Discussion 2

• Bayesian Model

- the prior $\pi(\theta)$ for θ .
- the conditional distribution of X given θ , $p(x|\theta)$ (usually specified by model).
- the posterior distribution of θ is simply the conditional distribution of θ given X

$$\pi(\theta|x) = \frac{f(x,\theta)}{p(x)} = \frac{\pi(\theta)p(x|\theta)}{p(x)} \propto \pi(\theta)p(x|\theta)$$

where p(x) is the marginal distribution of X.

• Decision Theory

- Action space is the collection of all the actions or decisions, denoted by A.
- Loss function l(P, a) is a function $l: \mathcal{P} \times \mathcal{A} \to \mathbb{R}^+$, which can be explained as the nonnegative loss incurred by taking action a, while the true distribution is P.
- **Decision rule** δ is a function from the sample space \mathcal{X} to the action space \mathcal{A} .
- Risk function is a measure of the performance of the decision rule $\delta(X)$ by averaging loss over the sample space.

$$R(P, \delta) = E_P[l(P, \delta(X))]$$

Particularly, if taking the quadratic loss $l(P, a) = (\nu(P) - a)^2$, then the risk function is called the *Mean Squared Error* (MSE) of $\hat{\nu}$.

Bayes risk and Bayes rule: The Bayes risk is defined as

$$r(\delta) = E_{\Pi}[R(\theta, \delta)] = E_{\Pi, P}[l(\theta, \delta(X))]$$

and the Bayes rule is the decision rule that minimizes the Bayes risk. $r(\delta^*) = \min_{\delta} r(\delta)$

- Minimax rule is the decision rule that minimizes the worst possible risk.

$$\sup_{\theta} R(\theta, \delta^*) = \inf_{\delta} \sup_{\theta} R(\theta, \delta)$$

1.2.1

Consider a parameter space consisting of two points θ_1 and θ_2 , and suppose that for given θ , an experiment leads to a r.v. X whose frequency function $p(x|\theta)$ is given by

$$\begin{array}{c|cccc}
\theta \setminus x & 0 & 1 \\
\hline
\theta_1 & 0.8 & 0.2 \\
\hline
\theta_2 & 0.4 & 0.6
\end{array}$$

Let π be the prior frequency function of θ defined by $\pi(\theta_1) = \pi(\theta_2) = \frac{1}{2}$.

course page:http://www.stat.wisc.edu/~zuo/610/

- (a) Find the posterior frequency function $\pi(\theta|x)$.
- (b) Suppose X_1, \dots, X_n are independent with frequency function $p(x|\theta)$. Find the posterior $\pi(\theta|x_1,\dots,x_n)$. Observe that it depends only on $\sum_{i=1}^n x_i$.
- (d) Give the values of $P(\theta = \theta_1 | \sum_{i=1}^n X_i = .5n)$ when n=2 and 100.
- (e) Give the most probable value $\hat{\theta} = \arg \max_{\theta} \pi(\theta | \sum_{i=1}^{n} X_i = k)$ for n=2 and 100.

1.3.2

In example 1.3.5, the frequency function $p(x,\theta)$ is given by

$$\begin{array}{c|cccc}
 & x = 0 & x = 1 \\
\hline
\theta_1 & 0.3 & 0.7 \\
\hline
\theta_2 & 0.6 & 0.4 \\
\end{array}$$

and all possible decision rules are

	δ_1								
x = 0	a_1	a_1	a_1	a_2	a_2	a_2	a_3	a_3	a_3
x = 1	a_1	a_2	a_3	a_1	a_2	a_3	a_1	a_2	a_3

Suppose a new buyer makes a bid and the loss function is

- (a) Compute and plot the risk points in this case for all possible nonrandomized rules.
- (b) Find the minimax rule among the nonrandomized rules.
- (c) Find the minimax rule among the randomized rules
- (d) Suppose θ has prior $\pi(\theta_1) = \gamma$, $\pi(\theta_2) = 1 \gamma$. Find the Bayes rule when (i) $\gamma = 0.5$.

1.3.9

Let θ denote the proportion of people working in a company who have a certain characteristic (e.g. being left-handed). It is known that in the state where the company is located, 10% have the characteristic. A person in charge of ordering equipment needs to estimate θ and uses

$$\hat{\theta} = (.2)(.10) + (.8)\hat{p}$$

where $\hat{p} = X/n$ is the proportion with the characteristic in a sample of size n from the company. Find $MSE(\hat{\theta})$ and $MSE(\hat{p})$. If the true θ is θ_0 , for what θ_0 is

$$\frac{MSE(\hat{\theta})}{MSE(\hat{p})} < 1?$$

Give the answer for n = 25 and n = 100.