {λj ,uj}n
j=1, λ1 ≥ λ2 ≥ ·· · ≥ λn;

A∗ ∼ {λ∗j ,u∗j }n
j=1, λ∗1 ≥ λ∗2 ≥ ·· · ≥ λ∗n.

Assume A∗ has rank r , r = O(1), and λ∗1 � λ∗r . Fix k ∈ [r ]. How
does uk look like?

Eigengap: ∆∗ = min{λ∗k−1−λ∗k , λ∗k −λ∗k+1} for k ∈ [r ].

Spectral norm concentration: there exists γ = o(1) such that
‖A−A∗‖2 ≤ γ∆∗ w.h.p.

Delocalization (incoherence): ‖A∗‖2→∞ ≤ γ∆∗, ‖u∗k‖∞ ≤ γ.
F ‖X‖2→∞ = maxm∈[n] ‖Xm·‖2 is the maximum `2 norm of rows.
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Row concentration assumption

ϕ : [0,+∞)→ [0,+∞) non-decreasing, ϕ(x)/x non-increasing
on (0,+∞). For any fixed w ∈ Rn and m ∈ [n],

|(A−A∗)m·w | ≤∆∗‖w‖∞ϕ

(
‖w‖2√
n‖w‖∞

)
with probability 1−o(n−1). ϕ is allowed to change with n.

x

ϕ(x)

GaussianBernoulli

Typical choices of ϕ for Gaussian noise and Bernoulli noise.
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`∞ approximation of uk

Theorem: Let s = sgn(uT
k u∗k ). With probability 1−o(1),

‖suk −Au∗k/λ
∗
k‖∞ . (γ + ϕ(γ))(1 + ϕ(1))‖u∗‖∞.

Usually ϕ(1) = O(1). Then Au∗k/λ∗k approximates uk well since

‖suk −Au∗k/λ
∗
k‖∞ = o(‖u∗‖∞).

Indeed, the first-order approximation (linearization) idea is
correct.

16 / 24



One-slide proof idea

Proof idea = leave-one-out decoupling + Davis-Kahan’s.

uk = Auk/λk . Observe: A and uk are weakly correlated.

For each m ∈ [n], introduce n×n matrix

[A(m)]ij = Aij1{i 6=m,j 6=m}.

Let u(m)
k be the eigenvector of A(m).

Decoupling: independence in mth coordinate of Au(m)
k .

Dacis-Kahan: ‖uk −u(m)
k ‖2 very small.
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Exact recovery for SBM

Back to SBM, what about the linearized term?

Lemma (E. Abbe, A. Bandeira, G. Hall, 2014)

Suppose a > b, {Wi}
n/2
i=1 are i.i.d Ber(a logn

n ), and {Zi}
n/2
i=1 are

i.i.d. Ber(b logn
n ), independent of {Wi}

n/2
i=1. For any ε ∈ R, we

have the following tail bound:

P
( n/2

∑
i=1

Wi −
n/2

∑
i=1

Zi ≤ ε logn
)
≤ n−(

√
a−
√

b)2/2+ε log(a/b)/2.
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Exact recovery for SBM

Corollary

(i) If
√

a−
√

b >
√

2, then there exists η = η(a,b) > 0 and
s ∈ {±1} such that with probability 1−o(1),

√
n min

i∈[n]
szi(u2)i ≥ η.

As a consequence, our spectral method achieves exact
recovery.
(ii) Let the misclassification rate be r(ẑ,z). If√

a−
√

b ∈ (0,
√

2], then

E r(ẑ,z)≤ n−(1+o(1))(
√

a−
√

b)2/2.

This upper bound matches the minimax lower bound.
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Simulations
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Simulations
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Log plot of misclassification rate. Fix b = 2. x-axis: a ∈ [2,8], y-axis: log r(x̂ ,x)/ logn.
Red: theoretical, black: n = 100, green: n = 500, blue: n = 5000
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Generalizations and open problems

Beyond SBM:

Extension to eigenspaces. X

Synchronization problems (Z2-synchronization). X

Matrix completion. X

Analyze iterative algorithms.2X

Unsolved problems:

How to analyze normalized Laplacian?

More than two blocks?

2References: Zhong and Boumal [2017], Chen, Fan, Ma, and Wang [2017], etc.
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Thank you!
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