
(Near-)optimal Results for Phase Synchronization
Yiqiao Zhong and Nicolas Boumal

Princeton University

Phase (angular) synchronization

Problem formulation: estimate unknown parameters (an-
gles) θ1, θ2, . . . , θn ∈ [0, 2π) based on pairwise measurements:

y`k = noisy version of θ` − θk mod 2π,
where 1 ≤ ` < k ≤ n.
Example: Time synchronization

Model: modeling signal z = (z1, . . . , zn)T ∈ Cn and data
C`k = z̄`zk + σW`k, ∀` > k

where W`k ∼ NC(0, 1); or in matrix form
C = zz∗ + σW, with |zk| = 1, ∀ k ∈ [n].

Nonconvexity: nonconvex constraints; hard to study MLE.

Taming nonconvexity?

Consider the standard recipe—semidefinite program (SDP) re-
laxation: the MLE x̂ is a solution to

max
X∈Cn×n,X=X∗

Tr(CX)

subject to diag(X) = 1, X � 0. rank(X) = 1
Observations: low rank (signal matrix) + random noise
• the ‘signal’ zz∗ is a rank-one matrix with λmax(zz∗) = n,
• the ‘noise’ has magnitude ‖W‖ = Θ(

√
n) w.h.p.,

•we expect phase transition occurs at σ = Θ(
√
n) (see below).
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Figure 1: Red: σ = 1
18n

1/4; Blue: σ =
√

n
log n (Figure from [2])

Difficulty: however, previous works can only do σ = O(σ1/4).
•Hard to analyze statistical dependence between x̂ and W .
•More generally, how to study randomness with nonconvexity?

Convergence analysis via decoupling sequences

Generalized power method (GPM): A simple and fast approach.
(1) Set x0 to be a leading eigenvector of C with ‖x0‖2 =

√
n.

(2) For t = 0, 1, . . ., update (xt+1)k = (Cxt)k
|(Cxt)k|

.

N Decoupling analysis of GPM gives new algorithmic/statistical understanding.
Algorithmic guarantee:

If σ = O
(√
n/ log n

)
, with high probability for large n, SDP admits a unique

solution x̂x̂∗, and GPM converges linearly to x̂ (up to phase).

Statistical guarantee:

If σ = O(
√
n/ log n), with high probability for large n,

‖x̂− z‖2 = O(σ), and
‖x̂− z‖∞ = O(σ

√
log n/n).

• results are optimal (except for a log term);
• advantages of iterative algorithm;
• strong uniform statistical guarantee (`∞ bound).
N Key idea: introduce additional n decoupling sequences (or, leave-one-out
sequences) only for analysis. For each m ∈ [n], define C(m) := zz∗ + σW (m),
with

W
(m)
k` = Wk`1{k 6=m}1{ 6̀=m}, x0,m := leading eigenvector of C(m)

Define GPM operator: (T x)k = (Cx)k
|(Cx)k|

. Similarly, (T (m)x)k := (C(m)x)k
|(C(m)x)k|

.
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N1 = {x ∈ Cn : ‖Wx‖∞ ≤ κ2
√
n log n}, N2 = {x ∈ Cn : d2(x, z) ≤ κ3

√
n}.

Why decoupling?

Key: The m-th sequence {xt,m}∞t=0 is independent of {Wmk}nk=1
(measurements related to m-th signal) guaranteed by construc-
tion. Then, we establish
• all iterates lie in contraction region N ;
• ∆t+1,m ≤ ρ∆t,m + small discrepancy error, where ρ < 1.
•done by induction.

Contraction mapping theorem idea ⇒ convergence X
All xt ∈ N ⇒ `∞ error + dual feasibility (certificate optimality)
X

Spectral Initialization: same idea works for eigenvector ini-
tializer x0 (with similar guarantees) → sharp `∞ bounds.

If σ = O(
√
n/ log n), then, w.h.p. for large n,

‖x0 − z‖2 = O(σ), and
‖x0 − z‖∞ = O(σ

√
log n/n).

Motivates analyses for other problems:
• vanilla spectral algorithm achieves exact recovery in SBM. [3]
• sharp entrywise bounds for matrix completion. [3]
•high-dimensional factor models. [4]
• and more...
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