Jianqing Fan, Weichen Wang and Yiqiao Zhong Princeton University

Matrix Eigenvector Perturbation

Symmetric Matrices A, \widetilde{A}, E with size p and $\widetilde{A} = A + E$. Eigendecomposition:

$$A = \sum_{i=1}^p \lambda_i v_i v_i^T, \quad \widetilde{A} = \sum_{i=1}^p \widetilde{\lambda}_i \widetilde{v}_i \widetilde{v}_i^T,$$

where $\lambda_1 \geq \ldots \geq \lambda_p$ and $\tilde{\lambda}_1 \geq \ldots \geq \tilde{\lambda}_p$. Let eigengap $\gamma := \min\{\lambda_i - \lambda_{i+1} : 1 \leq i \leq r\}$.

Eigenvector Perturbation: (Davis and Kahan 70')

$$||v_i - \eta_i \tilde{v}||_2 \le \frac{2\sqrt{2} ||E||_2}{\gamma}, \quad i = 1, \dots, r$$

where $\eta_i \in \{\pm 1\}$ are suitable signs.

Remarks: Originally for eigenspaces; extension for SVD: Wedin 72'.

Question: What about ℓ^{∞} bound? Any sharper result than $\|\cdot\|_{\infty} \leq \|\cdot\|_2$?

Our goal: For incoherent low-rank matrices, a sharp ℓ^{∞} bound.

Notations and assumptions

- Suppose the rank $r := \operatorname{rank}(A)$ is small, e.g. bounded by a constant.
- Let p by r matrix $V = [v_1, \ldots, v_r]$. The coherence $\mu(V)$ is small, e.g. logarithmic in p.
- Let γ to be the smallest gap in $\{\lambda_1, \ldots, \lambda_r, 0\}$.
- Matrix infinity norm:

$$||E||_{\infty} = \sup_{\|x\|_{\infty} \le 1} ||Ex||_{\infty} = \max_{i} \sum_{j=1}^{p} |E_{ij}|.$$

Matrix coherence: (Candes and Recht 09') Let $V = [v_1, \ldots, v_r]$ be r columns of orthonormal vectors in \mathbf{R}^p . The *coherence* of V is defined as

$$\mu(V) = \frac{p}{r} \max_{i} \sum_{j=1}^{r} V_{ij}^{2}.$$

- Small coherence means v_i not aligned with any coordinate.
- Complementary structure to sparsity.

ℓ^{∞} Eigenvector Perturbation

If $\gamma > C(\mu, r) ||E||_{\infty}$, then for suitable $\eta_i \in \{\pm 1\}$, and $C(\mu, r) = O(\mu^{1.5} r^{3.5})$.

$$\max_{1 \le k \le r} \|v_k - \eta_k \widetilde{v}_k\|_{\infty} \le C(\mu, r) \frac{\|E\|_{\infty}}{\gamma \sqrt{p}}.$$

- Remark: A similar bound for SVD.
- Simulations:
- p runs from 200 to 2000 with increment 200.
- $A = \sum_{k=1}^{3} (4 k) \gamma v_k v_k^T$; v_k is an eigenvector of an iid normal random matrix.

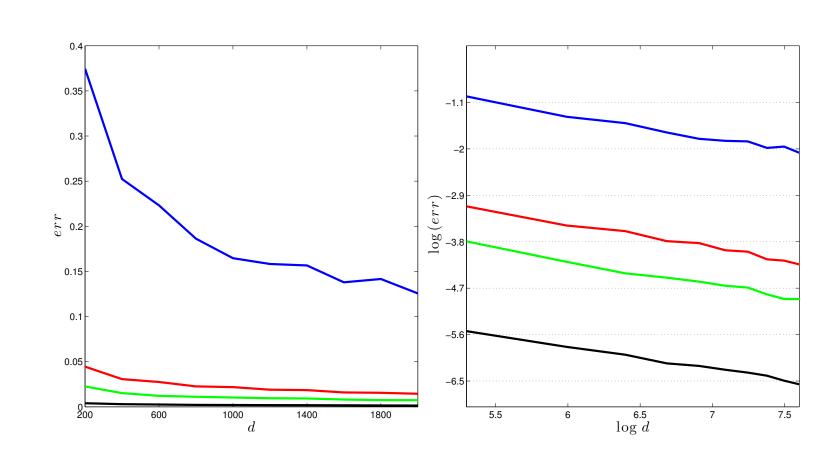


Figure 1: The slope is around -0.5. Blue: $\gamma=10$; red: $\gamma=50$; green: $\gamma=100$; and black: $\gamma=500$.

- Generating E: (a) random number in [0, L] by randomly selecting s entries each row; (b) $E_{ij} = L' \rho^{|i-j|}$.
- Report the largest error over 100 runs.

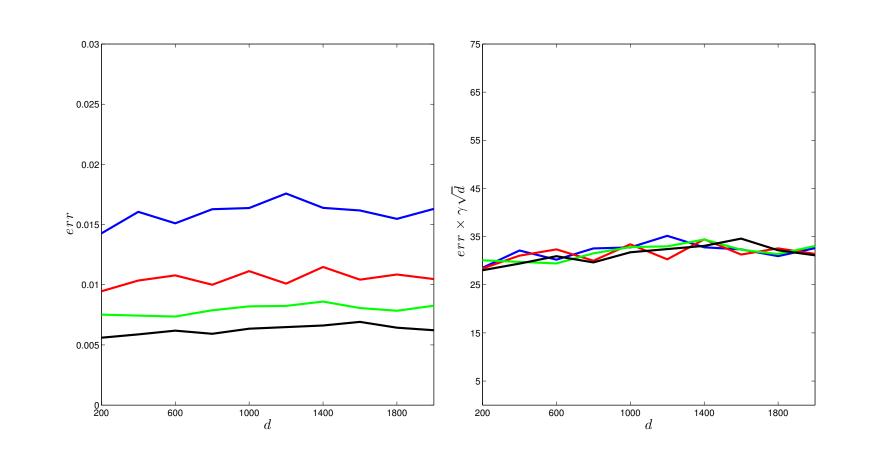


Figure 2: $\gamma\sqrt{p}$ is fixed for each line. The right plot shows the error multiplied by $\gamma\sqrt{p}$ against p. $\gamma\sqrt{p}$ is 2000 for blue; 3000 for red; 4000 for green; 5000 for black.

Application: Robust Covariance Matrix Estimation

• Factor Model:

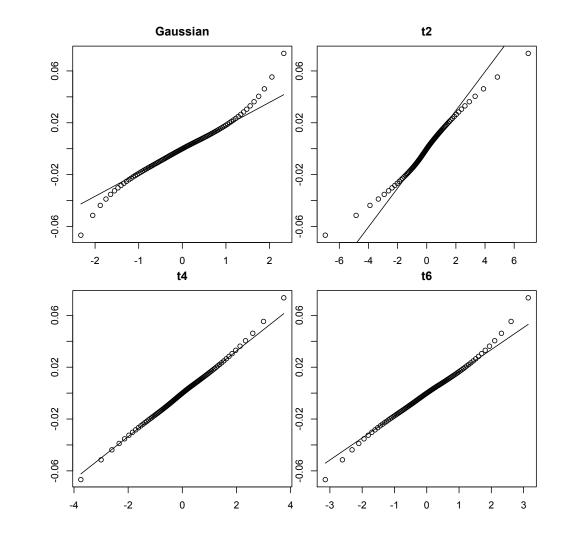
$$y_i = Bf_i + u_i$$

where $y_i, u_i \in \mathbf{R}^p$, $f_i \in \mathbf{R}^r$ and $B \in \mathbf{R}^{p \times r}$.

- $\{y_i\}_{i=1}^n$ are i.i.d. and observed; $\{f_i\}_{i=1}^n$ unobserved.
- Assuming $Cov(f_i, u_i) = 0$ and $\Sigma_f = I_r$, $\Sigma = BB^T + \Sigma_u$,

where r is a constant and Σ_u is sparse.

• Challenge: Estimate Σ with heavy-tailed data.



- Taming heavy-tailedness: Huber's M-estimator with a diverging parameter.
- For any i.i.d. Z_1, \ldots, Z_n with $\mu^* = \mathbb{E}Z_i$. Let $l_{\alpha}(x) = 2\alpha |x| \alpha^2$ when $|x| \ge \alpha$ and x^2 when $|x| \le \alpha$.

$$\hat{\mu} = \operatorname{argmin}_{\mu} \sum_{t=1}^{n} l_{\alpha}(Z_t - \mu).$$

• Concentration bound: (Fan, Li and Wang 14') Suppose $\epsilon \in (0,1)$ and $n \geq 8 \log(\epsilon^{-1})$. Choose $\alpha = \sqrt{(nv^2)/\log(\epsilon^{-1})}$, where v^2 is an upper bound of $\text{cov}(Z_t)$. Then,

$$P\left(|\widehat{\mu} - \mu^{\star}| \le 4v\sqrt{\frac{\log(\epsilon^{-1})}{n}}\right) \ge 1 - 2\epsilon.$$

- Elementary-wise estimation \Rightarrow initial robust $\widehat{\Sigma}$.
- Similar results: Catoni 12'.

Estimation Procedure and Theory

• Decomposition:

$$\hat{\Sigma} = \underbrace{B\Sigma_f B^T}_{\text{Low rank}} + \underbrace{\Sigma_u}_{\text{Sparse}} + \underbrace{(\hat{\Sigma} - \Sigma)}_{\text{Noise}}$$

- Question: How to denoise? How to disentangle?
- Blessing of pervarsive assumption: the top r eigenvalues of Σ grows linearly with p; and the elements of B are uniformly bounded.
- Step 1: rank r eigendecomposition: extract low rank $\widehat{U}\widehat{\Lambda}\widehat{U}$ from $\widehat{\Sigma}$.
- Step 2:

$$\widehat{\Sigma} - \underbrace{B\Sigma_f B^T}_{\approx \widehat{U}\widehat{\Lambda}\widehat{U}} = \underbrace{\Sigma_u + (\widehat{\Sigma} - \Sigma)}_{\mathcal{T}(\widehat{\Sigma}_u): \text{thresholding}}$$

• Step 3:

$$\hat{\Sigma}^{\mathcal{T}} = \mathcal{T}(\hat{\Sigma}_u) + \widehat{U}\hat{\Lambda}\widehat{U}^T.$$

• Why it works?: Apply ℓ^{∞} perturbation bound to low rank $A := BB^T$ and $E := \Sigma_u + (\widehat{\Sigma} - \Sigma)$.

$$\|\widehat{v}_i - v_i\|_{\infty} = O_P\left(\frac{p\sqrt{\log p/n} + \sqrt{p}\|\Sigma_u\|}{p\sqrt{p}}\right),$$

which is sharp for analysis.

• Assumption: Let $m_q = \max_{i \leq p} \sum_{j \leq p} (\sum_u)_{ij}^q$ for some $q \in [0, 1]$. Assume pervasiveness, bounded fourth moments, r being a constant, and $\|\sum_u\|$ bounded above and below from 0.

Let
$$w_n = \sqrt{\log p/n} + 1/\sqrt{p}$$
. If $m_q w_n^{1-q} = o(1)$, we have
$$\|\hat{\Sigma}^{\top} - \Sigma\|_{\max} = O_P(w_n),$$

$$\|\hat{\Sigma}^{\top} - \Sigma\|_{\Sigma} = O_P(\frac{\sqrt{p}\log p}{n} + m_q w_n^{1-q}),$$

$$\|(\hat{\Sigma}^{\top})^{-1} - \Sigma^{-1}\|_2 = O_P(m_q w_n^{1-q}).$$

• $||A||_{\Sigma} = p^{-1/2}||\Sigma^{-1/2}A\Sigma^{-1/2}||_F$ is the relative Frobenius norm.