Discussion 4

• Exponential families

– If there exist real-valued functions $\eta(\theta)$, $B(\theta)$ on the parameter space Θ , and real functions T and h on R^q , such that the density(frequency) functions $p(x,\theta)$ of the P_{θ} may be written

$$p(x, \theta) = h(x) \exp \left[\eta(\theta)T(x) - B(\theta)\right],$$

The family of distributions P_{θ} is said to be an one-parameter exponential family.

- * T(X) is sufficient for θ .
- * η , T and B are not unique.
- (Theorem 1.6.2) If the density (or frequency) function of X has the canonical form

$$q(x, \eta) = h(x) \exp \left[\eta T(x) - A(\eta)\right]$$

and η is an interior point of the parameter space, then the MGF of T(X) is given by

$$M(s) = \exp \left[A(s + \eta) - A(\eta) \right]$$

for s in some neighborhood of 0. Moreover,

$$E(T(X)) = A'(\eta), \quad Var(T(X)) = A''(\eta).$$

- (Theorem 1.6.3 and Corollary 1.6.1) The multiparameter version of Theorem 1.6.2.
- An exponential family is of rank k if and only if the generating statistic T is k-dimensional and $\{1, T_1(X), \dots, T_k(X)\}$ are linearly independent with positive probability.
- (**Theorem 1.6.4**) Suppose $\mathcal{P} = \{q(x, \eta) : \eta \in \varepsilon\}$ is a canonical exponential family generated by (T, h) and ε is open, then the following are equivalent:
 - (i) \mathcal{P} is of rank k.
 - (ii) η is a parameter (identifiable).
 - (iii) $Var_n(T)$ is positive definite.
 - (iv) $\eta \to \dot{A}(\eta)$ is 1-1 on ε .
 - (v) A is strictly convex on ε .

1.6.11

Obtain moment-generating functions for the sufficient statistics when sampling from the following distributions.

(b) gamma, $\Gamma(p,\lambda)$, $\theta=\lambda$, p fixed

1.6.18

Suppose Y_1, \dots, Y_n are independent with $Y_i \sim N(\beta_1 + \beta_2 z_i, \sigma^2)$, where z_1, \dots, z_n are known co-variate values not all equal. Show that the family has rank 3. Give the mean vector and variance matrix of T.

1.6.31

Conjugate Normal Mixture Distributions. A Hierarchical Bayesian Normal Model. Let $\{(\mu_j, \tau_j): 1 < j < k\}$ be a given collection of pairs with $\mu_j \in R, \tau_j > 0$. Let (μ, σ) a random pair with $P\{(\mu, \sigma) = (\mu_j, \tau_j)\} = \lambda_j, \ 0 < \lambda_j < 1, \ \sum_{j=1}^k \lambda_j = 1$. Let θ be a random variable whose conditional distribution given $(\mu, \sigma) = (\mu_j, \tau_j)$ is $N(\mu_j, \tau_j^2)$. Consider the model $X = \theta + \epsilon$, where θ and ϵ are independent and $\epsilon \sim N(0, \sigma_0^2), \ \sigma_0^2$ known. Not that θ has the prior density

$$\pi(\theta) = \sum_{j=1}^{k} \lambda_j \phi_{\tau_j}(\theta - \mu_j) \tag{1}$$

where ϕ_{τ} denote the $N(0,\tau^2)$ density. Also note that $(X|\theta)$ has the $N(\theta,\sigma_0^2)$ distribution.

1. Find the posterior

$$\pi(\theta|x) = \sum_{j=1}^{k} P\{(\mu, \sigma) = (\mu_j, \tau_j) | x\} \pi(\theta|(\mu_j, \tau_j), x)$$

and write it in the form

$$\sum_{j=1}^{k} \lambda_j(x) \phi_{\tau_j(x)}(\theta - \mu_j(x))$$

for appropriate $\lambda_j(x)$, $\tau_j(x)$ and $\mu_j(x)$. This shows that (1) defines a conjugate prior for the $N(\theta, \sigma_0^2)$ distribution.

2. Let $X_i = \theta + \epsilon_i$, 1 < i < n, where θ is as previously and $\epsilon_1, \dots, \epsilon_n$ are i.i.d. $N(0, \sigma_0^2)$. Find the posterior $\pi(\theta|x_1, \dots, x_n)$, and show that it belongs to class (1).

Hint: Consider the sufficient statistic for $p(x|\theta)$.