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Phase (angular) synchronization

Unknown parameters (angles): θ1,θ2, . . . ,θn ∈ [0,2π).

Goal: estimate these parameters from pairwise
measurements (offsets):

y`k = noisy version of θ`−θk mod 2π,

where 1≤ ` < k ≤ n.
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Motivation

Time synchronization.

More generally, a group instead of [0,2π). Applications:
Cryo-EM (Electron cryomicroscopy), calibration of cameras,
robotics.
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Motivation

Re-formulate our problem:

C`k = noisy version of z̄`zk ,

where zk = exp(iθk ).

The model:

C`k = z̄`zk + σW`k , ∀` > k

where W`k ∼ NC(0,1). Assume all pairs of measurements.

The matrix form:
C = zz∗+ σW ,

where z ∈ Cn with |zk |= 1; Wkk = 0, Wk` = W̄`k .
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Motivation

Deriving the MLE: minimize ‖C− xx∗‖2
F over x ∈ Cn with

|xk |= 1.

Equivalently,

max
x∈Cn

x∗Cx subject to |xk |= 1 ∀k ∈ [n]. (P)

Denote the solution by x̂ . Up to a global phase.

Information limit: σ =
√

n.

Our goal: under σ = Õ(
√

n),

Develop efficient algorithms that find x̂ ;

Derive statistical guarantees.
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Standard recipe: semidefinite relaxation

Recall the MLE x̂ is a solution to:

max
x∈Cn

x∗Cx subject to |xk |= 1 ∀k ∈ [n]. (P)

Trouble...nonconvexity!

!

"

Indeed, NP-hard in general. Zhang and Huang [2006]
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Standard recipe: semidefinite relaxation

However...may be tractable under our model.

Lifting the problem to higher dimensional space:

X = xx∗ � 0

Quadratic⇒ Linear:

x∗Cx ⇒ Tr(CX), |xk |= 1⇒ Xkk = 1

Equivalently,

max
X∈Cn×n,X=X∗

Tr(CX) subject to diag(X) = 1,X � 0,

rank(X) = 1.

8 / 23



Standard recipe: semidefinite relaxation

However...may be tractable under our model.

Lifting the problem to higher dimensional space:

X = xx∗ � 0

Quadratic⇒ Linear:

x∗Cx ⇒ Tr(CX), |xk |= 1⇒ Xkk = 1

Equivalently,

max
X∈Cn×n,X=X∗

Tr(CX) subject to diag(X) = 1,X � 0,

rank(X) = 1.

8 / 23



Standard recipe: semidefinite relaxation

However...may be tractable under our model.

Lifting the problem to higher dimensional space:

X = xx∗ � 0

Quadratic⇒ Linear:

x∗Cx ⇒ Tr(CX), |xk |= 1⇒ Xkk = 1

Equivalently,

max
X∈Cn×n,X=X∗

Tr(CX) subject to diag(X) = 1,X � 0,

rank(X) = 1.

8 / 23



Standard recipe: semidefinite relaxation

However...may be tractable under our model.

Lifting the problem to higher dimensional space:

X = xx∗

Quadratic⇒ Linear:

x∗Cx ⇒ Tr(CX), |xk |= 1⇒ Xkk = 1

semidefinite relaxation:

max
X∈Cn×n,X=X∗

Tr(CX) subject to diag(X) = 1,X � 0.

rank(X) = 1 (SDP)

9 / 23



Standard recipe: semidefinite relaxation

Verify with dual certificate: find λ such that q(λ) = f (X).

X

!(#)

%(&)

&

Duality

Widely studied: compressed sensing, matrix completion,
robust PCA, Stochastic block model, etc.
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Standard recipe: semidefinite relaxation

Phase sychronization: why difficult?

Dual certificate:

S = Re(ddiag(Cx̂x̂∗))−C.

Goal: to show S � 0.

Complicated statistical dependence!

Previous analyses are sub-optimal, e.g., σ = O(n1/4) in
Bandeira, Boumal, and Singer [2016]. Simulations suggest
success for σ = Õ(

√
n).
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Standard recipe: semidefinite relaxation

One of our main results:

Theorem

If σ = O
(√

n
logn

)
, with high probability for large n, SDP admits

a unique solution x̂ x̂∗, where x̂ is a global optimum of (P)
(unique up to phase.)

‘With high probability’ is 1−O(n−2).
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Faster approach: Generalized Power Method

Beyond SDP?

Similar to the eigenvector problem!

max
x∈Cn

x∗Cx subject to |xk |= 1 ∀k ∈ [n].

‖x‖= 1

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙%

(𝒙𝒕(𝟏)𝒌 = 	
  
(𝑪	
  𝒙𝒕)𝒌
(𝑪	
  𝒙𝒕)𝒌

Generalized Power	
  method

∀	
  𝒌	
   ∈ [𝒏]
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Faster approach: Generalized Power Method

Generalized Power Method:
(1) Set x0 to be a leading eigenvector of C with
‖x0‖2 =

√
n.

(2) For t = 0,1, . . ., update (x t+1)k = (Cx t)k
|(Cx t)k | .

Theorem

If σ = O
(√

n
logn

)
, with high probability for large n, GPM

converges linearly to the global optimum of (P) (unique up to
phase.)
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Estimation Errors of MLE

Fix (theoretically) the global phase such that z∗x̂ = |z∗x̂ |.

Theorem

If σ = O(
√

n/ logn), then w.h.p. for large n,

‖x̂− z‖2 = O(σ), and

‖x̂− z‖∞ = O(σ
√

logn/n).

The eigenvector x̃ has the same estimation error rate.
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First analysis: eigenvector `∞ perturbation bound

Low rank structure under our model:

C = zz∗+ σW .

Recall x̃ is the top eigenvector of C with ‖x̃‖2 =
√

n.

The `2 bound is easy: by Davis-Kahan, w.h.p.

1√
n
‖x̃− z‖ ≤

σ‖W‖op

λ1(zz∗)
= O(

σ√
n

)

The `∞ bound is (a bit) hard:

|x̃m− zm|=
∣∣∣∣(Cx̃)m

λ1(C)
− zm

∣∣∣∣≤ ∣∣∣∣ |z∗x̃ |λ1(C)
−1

∣∣∣∣+ σ|(Wx̃)m|
λ1(C)

.

The goal: ‖Wx̃‖∞ = O(
√

n logn) w.h.p.

Once this is proved, `∞ perturbation bound X.
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First analysis: eigenvector `∞ perturbation bound

The idea: introduce auxiliary problems to decouple
dependence (leave-one-out).

For each m ∈ [n], define C(m) := zz∗+ σW (m), with

W (m)
k` = Wk`1{k 6=m}1{ 6̀=m}, x̃(m) = leading eigenvector of C(m)

!(#) =
!&& !&' ( !&)
!'& !'& ( !')
( ( ( (
!)& !)' ( !))

!

Obs: C(m) is independent of mth row of W , and w.h.p.

|(Wx̃)m|= |w∗mx̃ | ≤ |w∗mx̃(m)|+ |w∗m(x̃− x̃(m))|
≤ |w∗mx̃(m)|+‖wm‖ · ‖x̃− x̃(m)‖
≤ O(

√
n logn) + O(

√
n) ·???.
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To bound ‖x̃− x̃(m)‖, use a precise version of Davis-Kahan:

1√
n
‖x̃− x̃(m)‖= O

(σ‖(W −W (m)) x̃(m)
√

n
‖

n

)
= O(

√
logn
n

σ) w .h.p.

working! X

!

"#
"#(%)'(

'((%)

'((−((%))

( = !!∗ + '(
((%) = !!∗ + '((%)
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Tracking n Auxiliary Sequences

Introduce n auxiliary sequences to analyze the MLE.

Let T be our GPM operator: (T x)k = (Cx)k
|(Cx)k | . Similarly,

(T (m)x)k := (C(m)x)k

|(C(m)x)k |
. Define n sequences:

!: "# = "%

!('): "#(') = "%,' *(') "+,'"',' …… ",,'
*(') *(') *(')

* "+"' …… ",
* * *

"#(-) = "%,- "+,-"',- …… ",,-*(-) *(-)*(-) *(-)

"#(.) = "%,. "+,."',. …… ",,.*(.) *(.)*(.) *(.)

…

……

……
……

…

!(-):

!(.):

auxiliary(
sequences

GPM(iterates
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Tracking n Auxiliary Sequences

!

"#

"$

%&
%&,(

%)
%),(

%)*$,(
%)*$

%+
%+,(

" = "$-⋂"#
/0,1

/0*2,1

Key: Contraction via induction.

∆t+1,m ≤ ρ∆t,m + small discrepancy error (ρ < 1).

Maintained throughout all iterates⇒ guarantee for x̂ .
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Take-away message

A new method of analyzing nonconvex problems.

Key idea: introducing auxiliary sequences to decouple +
perturbation analysis

Can also analyze matrix completion, phase retrieval, blinded
deconvolution, etc. [Chen, Fan, Ma, and Wang, 2017].
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Thank you!
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